Skip to main content
Log in

Current Pharmacological Approaches to the Therapy of Varicella Zoster Virus Infections

A Guide to Treatment

  • Disease Management
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Varicella zoster virus (VZV), a member of the herpesvirus family, is responsible for both primary (varicella, chickenpox) as well as reactivation (zoster, shingles) infections. In immunocompetent patients, the course of varicella is generally benign. For varicella zoster, post-herpetic neuralgia is the most common complication. In immunocompromised patients (particularly those with AIDS), transplant recipients and cancer patients, VZV infections can be life-threatening. For these patients and also for immunocompetent patients at risk such as pregnant women or premature infants, the current treatment of choice is based on either intravenous or oral aciclovir (acyclovir).

The low oral bioavailability of aciclovir, as well as the emergence of drug-resistant virus strains, have stimulated efforts towards the development of new compounds for the treatment of individuals with VZV infections. Among these new compounds, penciclovir, its oral prodrug form famciclovir and the oral prodrug form of aciclovir (valaciclovir), rank among the most promising. As with aciclovir itself, all of these drugs are dependent on the virus-encoded thymidine kinase (TK) for their intracellular activation (phosphorylation), and, upon conversion to their triphosphate form, they act as inhibitors/alternative substrate of the viral DNA polymerase. Therefore, cross-resistance to these drugs may be expected for those virus mutants that are TK-deficient and thus resistant to aciclovir. Other classes of nucleoside analogues dependent for their phosphorylation on the viral TK that have been pursued for the treatment of VZV infections include sorivudine, brivudine, fialuridine, fiacitabine and netivudine. Among oxetanocins, which are partially dependent on viral TK, lobucavir is now under clinical evaluation. Foscarnet, which does not require any previous metabolism to interact with the viral DNA polymerase, is used in the clinic when TK-deficient VZV mutants emerge during aciclovir treatment. TK-deficient mutants are also sensitive to the acyclic nucleoside phosphonates (i.e. [s]-l-[3-hydroxy-2-phosphonylmethoxypropyl]cytosine; HPMPC); these agents do not depend on the virus-encoded TK for their phosphorylation but depend on cellular enzymes for conversion to their diphosphoryl derivatives which then inhibit viral DNA synthesis.

Vaccination for VZV has now come of age. It is recommended for healthy children, patients with leukaemia, and patients receiving immunosuppressive therapy or those with chronic diseases. The protection induced by the vaccine seems, to some extent, to include zoster and associated neuralgia. Passive immuniatin based on specific immunoglobulins does not effectively prevent VZV infection and is therefore restricted to high risk individuals (i.e. immunocompromised children and pregnant women).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weller TH. Varicella and herpes zoster: changing concepts of the natural history, control, and importance of a not-so-benign virus (2 Pt 1). N Engl J Med 1983; 309: 1362–8

    PubMed  CAS  Google Scholar 

  2. Weiler TH. Varicella and herpes zoster. Changing concepts of the natural history, control, and importance of a not-so-benign virus (2 Pt 2). N Engl J Med 1983; 309: 1434–40

    Google Scholar 

  3. Gilden DH, Mahalingam R, Dueland AN, et al. Herpes zoster: pathogenesis and latency. In: Melnick JL, editor. Progress in Medical Virology. Vol. 39. Karger: Basel, 1992: 19–75

    Google Scholar 

  4. Arvin AM. Varicella-zoster virus. Clin Microbiol Rev 1996; 9: 361–81

    PubMed  CAS  Google Scholar 

  5. Weber DM, Pellechia JA. Varicella pneumonia. JAMA 1965; 192: 572–3

    PubMed  CAS  Google Scholar 

  6. Wallace MR, Bowler WA, Murray NB, et al. Treatment of adult varicella with oral acyclovir: a randomized, placebo-controlled trial. Ann Intern Med 1992; 117: 358–63

    PubMed  CAS  Google Scholar 

  7. Hockberger RS, Rothstein RJ. Varicella pneumonia in adults: a spectrum of disease. Ann Emerg Med 1986; 15: 931–4

    PubMed  CAS  Google Scholar 

  8. Triebwasser JH, Harris RE, Bryant RE, et al. Varicella pneumonia in adults. Medicine 1967; 46: 409–21

    PubMed  CAS  Google Scholar 

  9. Nikkeis AF, Delvenne P, Sadzot-Delvaux C, et al. Distribution of varicella zoster virus and herpes simplex virus in disseminated fatal infections. J Clin Pathol 1996; 49: 243–8

    Google Scholar 

  10. Haake DA, Zakowski PC, Haake DL, et al. Early treatment with acyclovir for varicella pneumonia in otherwise healthy adults: retrospective controlled study and review. Rev Infect Dis 1990; 12: 788–97

    PubMed  CAS  Google Scholar 

  11. Lotshaw RR, Keegan JM, Gordon HR. Parenteral and oral acyclovir for management of varicella pneumonia in pregnancy: a case report with review of literature. W V Med J 1991; 87: 204–6

    PubMed  CAS  Google Scholar 

  12. Smego Jr RA, Asperilla MO. Use of acyclovir for varicella pneumonia during pregnancy. Obstet Gynecol 1991; 78: 1112–6

    PubMed  Google Scholar 

  13. Clements DA, Katz SL. Varicella in a susceptible pregnant woman. In: Remington JS, Swartz MN, editors. Current clinical topics in infectious diseases. Boston (MA): Blackwell Scientific Publications, 1993: 123–30

    Google Scholar 

  14. Pratt RD, Bradley JS, Loubert C, et al. Rhabdomyolysis associated with acute varicella infection. Clin Infect Dis 1995; 20: 450–3

    PubMed  CAS  Google Scholar 

  15. Enders G, Miller E, Cradock-Watson J, et al. Consequences of varicella and herpes zoster in pregnancy: prospective study of 1739 cases. Lancet 1994; 343: 1548–51

    PubMed  CAS  Google Scholar 

  16. Katz VL, Kuller JA, McMahon MJ, et al. Varicella during pregnancy: maternal and fetal effects. J Med 1995; 163: 446–50

    CAS  Google Scholar 

  17. Paryani SG, Arvin AM. Intrauterine infection with varicellazoster virus after maternal varicella. N Engl J Med 1986; 314: 1542–6

    PubMed  CAS  Google Scholar 

  18. Gershon A. Chickenpox, measles, and mumps. In: Remington JS, Klein JO, editors. Infectious diseases of the fetus and newborn infant. 3rd ed. Philadelphia (PA): WB Saunders, 1990: 395–445

    Google Scholar 

  19. Gershon AA. Varicella-zoster virus: prospects for control. Adv Pediatr Infect Dis 1995; 10: 93–124

    PubMed  CAS  Google Scholar 

  20. Brunell PA. Varicella in pregnancy, the fetus, and the newborn: problems in management. J Infect Dis 1992; 166 Suppl 1: S42–7

    PubMed  Google Scholar 

  21. Brunell PA. Fetal and neonatal varicella-zoster infections. Semin Perinatal 1983; 7: 47–56

    CAS  Google Scholar 

  22. Elliott KJ. Other neurological complications of herpes zoster and their management. Ann Neurol 1994; 35 Suppl: S57–61

    PubMed  Google Scholar 

  23. Schimpff S, Serpick A, Stoler B, et al. Varicella-zoster infection in patients with cancer. Ann Intern Med 1972; 76: 241–54

    PubMed  CAS  Google Scholar 

  24. Goffinet DR, Glatstein EJ, Merigan TC. Herpes zoster-varicella infections and lymphoma. Ann Intern Med 1972; 76: 235–40

    PubMed  CAS  Google Scholar 

  25. Mazur MH, Dolin R. Herpes zoster at the NTH: a 20-year experience. Am J Med 1978; 65: 738–44

    PubMed  CAS  Google Scholar 

  26. Taylor CE, Sviland L, Pearson ADJ, et al. Virus infections in bone marrow transplant recipients: a three-year prospective study. J Clin Pathol 1990; 43: 633–7

    PubMed  CAS  Google Scholar 

  27. Meyers JD. Infection in recipients of bone marrow transplants. In: Remington JS, Schwartz MN, editors. Current clinical topics in infectious diseases. New York: McGraw-Hill Book Co., 1985: 261–92

    Google Scholar 

  28. Christiansen NP, Haake RJ, Hurd DD. Early herpes zoster infection in adult patients with Hodgkin’s disease undergoing autologous bone marrow transplant. Bone Marrow Transplant 1991; 7: 435–7

    PubMed  CAS  Google Scholar 

  29. Tappero JW, Perkins BA, Wenger JD, et al. Cutaneous manifestations of opportunistic infections in patients infected with human immunodeficiency virus. Clin Microbiol Rev 1995; 8: 440–50

    PubMed  CAS  Google Scholar 

  30. Cockerell CJ. Human immunodeficiency virus infection and the skin: a crucial interface. Arch Intern Med 1991; 151: 1295–303

    PubMed  CAS  Google Scholar 

  31. Cohen PR, Beltrani VP, Grossman ME. Disseminated herpes zoster in patients with human immunodeficiency virus infection. JAMA 1988; 84: 1076–80

    CAS  Google Scholar 

  32. Liebovitz E, Kaul A, Rigaud M, et al. Chronic varicella zoster in a child infected with human immunodeficiency virus: case report and review of the literature. Cutis 1992; 49: 27–31

    Google Scholar 

  33. Nelson JA, Ghazal P, Wiley CA. Role of opportunistic viral infections in AIDS. AIDS 1990; 4: 1–10

    PubMed  CAS  Google Scholar 

  34. Quinnan Jr GV, Masur H, Rook AH, et al. Herpesvirus infections in the acquired immune deficiency syndrome. JAMA 1984; 252: 72–7

    PubMed  Google Scholar 

  35. von Siedlein L, Gillette SG, Bryson Y, et al. Frequent recurrence and persistence of varicella-zoster virus infections in children infected with human immunodeficiency virus type 1. J Pediatr 1996; 128: 52–7

    Google Scholar 

  36. Weksler ME. Immune senescence. Ann Neurol 1994; 35 Suppl.: S35-7

  37. McPherson RE. Herpes zoster opthalmicus and the immunocompromised host: a case report and review. J Am Optom Assoc 1997; 68: 527–38

    PubMed  CAS  Google Scholar 

  38. Jemsek J, Greenberg SB, Taber L, et al. Herpes zoster-associated encephalitis: clinicopathologic report of 12 cases and review of the literature. Medicine 1983; 62: 81–97

    PubMed  CAS  Google Scholar 

  39. Straus SE, Ostrove JM, Inchausp G, et al. Varicella-zoster virus infections: biology, natural history, treatment, and prevention. Ann Intern Med 1988; 108: 221–37

    PubMed  CAS  Google Scholar 

  40. Griffin DE. Therapy of viral infections of the central nervous system. Antiviral Res 1991; 15: 1–10

    PubMed  CAS  Google Scholar 

  41. Gelb LD. Varicella-zoster virus. In: Fields BN, Knipe DM, editors. Virology. New York: Raven Press, 1990: 2011–54

    Google Scholar 

  42. Ryder JW, Croen K, Kleinschmidt-DeMasters BK, et al. Progressive encephalitis three months after resolution of cutaneous zoster in a patient with AIDS. AnnNeurol 1986; 19: 182–8

    CAS  Google Scholar 

  43. Dueland AN, Devlin M, Martin JR, et al. Fatal varicella-zoster virus meningoradiculitis without skin involvement. Ann Neurol 1991; 29: 569–72

    PubMed  CAS  Google Scholar 

  44. Gilden DH, Dueland AN, Devlin ME, et al. Varicella-zoster virus reactivation without rash. J Infect Dis 1992; 166 Suppl. 1: S30–4

    PubMed  Google Scholar 

  45. Heller HM, Carnevale NT, Steigbigel RT. Varicella zoster virus transverse myelitis without cutaneous rash. Am J Med 1990; 88: 550–1

    PubMed  CAS  Google Scholar 

  46. Snoeck R, Gérard M, Sadzot-Delvaux C, et al. Meningoradiculoneuritis due to acyclovir-resistant varicella-zoster virus in an AIDS patient. J Med Virol 1994; 42: 338–47

    PubMed  CAS  Google Scholar 

  47. Mouligner A, Pialoux G, Dega H, et al. Brain stem encephalitis due to varicella-zoster virus in a patient with AIDS. 1995. Clin Infect Dis 20: 1378–80

    Google Scholar 

  48. Poscher ME. Successful treatment of varicella zoster virus meningoencephalitis in patients with AIDS: report of four cases and review. AIDS 1994; 8: 1115–7

    PubMed  CAS  Google Scholar 

  49. de Silva SM, Mark AS, Gilden DH, et al. Zoster myelitis: improvement with antiviral therapy in two cases. Neurology 1996; 47: 929–31

    PubMed  Google Scholar 

  50. Lionnet F, Pulik M, Genet P, et al. Myelitis due to varicellazoster virus in two patients with AIDS: successful treatment with acyclovir. Clin Infect Dis 1996; 22: 138–40

    PubMed  CAS  Google Scholar 

  51. Gilden DH, Beinlich BR, Rubinstein EM, et al. Varicella-zoster virus myelitis: an expanding spectrum. Neurology 1994; 44: 1818–23

    PubMed  CAS  Google Scholar 

  52. Batisse M, Eliaszewicz M, Zazoun L, et al. Acute retinal necrosis in the course of AIDS: study of 26 cases. AIDS 1996; 10: 55–60

    PubMed  CAS  Google Scholar 

  53. Figueroa MS, Garabito I, Gutierrez C, et al. Famciclovir for the treatment of acute retinal necrosis (ARN) syndrome. Am J Ophthalmol 1997; 123: 255–7

    PubMed  CAS  Google Scholar 

  54. Arvin AM. Varicella-zoster virus. In: Fields BN, Knipe DM, Howley PM, et al., editors. Field’s virology. 3rd ed. Philadelphia (PA): Lippincott-Raven, 1996: 2547–85

    Google Scholar 

  55. Brunell PA, Ross A, Miller LH, et al. Prevention of varicella by zoster immune globulin. N Engl J Med 1969; 280: 1191–4

    PubMed  CAS  Google Scholar 

  56. Gershon AA, Steinberg S, Brunell PA. Zoster immune globulin: a further assessment. N Engl J Med 1974; 290: 243–5

    PubMed  CAS  Google Scholar 

  57. Centers for Disease Control. Varicella zoster immune globulin for the prevention of chickenpox: recommendations of the immunizations practices advisory committee. Ann Intern Med 1984; 100: 859–65

    Google Scholar 

  58. Zaia JA, Levin MJ, Preblud SR, et al. Evaluation of varicellazoster immune globulin: protection of immunosuppressed children after household exposure to varicella. J Infect Dis 1983; 147: 737–43

    PubMed  CAS  Google Scholar 

  59. Prevention of varicella: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 1996; 45: 1–36

    Google Scholar 

  60. Gershon AA. Varicella vaccine: its past, present and future. Pediatr Infect Dis J 1995; 14: 742–4

    PubMed  CAS  Google Scholar 

  61. Takahashi M, Otsuka T, Okuno Y, et al. Live vaccine used to prevent the spread of varicella in children in hospital. Lancet 1974; II: 1288–90

    Google Scholar 

  62. Feldman S, Lott L. Varicella in children with cancer: impact of antiviral therapy and prophylaxis. Pediatrics 1987; 80: 465–72

    PubMed  CAS  Google Scholar 

  63. Hardy IB, Gershon A, Steinberg S, et al. The incidence of zoster after immunization with live attenuated varicella vaccine: a study in children with leukemia. N Engl J Med 1991; 325: 1545–50

    PubMed  CAS  Google Scholar 

  64. Kuter BJ, Weibel RE, Guess HA, et al. Oka/Merck varicella vaccine in healthy children: final report of a 2-year efficacy study and 7-year follow-up studies. Vaccine 1991; 9: 642–7

    Google Scholar 

  65. Asano Y, Nagai T, Miyata T, et al. Long-term protective immunity of recipients of the Oka strain of live varicella vaccine. Pediatrics 1985; 75: 667–71

    PubMed  CAS  Google Scholar 

  66. Hayward A, Villanueba E, Cosyns M, et al. Varicella-zoster virus (VZV)-specific cytotoxicity after immunization of non-immmune adults with Oka strain attenuated VZV vaccine. J Infect Dis 1992; 166: 260–4

    PubMed  CAS  Google Scholar 

  67. White CJ, Kuter B J, Ngai A, et al. Modified cases of chickenpox after varicella vaccination: correlation of protection with antibody response. Pediatr Infect Dis J 1992; 11: 19–23

    PubMed  CAS  Google Scholar 

  68. Diaz PS, Au D, Smith S, et al. Lack of transmission of the live attenuated varicella vaccine virus to immunocompromised children after immunization of their siblings. Pediatrics 1991; 87: 166–70

    PubMed  CAS  Google Scholar 

  69. Gershon AA. Human immune responses to live attenuated varicella vaccine. Rev Infect Dis 1991; 13, Suppl 11: S957–9

    PubMed  Google Scholar 

  70. Gershon AA, Steinberg S, NIAID Collaborative Varicella Vaccine Study Group. Persistence of immunity to varicella in children with leukemia immunized with live attenuated varicella vaccine. N Engl J Med 1989; 320: 892–7

    PubMed  CAS  Google Scholar 

  71. Tsolia M, Gershon A, Steinberg S, et al. Live attenuated varicella vaccine: evidence that the virus is attenuated and the importance of skin lesions in transmission of varicella-zoster virus. J Pediatr 1990; 116: 184–9

    PubMed  CAS  Google Scholar 

  72. Brunell PA, Taylor-Wiedeman J, Geiser CF, et al. Risk of herpes zoster in children with leukemia: varicella vaccine compared with history of chickenpox. Pediatrics 1986; 77: 53–6

    PubMed  CAS  Google Scholar 

  73. Berger R, Luescher D, Just M. Enhancement of varicellazoster-specific immune response in the elderly by boosting with varicella vaccine [letter]. J Infect Dis 1984; 149: 647

    PubMed  CAS  Google Scholar 

  74. Hayward A, Levin M, Wolf W, et al. Varicella-zoster virus-specific immunity after herpes zoster. J Infect Dis 1991; 163: 873–5

    PubMed  CAS  Google Scholar 

  75. Takahashi M, Iketani T, Sasada K, et al. Immunization of the elderly and patients with collagen vascular diseases with live varicella vaccine and use of varicella skin antigen. J Infect Dis 1992; 166 Suppl. 1: S58–62

    PubMed  Google Scholar 

  76. Sperber SJ, Smith BV, Hayden FG. Serologic response and reactogenicity to booster immunization of healthy seropositive adults with live or inactivated varicella vaccine. Antiviral Res 1992; 17: 213–22

    PubMed  CAS  Google Scholar 

  77. Lawrence R, Gershon A, Holzman R, et al. The risk of zoster after varicella vaccination in children with leukemia. N Engl J Med 1988; 318: 543–8

    PubMed  CAS  Google Scholar 

  78. Gershon AA, LaRussa P, Hardy I, et al. Varicella vaccine: the American experience. J Infect Dis 1992; 166 Suppl. 1: S63–8

    PubMed  Google Scholar 

  79. Levin MJ, Murray M, Rotbart HA, et al. Immune response of elderly individuals to a live-attenuated varicella vaccine. J Infect Dis 1992; 166: 258–9

    Google Scholar 

  80. Levin MJ, Murray M, Zerbe CO, et al. Immune responses of elderly persons 4 years after receiving a live-attenuated vaccine. J Infect Dis 1994; 170: 522–6

    PubMed  CAS  Google Scholar 

  81. Committee on Infectious Diseases. Recommendations for the use of live attenuated varicella vaccines. Pediatrics 1995; 95: 791–6

    Google Scholar 

  82. ACG Task Force on Adult Immunization and Infectious Disease Society of America. Guide for adult immunisation. 3rd ed. Philadelphia (PA): American College of Physicians, 1994

    Google Scholar 

  83. Lin TY, Huang YC, Ning HC, et al. Oral acyclovir prophylaxis of varicella after intimate contact. Pediatr Infect Dis J 1997; 16: 1162–5

    PubMed  CAS  Google Scholar 

  84. Yoshikawa T, Suga S, Kozawa T, et al. Persistence of protective immunity after postexposure prophylaxis of varicella with oral aciclovir in the family setting. Arch Dis Child 1998; 78: 61–3

    PubMed  CAS  Google Scholar 

  85. Easterbrook P, Wood MJ. Successors to acyclovir. J Antimicrob Chemother 1994; 34: 307–11

    PubMed  CAS  Google Scholar 

  86. Cunningham AL, Dwyer DE. Advances and controversies in the antiviral therapy of herpes zoster. Eur J Clin Microbiol Infect Dis 1996; 15: 273–5

    PubMed  CAS  Google Scholar 

  87. Alrabiah FA, Sacks SL. New antiherpesvirus agents: their targets and therapeutic potential. Drugs 1996; 52: 17–32

    PubMed  CAS  Google Scholar 

  88. Nikkeis AF, Piérard GE. Recognition and treatment of shingles. Drugs 1994; 48: 528–48

    Google Scholar 

  89. Wagstaff AT, Faulds D, Goa KL. Aciclovir: a reappraisal of its antiviral activity, pharmacokinetics properties and therapeutic efficacy. Drugs 1994; 47: 153–205

    PubMed  CAS  Google Scholar 

  90. Perry CM, Faulds D. Valaciclovir: a review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy in herpesvirus infections. Drugs 1996; 52: 754–72

    PubMed  CAS  Google Scholar 

  91. Perry CM, Wagstaff AJ. Famciclovir: a review of its pharmacological properties and therapeutic efficacy in herpesvirus infections. Drugs 1995; 50: 398–415

    Google Scholar 

  92. Balfour Jr HH, Kelly JM, Suarez CS, et al. Acyclovir treatment of varicella in otherwise healthy children. J Pediatr 1990; 116: 633–9

    PubMed  Google Scholar 

  93. Dunkle LM, Arvin AM, Whitley RJ, et al. A controlled trial of acyclovir for chickenpox in normal children. N Engl J Med 1991; 325: 1539–44

    PubMed  CAS  Google Scholar 

  94. Balfour Jr HH, Dunkle LM, Feder HM, et al. Acyclovir treatment of varicella in otherwise healthy adolescents. J Pediatr 1993; 120: 627–33

    Google Scholar 

  95. Al-Nakib W, Al-Kandari S, El-Khalik DM, et al. Arandomized controlled study of intravenous acyclovir (Zovirax) against placebo in adults with chickenpox. J Infect 1983; 6: 49–56

    PubMed  CAS  Google Scholar 

  96. Feder HM. Treatment of adult chickenpox with oral acyclovir. Arch Intern Med 1990; 150: 2061–5

    PubMed  Google Scholar 

  97. Rothe MJ, Feder Jr HM, Grant-Kels JM. Oral acyclovir therapy for varicella and zoster infections in pediatric and pregnant patients: a brief review. Pediatr Dermatol 1991; 8: 236–42

    PubMed  CAS  Google Scholar 

  98. Committee on Infectious Diseases. The use of oral acyclovir in otherwise healthy children with varicella. Pediatrics 1993; 91: 674–6

    Google Scholar 

  99. Wallace MR, Chamberlin CJ, Sawyer MH, et al. Treatment of adult varicella with sorivudine: a randomized, placebo-controlled trial. J Infect Dis 1996; 174: 249–55

    PubMed  CAS  Google Scholar 

  100. Whitley RJ. Sorivudine: a potent inhibitor of varicella zoster virus replication. Adv Exp Med Biol 1996; 394: 41–4

    PubMed  CAS  Google Scholar 

  101. Stevens DA, Jordan GW, Waddall TP, et al. Adverse effects of cytosine arabinoside on disseminated zoster in a controlled trial. N Engl J Med 1973; 289: 873–8

    PubMed  CAS  Google Scholar 

  102. Chow AW, Forester JH, Hryniuk W. Cytosine arabinoside therapy for herpesvirus infections. Antimicrob Agents Chemother 1970; 10: 214–7

    PubMed  CAS  Google Scholar 

  103. Whitley RJ, Gnann Jr JW. Acyclovir: a decade later. N Engl J Med 1992; 327: 782–9

    PubMed  CAS  Google Scholar 

  104. Arvin A, Feldman S, Merigan TC. Human leukocyte interferon in the treatment of varicella in children with cancer: a preliminary controlled trial. Antimicrob Agents Chemother 1978; 13: 605–7

    PubMed  CAS  Google Scholar 

  105. Arvin AM, Kushner JH, Feldman S, et al. Human leukocyte interferon for treatment of varicella in children with cancer. N Engl J Med 1982; 306: 761–5

    PubMed  CAS  Google Scholar 

  106. Whitley RJ, Hilty M, Haynes R, et al. Vidarabine therapy of varicella in immunosuppressed patients. J Pediatr 1982; 1: 125–31

    Google Scholar 

  107. Prober DG, Kirk LE, Keeney RE. Acyclovir therapy of chicken-pox in immunosuppressed children — a collaborative study. J Pediatr 1982; 101: 622–5

    PubMed  CAS  Google Scholar 

  108. Nyerges G, Meszner Z, Gyarmati E, et al. Acyclovir prevents dissemination of varicella in immunocompromised children. J Infect Dis 1988; 157: 309–13

    PubMed  CAS  Google Scholar 

  109. Meszner Z, Nyerges G, Bell AR. Oral acyclovir to prevent dissemination of varicella in immunocompromised children. J Infect 1993; 26: 9–15

    PubMed  CAS  Google Scholar 

  110. Bean B, Braun C, Balfour Jr HH. Acyclovir therapy for acute herpes zoster. Lancet 1982; II: 118–21

    Google Scholar 

  111. Peterslund NA, Seyer-Hansen K, Ipen J, et al. Acyclovir in herpes zoster. Lancet 1981; II: 827–30

    Google Scholar 

  112. McGill J, MacDonald DR, Fall C, et al. Intravenous acyclovir in acute herpes zoster infection. J Infect Dis 1983; 6: 157–61

    CAS  Google Scholar 

  113. Wood MJ, Ogan PH, McKendrick MW, et al. Efficacy of oral acyclovir treatment of acute herpes zoster. Am J Med 1988; 85 Suppl. 2A: 79–83

    PubMed  CAS  Google Scholar 

  114. Morton P, Thomson AN. Oral acyclovir in the treatment of herpes zoster in general practice. N Z Med J 1989; 102: 93–5

    PubMed  CAS  Google Scholar 

  115. Cobo LM, Foulks GN, Liesegang T. Oral acyclovir in the treatment of acute herpes zoster ophthalmicus. Ophthalmology 1986; 93: 763–70

    PubMed  CAS  Google Scholar 

  116. McGill J, Chapman C. A comparison of topical acyclovir with steroids in the treatment of herpes zoster keratouveitis. Br J Ophthalmol 1983; 67: 746–50

    PubMed  CAS  Google Scholar 

  117. Mondelli M, Romano C, Passera S, et al. Effects of acyclovir on sensory axonal neuropathy, segmental motor paresis and postherpetic neuralgia in herpes zoster patients. Eur Neurol 1996; 36: 288–92

    PubMed  CAS  Google Scholar 

  118. Bowsher D. The management of postherpetic neuralgia. Postgrad Med J 1997; 73: 623–9

    PubMed  CAS  Google Scholar 

  119. Eaglstein WH, Katz R, Brown JA. The effects of early corticosteroid therapy on the skin eruption and pain of herpes zoster. JAMA 1970; 211: 1681–3

    PubMed  CAS  Google Scholar 

  120. Elliott FA. Treatment of herpes zoster with high doses of prednisone. Lancet 1964; II: 610–1

    Google Scholar 

  121. Esmann V, Kroon S, Peterslund NA. Prednisolone does not prevent postherpetic neuralgia. Lancet 1987; II: 126–9

    Google Scholar 

  122. Wood MJ, Johnson RW, McKendrick MW, et al. A randomized trial of acyclovir for 7 days or 21 days with and without prednisolone for treatment of acute herpes zoster. N Engl J Med 1994; 330: 896–900

    PubMed  CAS  Google Scholar 

  123. Whitley RJ, Weiss H, Gnann JR JW, et al. Acyclovir with and without prednisone for the treatment of herpes zoster. Ann Intern Med 1996; 125: 376–83

    PubMed  CAS  Google Scholar 

  124. Huff JC, Drucker JL, Clemmer A, et al. Effect of oral acyclovir on pain resolution in herpes zoster: a reanalysis. J Med Virol 1993; Suppl. 1: 93–6

    PubMed  Google Scholar 

  125. Choo PW, Galil K, Donahue JG, et al. Risk factors for postherpetic neuralgia. Arch Intern Med 1997; 157: 1217–24

    PubMed  CAS  Google Scholar 

  126. Jackson JL, Gibbons R, Meyer G, et al. The effect of treating herpes zoster with oral acyclovir in preventing postherpetic neuralgia: a meta-analysis. Arch Intern Med 1997; 157: 909–12

    PubMed  CAS  Google Scholar 

  127. Beutner KR, Friedman DJ, Porszpaniak C, et al. Valaciclovir compared with acyclovir for improved therapy for herpes zoster in immunocompetent adults. Antimicrob Agents Chemother 1995; 39: 1546–53

    PubMed  CAS  Google Scholar 

  128. Herne K, Cirelli R, Lee P, et al. Antiviral therapy of acute herpes zoster in older patients. Drugs Aging 1996; 8: 97–112

    PubMed  CAS  Google Scholar 

  129. Duschet P, Auer-Grumbach P, Gschnait F. Efficacy and safety of penciclovir (PCV) in the treatment of patients with herpes zoster (HZ): a double-blind, randomised, acyclovir (ACV)-controlled study [abstract no. 1708]. Abstracts of the 32nd Interscience Conference on Antimicrobial Agents and Chemotherapy, 1992 Oct 11–14; Anaheim (CA)

  130. Tyring S, Barbarash RA, Nahlik JE, et al. Famciclovir for the treatment of acute herpes zoster: effects on acute disease and postherpetic neuralgia: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 1995; 123: 89–96

    PubMed  CAS  Google Scholar 

  131. Huse DM, Schainbaum S, Kirsch AJ, et al. Economic evaluation of famciclovir in reducing the duration of postherpetic neuralgia. Am J Health Syst Pharm 1997; 54: 1180–4

    PubMed  CAS  Google Scholar 

  132. Degreef H, Famciclovir herpes zoster clinical study group. Famciclovir, a new oral antiherpes drug: results of the first controlled clinical study demonstrating its efficacy and safety in the treatment of uncomplicated herpes zoster in immunocompetent patients. Int J Antimicrob Agents 1994; 4: 241–6

    PubMed  CAS  Google Scholar 

  133. Saltzman R, Jurewicz R, Boon R. Safety of famciclovir in patients with herpes zoster and genital herpes. Antimicrob Agents Chemother 1994; 38: 2454–7

    PubMed  CAS  Google Scholar 

  134. Merigan TC, Rand KH, Pollard RB. Human leukocyte interferon for the treatment of herpes zoster in patients with cancer. N Engl J Med 1978; 298: 981–7

    PubMed  CAS  Google Scholar 

  135. Whitley RJ, Ch’ien LT, Dolin R, et al. Adenine arabinoside therapy of herpes zoster in the immunosuppressed. N Engl J Med 1976; 294: 1193–9

    PubMed  CAS  Google Scholar 

  136. Whitley RJ, Soong SJ, Dolin R, et al. Early vidarabine therapy to control the complications of herpes zoster in immunosuppressed patients. N Engl J Med 1982; 307: 971–5

    PubMed  CAS  Google Scholar 

  137. Johnson MT, Luby JP, Buchanan RA, et al. Treatment of varicella-zoster virus infections with adenine arabinoside. J Infect Dis 1975; 131: 225–9

    PubMed  CAS  Google Scholar 

  138. Biron KK, Elion GB. In vitro susceptibility of varicella-zoster to acyclovir. Antimicrob Agents Chemother 1980; 18: 443–7

    PubMed  CAS  Google Scholar 

  139. Balfour Jr HH, Bean B, Laskin OL, et al. Acyclovir halts progression of herpes zoster in immunocompromised patients. N Engl J Med 1983; 308: 1448–53

    PubMed  Google Scholar 

  140. Shepp D, Dandliker PS, Meyers JD. Treatment of varicellazoster virus in severely immunocompromised patients: a randomized comparison of acyclovir and vidarabine. N Engl J Med 1986; 314: 208–12

    PubMed  CAS  Google Scholar 

  141. Whitley RJ. Therapeutic approaches to varicella-zoster virus infections. J Infect Dis 1992; 166 Suppl. 1: S51–7

    PubMed  Google Scholar 

  142. Whitley RJ, Gnann Jr JW, Hinthorn D, et al. Disseminated herpes zoster in the immunocompromised host: a comparative trial of acyclovir and vidarabine. J Infect Dis 1992; 165: 450–5

    PubMed  CAS  Google Scholar 

  143. Dullaert H, Maudgal PC, Leys A, et al. Bromovinyldeoxyuridine treatment of outer retinal necrosis due to varicella-zoster virus: a case report. Bull Soc Belge Ophtalmol 1997; 262: 107–13

    Google Scholar 

  144. Wutzier P, De Clercq E, Wutke K, et al. Oral brivudin vs intravenous acyclovir in the treatment of herpes zoster in immunocompromised patients: a randomized double-blind trial. J Med Virol 1995; 46: 252–7

    Google Scholar 

  145. Wildiers J, De Clercq E. Oral (E)-5-(2-bromovinyl)-2’-deoxyuridine treatment of severe herpes zoster in cancer patients. Eur J Cancer Clin Oncol 1984; 4: 471–6

    Google Scholar 

  146. Benoit Y, Laureys G, Delbeke M-J, et al. Oral BVDU treatment of varicella and zoster in children with cancer. Eur J Pediatr 1985; 143: 198–202

    PubMed  CAS  Google Scholar 

  147. Maudgal PC, Dralands L, Lamberts L, et al. Preliminary results of oral BVDU treatment of herpes zoster ophthalmicus. Bull Soc Belge Ophthal 1981; 193: 49–56

    CAS  Google Scholar 

  148. De Clercq E, Degreef H, Wildiers J, et al. Oral (E)-5-(2-Bromovinyl)-2’-deoxyuridine in severe herpes zoster [letter]. BMJ 1980; 281: 1178

    PubMed  Google Scholar 

  149. Niimura M. A double-blind clinical study in patients with herpes zoster to establish YN-72 (Brovavir) dose. Adv Exp Med Biol 1990; 278: 267–75

    PubMed  CAS  Google Scholar 

  150. Niimura M, Nishikawa T, Ogawa H, et al. YN-72 dose-finding double-blind clinical study in patients with herpes zoster: the study of clinical efficacy. Clin Virol 1990; 18: 115–26

    Google Scholar 

  151. Hiraoka A, Masaoka T, Nagai K, et al. Clinical effect of BV-araU on varicella-zoster virus infection in immunocompromised patients with haematological malignancies. J Antimicrob Chemother 1991; 27: 361–7

    PubMed  CAS  Google Scholar 

  152. Gnann JR JW, Crumpacker CS, Lalezari JP, et al. Sorivudine versus acyclovir for treatment of dermatomal herpes zoster in human immunodeficiency virus-infected patients: results from a randomized, controlled clinical trial. Antimicrob Agents Chemother 1998; 42: 1139–45

    PubMed  CAS  Google Scholar 

  153. Desgranges C, Razaka G, De Clercq E, et al. Effect of (E)-5-(2-bromovinyl)uracil on the catabolism and antitumor activity of 5-fluorouracil in rats and leukemic mice. Cancer Res 1986; 46: 1094–101

    PubMed  CAS  Google Scholar 

  154. Okuda H, Nishiyama T, Ogura K, et al. Lethal drug interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs. Drug Metab Dispos 1997; 25: 270–3

    Google Scholar 

  155. Pahwa S, Biron K, Lim W, et al. Continuous varicella-zoster infection associated with acyclovir resistance in a child with AIDS. JAMA 1988; 260: 2879–82

    PubMed  CAS  Google Scholar 

  156. Linnemann Jr CC, Biron KK, Hoppenjans WG, et al. Emergence of acyclovir-resistant varicella zoster virus in an AIDS patient on prolonged acyclovir therapy. AIDS 1990; 4: 577–9

    PubMed  Google Scholar 

  157. Jacobson MA, Berger TG, Fikrig S, et al. Acyclovir-resistant varicella zoster virus infection after chronic oral acyclovir therapy in patients with the acquired immunodeficiency syndrome (AIDS). Ann Intern Med 1990; 112: 187–91

    PubMed  CAS  Google Scholar 

  158. Smith KJ, Kahlter C, Davis C, et al. Acyclovir-resistant varicella zoster responsive to foscarnet. Arch Dermatol 1991; 127: 1069–71

    PubMed  CAS  Google Scholar 

  159. Cole NL, Balfour Jr HH. Varicella-zoster does not become more resistant to acyclovir during therapy. J Infect Dis 1986; 153: 605–8

    PubMed  CAS  Google Scholar 

  160. Mori H, Shiraki K, Kato T, et al. Molecular analysis of the thymidine kinase gene of thymidine kinase-deficient mutants of varicella-zoster virus. Intervirology 1988; 29: 301–10

    PubMed  CAS  Google Scholar 

  161. Lacey SF, Suzutani T, Powell KL, et al. Analysis of mutations in the thymidine kinase genes of drug-resistant varicellazoster virus populations using the polymerase chain reaction. J Gen Virol 1991; 72: 623–30

    PubMed  CAS  Google Scholar 

  162. Suzutani T, Lacey SF, Powell KL, et al. Random mutagenesis of the thymidine kinase gene of varicella-zoster virus. J Virol 1992; 66: 2118–24

    PubMed  CAS  Google Scholar 

  163. Roberts GB, Fyfe JA, Gaillard RK, et al. Mutant varicella-zoster virus thymidine kinase: correlation of clinical resistance and enzyme impairment. J Virol 1991; 65: 6407–13

    PubMed  CAS  Google Scholar 

  164. Shiroaki K, Namazue J, Okuno T, et al. Novel sensitivity of acyclovir-resistant varicella-zoster virus to anti-herpetic drugs. Antiviral Chem Chemother 1990; 1: 373–5

    Google Scholar 

  165. Talarico CL, Phelps WC, Biron KK. Analysis of the thymidine kinase genes from acyclovir-resistant mutants of varicellazoster virus isolated from patients with AIDS. J Virol 1993; 67: 1024–33

    PubMed  CAS  Google Scholar 

  166. Boivin G, Edelman CK, Pedneault L, et al. Phenotypic and genotypic characterization of acyclovir-resistant varicellazoster viruses isolated from persons with AIDS. J Infect Dis 1994; 170: 68–75

    PubMed  CAS  Google Scholar 

  167. Safrin S, Berger TG, Gilson I, et al. Foscarnet therapy in five patients with AIDS and acyclovir-resistant varicella-zoster virus infection. Ann Intern Med 1991; 115: 19–21

    PubMed  CAS  Google Scholar 

  168. Lietman PS. Clinical pharmacology: foscarnet. Am J Med 1992; 92 Suppl. 2A: 85–115

    Google Scholar 

  169. Raffi F, Taburet AM, Ghaleh B, et al. Penetration of foscarnet into cerebrospinal fluid of AIDS patients. Antimicrob Agents Chemother 1993; 37: 1777–80

    PubMed  CAS  Google Scholar 

  170. Hengge UR, Brockmeyer NH, Malessa R, et al. Foscarnet penetrates the blood-brain barrier: rationale for therapy of cytomegalovirus encephalitis. Antimicrob Agents Chemother 1993; 37: 1010–4

    PubMed  CAS  Google Scholar 

  171. Fillet A-M, Visse B, Caumes E, et al. Foscarnet-resistant multidermatomal zoster in a patient with AIDS. Clin Infect Dis 1995; 21: 1348–9

    PubMed  CAS  Google Scholar 

  172. Elion GB, Furman PA, Fyfe JA, et al. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl)guanine. Proc Natl Acad Sci U S A 1977; 74: 5716–20

    PubMed  CAS  Google Scholar 

  173. Fyfe JA, Keller PM, Furman PA, et al. Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl)guanine. J Biol Chem 1978; 253: 8721–7

    PubMed  CAS  Google Scholar 

  174. Derse D, Cheng Y-C, Furman PA, et al. Inhibition of purified human and herpes simplex virus-induced DNA polymerases by 9-(2-hydroxyethoxymethyl)guanine triphosphate: effects on primer-template function. J Biol Chem 1981; 256: 11447–51

    PubMed  CAS  Google Scholar 

  175. Furman PA, St Clair MH, Spector T. Acyclovir triphosphate is a suicide inactivator of the herpes simplex virus DNA polymerase. J Biol Chem 1984; 259: 9575–9

    PubMed  CAS  Google Scholar 

  176. Reardon JE, Spector T. Herpes simplex virus type 1 DNA polymerase: mechanism of inhibition by acyclovir triphosphate. J Biol Chem 1989; 264: 7405–11

    PubMed  CAS  Google Scholar 

  177. de Miranda P, Blum MR. Pharmacokinetics of acyclovir after intravenous and oral administration. J Antimicrob Chemother 1983; 12 Suppl. B: 29–37

    PubMed  Google Scholar 

  178. Weiler S, Blum M, Doulette M, et al. Pharmacokinetics of the acyclovir prodrug, valaciclovir, after escalating single- and multiple-dose administration to normal volunteers. Clin Pharmcol Ther 1993; 54: 595–605

    Google Scholar 

  179. Spiegal DM, Lau K. Acute renal failure and coma secondary to acyclovir therapy. JAMA 1986; 255: 1882–3

    PubMed  CAS  Google Scholar 

  180. Bianchetti MG, Roduit C, Oetliker OH. Acyclovir-induced renal failure: course and risk factors. Pediatr Nephrol 1991; 5: 238–9

    PubMed  CAS  Google Scholar 

  181. Huff JC, Bean B, Balfour Jr HH, et al. Therapy of herpes zoster with oral acyclovir. Am J Med 1988; 85 Suppl. 2A: 84–9

    PubMed  CAS  Google Scholar 

  182. Cohen SMZ, Minkove JA, Zebley JW, et al. Severe but reversible neurotoxicity from acyclovir [letter]. Ann Intern Med 1984; 100: 920

    PubMed  CAS  Google Scholar 

  183. Wade JC, Meyers JD. Neurologic symptoms associated with parenteral acyclovir treatment after marrow transplantation. Ann Intern Med 1983; 98: 921–5

    PubMed  CAS  Google Scholar 

  184. Boyd MR, Bacon TH, Sutton D, et al. Antiherpesvirus activity of 9-(4-hydroxy-3-hydroxymethylbut-1-yl)guanine (BRL 39123) in cell culture. Antimicrob Agents Chemother 1987; 31: 1238–42

    PubMed  CAS  Google Scholar 

  185. Vere Hodge RA. Famciclovir and penciclovir: the mode of action of famciclovir including its conversion to penciclovir. Antiviral Chem Chemother 1993; 4: 67–84

    Google Scholar 

  186. Vere Hodge RA, Perkins RM. Mode of action of 9-(4-hydroxy-3-hydroxymethylbut-1-yl)guanine (BRL 39123) against herpes simplex virus in MRC-5 cells. Antimicrob Agents Chemother 1989; 33: 223–9

    PubMed  CAS  Google Scholar 

  187. Earnshaw DL, Bacon TH, Darlison SJ, et al. Penciclovir: mode of antiviral action of penciclovir in MRC-5 cells infected with herpes simplex virus (HSV-1), HSV-2, and varicella-zoster virus. Antimicrob Agents Chemother 1992; 36: 2747–57

    PubMed  CAS  Google Scholar 

  188. Boyd MR, Bacon TH, Sutton D. Antiherpesvirus activity of 9-(4-hydroxy-3-hydroxymethylbut-1-yl)guanine (BRL 39123) in animals. Antimicrob Agents Chemother 1988; 32: 358–63

    PubMed  CAS  Google Scholar 

  189. Vere Hodge RA, Sutton D, Boyd MR, et al. Selection of an oral prodrug (BRL42810; famciclovir) for the antiherpesvirus agent BRL 39123 [9-(4-hydroxy-3-hydroxymethylbut-1-yl)guanine; penciclovir]. Antimicrob Agents Chemother 1989; 33: 1765–73

    CAS  Google Scholar 

  190. Winton CF, Fowles SE, Vere Hodge RA, et al. Assay of famciclovir and its metabolites, including the antiherpes agent penciclovir, in plasma and urine of rat, dog and man. In: Reid E, Wilson ID, editors. Analysis of drugs and metabolites. Cambridge: Royal Society of Chemists, 1990: 163–71

    Google Scholar 

  191. Littler E, Ertl P, Emmerson A, et al. Comparative anti-viral effects of acyclovir and penciclovir (famciclovir) [abstract no. 14]. Antiviral Res 1993; Suppl. 1: 53

    Google Scholar 

  192. Crumpacker C. The pharmacological profile of famciclovir. Semin Dermatol 1996; 15 Suppl. 1: 14–26

    Google Scholar 

  193. Sakuma T. Strains of varicella-zoster virus resistant to 1-β-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil. Antimicrob Agents Chemother 1984; 25: 742–6

    PubMed  CAS  Google Scholar 

  194. Yokota T, Konno K, Shigeta S, et al. Comparative inhibition of DNA polymerases from varicella zoster virus (TK+ and TK−) strains by (E)-5-(2-bromovinyl)-2’-deoxyuridine 5’-triphosphate. Mol Pharmacol 1984; 26: 376–80

    PubMed  CAS  Google Scholar 

  195. Machida H, Ijichi K, Ohta A, et al. Antiviral potencies of BV-araU and related nucleoside analogues against varicellazoster virus in different cell lines. Microbiol Immunol 1990; 34: 959–65

    PubMed  CAS  Google Scholar 

  196. Soike KF, Cantrell C, Gerone PJ. Activity of l-(2’-deoxy-2’-fluoro-β-D-arabinofuranosyl)-5-iodouracil against simian varicella virus infections in African green monkeys. Antimicrob Agents Chemother 1986; 29: 20–5

    PubMed  CAS  Google Scholar 

  197. Soike KF, Gibson S, Gerone PJ. Inhibition of simian varicella virus infection of African green monkeys by (E)-5-(2-bromovinyl)-2’-deoxyuridine (BVDU). Antiviral Res 1981; 1: 325–37

    CAS  Google Scholar 

  198. Leyland-Jones B, Donnelly H, Groshen S, et al. 2’-Fluoro-5-iodoarabinosylcytosine, a new potent antiviral agent: efficacy in immunosuppressed individuals with herpes zoster. J Infect Dis 1986; 154: 430–6

    PubMed  CAS  Google Scholar 

  199. Rahim SG, Trivedi N, Pether MJ, et al. 5-Alkynyl pyrimidine nucleosides as potent selective inhibitors of varicella zoster virus (VZV) [abstract no. 179]. Antiviral Res 1993; 20 Suppl. 1: 139

    Google Scholar 

  200. Talarico CL, Stanat SC, Rahim SG, et al. In vitro antiviral activity of 1-(beta-D-arabinofuranosyl)-5-(1-propynyl)uracil against varicella zoster virus [abstract no. 128]. Antiviral Res 1993; Suppl. 1: 113

    Google Scholar 

  201. Fillastre JP, Godin M, Legallicier B, et al. Pharmacokinetics of netivudine, a potent anti-varicella zoster virus drug, in patients with renal impairment. J Antimicrob Chemother 1996; 37: 965–74

    PubMed  CAS  Google Scholar 

  202. Peck RW, Wootton R, Lee DR, et al. The bioavailability and disposition of 1-(β-D-arabinofuranosyl)-5-(1-propynyl)uracil (882C87), a potent, new anti-varicella zoster virus agent. Br J Clin Pharmacol 1995; 39: 143–9

    PubMed  CAS  Google Scholar 

  203. Wood MJ, McKendrick MW, Mandai B, et al. An open study of 882C to investigate clinical potential, pharmacokinetics and safety in patients with herpes zoster [abstract no. P26-6]. Abstracts of the Ninth International Congress of Virology; 1993 Aug 8–13; Glasgow, 204

  204. Averett DR, Koszalka GW, Fyfe JA, et al. 6-Methoxypurine arabinoside as a selective and potent inhibitor of varicellazoster virus. Antimicrob Agents Chemother 1991; 35: 851–7

    PubMed  CAS  Google Scholar 

  205. Myers MG, Stanberry LR. Drug testing for activity against varicella-zoster virus in hairless guinea pigs. Antiviral Res 1991; 15: 341–4

    PubMed  CAS  Google Scholar 

  206. Koszalka GW, Averett DR, Fyfe JA et al. 6-N-Substituted derivatives of adenine arabinoside as selective inhibitors of varicella-zoster virus. Antimicrob Agents Chemother 1991; 35: 1437–43

    PubMed  CAS  Google Scholar 

  207. Sakuma T, Saijo M, Suzutani T, et al. Antiviral activity of oxetanocins against varicella-zoster virus. Antimicrob Agents Chemother 1991; 35: 1512–4

    PubMed  CAS  Google Scholar 

  208. Alder J, Mitten M, Norbeck D, et al. Efficacy of A-73209, a potent orally active agent against VZV and HSV infections. Antiviral Res 1994; 23: 93–105

    PubMed  CAS  Google Scholar 

  209. Yokota T, Konno K, Shigeta S. Inhibition of thymidylate synthetase activity induced in varicella-zoster virus infected cells by (E)-5-(2-bromovinyl)-2’-deoxyuridine [abstract 135]. Antiviral Res 1993; 20 Suppl. 1: 117

    Google Scholar 

  210. Cohen JI, Seidel KE. Generation of varicella-zoster virus (VZV) and viral mutants from cosmid DNAs: VZV thymidylate synthetase is not essential for replication in vitro. Proc Natl Acad Sci U S A 1993; 90: 7376–80

    PubMed  CAS  Google Scholar 

  211. Spector T, Harrington JA, Morrison Jr RW, et al. 2-Acetylpyridine 5-[(dimethylamino)-thiocarbonyl]thiocarbonohydrazone (A1110U), a potent inactivator of ribonucleotide reductases of herpes simplex and varicella-zoster viruses and a potentiator of acyclovir. Proc Natl Acad Sci U S A 1989; 86: 1051–5

    PubMed  CAS  Google Scholar 

  212. Spector T, Harrington JA, Porter DJT. Herpes and human ribonucleotide reductases. Biochem Pharmacol 1991; 42: 91–6

    PubMed  CAS  Google Scholar 

  213. Chrisp P, Clissold SP. Foscarnet: a review of its antiviral activity, pharmacokinetic properties and therapeutic use in immunocompromised patients with cytomegalovirus retinitis. Drugs 1991; 41: 104–29

    PubMed  CAS  Google Scholar 

  214. De Clercq E, Holý A, Rosenberg I, et al. A novel selective broad-spectrum anti-DNA virus agent. Nature 1986; 323: 464–7

    PubMed  Google Scholar 

  215. De Clercq E, Sakuma T, Baba M, et al. Antiviral activity of phosphonylmethoxyalkyl derivatives of purine and pyrimidines. Antiviral Res 1987; 8: 261–72

    PubMed  Google Scholar 

  216. Snoeck R, Sakuma T, De Clercq E, et al. (S)-1-(3-hydroxy-2-phosphonylmethoxy-propyl)cytosine, a potent and selective inhibitor of human cytomegalovirus replication. Antimicrob Agents Chemother 1988; 32: 1839–44

    PubMed  CAS  Google Scholar 

  217. Balzarini J, Naesens L, Herdewijn P et al. Marked in vivo anti-retrovirus activity of 9-(2-phosphonylmethoxyethyl)adenine, a selective anti-human immunodeficiency virus agent. Proc Natl Acad Sci U S A 1989; 86: 332–6

    PubMed  CAS  Google Scholar 

  218. Baba M, Konno K, Shigeta S, et al. In vitro activity of (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine against newly isolated clinical varicella-zoster virus strains. Eur J Clin Microbiol 1987; 6: 158–60

    PubMed  CAS  Google Scholar 

  219. De Clercq E. Therapeutic potential of HPMPC as an antiviral drug. Rev Med Virol 1993; 3: 85–96

    Google Scholar 

  220. Naesens L, Snoeck R, Andrei G, et al. HPMPC (cidofovir), PMEA (adefovir) and related acyclic nucleoside phosphonate analogues: a review of their pharmacology and clinical potential in the treatment of viral infections. Antiviral Chem Chemother 1997; 8: 1–23

    CAS  Google Scholar 

  221. Hitchcock MJM, Jaffe HS, Martin JC, et al. Cidofovir, a new agent with potent anti-herpesvirus activity. Antiviral Chem Chemother 1996; 7: 115–27

    CAS  Google Scholar 

  222. Safrin S, Cherrington J, Jaffe HS. Clinical use of cidofovir. Rev Med Virol 1997; 7: 145–56

    PubMed  CAS  Google Scholar 

  223. Naesens L, Balzarini J, Rosenberg I, et al. 9-(2-phosphonylmethoxyethyl)-2,6-diaminopurine (PMEDAP): a novel agent with anti-human immunodeficiency virus activity in vitro and potent anti-Moloney murine sarcoma virus activity in vitro. Eur J Clin Microbiol Infect Dis 1989; 8: 1043–7

    PubMed  CAS  Google Scholar 

  224. Snoeck R, Schols D, Sadzot-Delvaux C, et al. Flow cytometric method for the detection of gpI antigens of varicella zoster virus and evaluation of anti-VZV agents. J Virol Methods 1992; 38: 243–54

    PubMed  CAS  Google Scholar 

  225. Neyts J, Snoeck R, Schols D, et al. Selective inhibition of human cytomegalovirus DNA synthesis by (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine [(S)-HPMPC] and 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG). Virology 1990; 179: 41–50

    PubMed  CAS  Google Scholar 

  226. Votruba I, Bernaerts R, Sakuma T, et al. Intracellular phosphorylation of broad-spectrum anti-DNA virus agent (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine and inhibition of viral DNA synthesis. Mol Pharmacol 1987; 32: 524–9

    PubMed  CAS  Google Scholar 

  227. Ho H-T, Woods KL, Bronson KL, et al. Intracellular metabolism of the antiherpes agent (S)-1-[3-hydroxy-2-(phosphonylmethoxy)propyl]cytosine. Mol Pharmacol 1992; 41: 197–202

    PubMed  CAS  Google Scholar 

  228. Cihlar T, Votruba I, Horsk K, et al. Metabolism of 1-(S)-(3-hydroxy-2-phosphonylmethoxypropyl)cyto-sine (HPMPC) in human embryonic lung cells. Collect Czech Chem Commun 1992; 57: 661–72

    CAS  Google Scholar 

  229. Neyts J, Sobis H, Snoeck R, et al. Efficacy of (S)-l-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine and 9-(1,3-dihydroxy-2-propoxymethyl)guanine in the treatment of intracerebral murine cytomegalovirus infections in immunocompetent and immunodeficient mice. Eur J Clin Microbiol Infect Dis 1993; 12: 269–79

    PubMed  CAS  Google Scholar 

  230. Soike KF, Huang J-L, Zhang J-Y, et al. Evaluation of infrequent dosing regimens with (S)-1-[3-hydroxy-2-(phosphonylmethoxy)propyl]cytosine (S-HPMPC) on simian varicella infection in monkeys. Antiviral Res 1991; 16: 17–28

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Snoeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snoeck, R., Andrei, G. & De Clercq, E. Current Pharmacological Approaches to the Therapy of Varicella Zoster Virus Infections. Drugs 57, 187–206 (1999). https://doi.org/10.2165/00003495-199957020-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199957020-00005

Keywords

Navigation