Skip to main content
Log in

Drug Therapy of Postprandial Hyperglycaemia

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

It is widely accepted that the most challenging goal in the management of patients with diabetes mellitus is to achieve blood glucose levels as close to normal as possible. In general, normalising postprandial blood glucose levels is more difficult than normalising fasting hyperglycaemia. In addition, some epidemiological studies suggest that postprandial hyperglycaemia (PPHG) or hyperinsulinaemia are independent risk factors for the development of macro-vascular complications of diabetes mellitus.

Recently, several drugs with differing pharmacodynamic profiles have been developed which target PPHG. These include insulin lispro, amylin analogues, α-glucosidase inhibitors and meglitinide analogues. Insulin lispro has a more rapid onset of action and shorter duration of efficacy compared with regular human insulin. In clinical trials, the use of insulin lispro was associated with improved control of PPHG and a reduced incidence of hypoglycaemic episodes.

Repaglinide, a meglitinide analogue, is a short-acting insulinotropic agent which, when given before meals, stimulates endogenous insulin secretions and lowers postprandial hyperglycaemic excursions. Both insulin lispro and repaglinide are associated with postprandial hyperinsulinaemia. In contrast, amylin analogues reduce PPHG by slowing gastric emptying and delivery of nutrients to the absorbing surface of the gut. α-Glucosidase inhibitors such as acarbose, miglitol and voglibose also reduce PPHG primarily by interfering with the carbohydrate-digesting enzymes and delaying glucose absorption.

With the availability of agents which preferentially reduce postprandial blood glucose excursions, it is now possible to achieve glycaemic goals in a larger proportion of individuals with diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joslin EP. A diabetic manual for the mutual use of doctor and patient. 5th ed. Philadelphia: Lea and Febiger, 1935

    Google Scholar 

  2. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl JMed 1993;329: 977–86

    Article  Google Scholar 

  3. Kosaka K, Kuzuya T, Akanuma Y, et al. Increase in insulin response after treatment of overt maturity-onset diabetes is independent of the mode of treatment. Diabetologia 1980; 18: 23–8

    Article  PubMed  CAS  Google Scholar 

  4. Avignon A, Radauceanu A, Monnier L. Nonfasting plasma glucose is a better marker of diabetic control than fasting plasma glucose in type 2 diabetes. Diabetes Care 1997; 20: 1822–6

    Article  PubMed  CAS  Google Scholar 

  5. Pettitt DJ, Knowler WC, Lisse JR, et al. Development of retinopathy and proteinuria in relation to plasma-glucose concentrations in Pima Indians. Lancet 1980; 2: 1050–2

    Article  PubMed  CAS  Google Scholar 

  6. Jarrett RJ, Keen H. Hyperglycaemia and diabetes mellitus. Lancet 1976; 2: 1009–12

    Article  PubMed  CAS  Google Scholar 

  7. Teuscher A, Schnell H, Wilson PW. Incidence of diabetic retinopathy and relationship to baseline plasma glucose and blood pressure. Diabetes Care 1988; 11: 246–51

    Article  PubMed  CAS  Google Scholar 

  8. de Veciana M, Major CA, Morgan NA, et al. Postprandial versus preprandial blood glucose monitoring in women with gestational diabetes mellitus requiring insulin therapy. N Engl J Med 1995; 333(1): 1237–41

    Article  PubMed  Google Scholar 

  9. Donahue RP, Abbott RD, Reed DM, et al. Post challenge glucose concentration and coronary heart disease in men of Japanese ancestry. Honolulu Heart Program. Diabetes 1987; 36: 689–92

    CAS  Google Scholar 

  10. Curb JD, Rodriguez BL, Burchfiel CM, et al. Sudden death, impaired glucose tolerance, and diabetes in Japanese-American men. Circulation 1995; 91: 2591–5

    Article  PubMed  CAS  Google Scholar 

  11. Fuller JH, Shipley MJ, Rose G, et al. Coronary heart disease risk and impaired glucose tolerance: the Whitehall Study. Lancet 1980; 1: 1373–6

    Article  PubMed  CAS  Google Scholar 

  12. Jackson CA, Yudkin JS, Forrest RD. A comparison of the relationships of the glucose tolerance test and the glycated hemoglobin assay with diabetic vascular disease in the community. The Islington Diabetes Survey. Diabetes Res Clin Pract 1992; 17: 111–23

    Article  CAS  Google Scholar 

  13. Jarrett RJ, McCartney P, Keen H. The Bedford Survey: ten year mortality rates in newly diagnosed diabetics, borderline diabetics and normoglycemic controls and risk indices for coronary heart disease in borderline diabetics. Diabetologia 1982; 22: 79–84

    PubMed  CAS  Google Scholar 

  14. Lowe LP, Liu K, Greenland P, et al. Diabetes, asymptomatic hyperglycaemia and 22 year mortality in black and white men. Diabetes Care 1997; 20: 163–9

    Article  PubMed  CAS  Google Scholar 

  15. Hanefeld M, Temelkova-Kurktschiev T. The postprandial state and the risk of atherosclerosis. Diabet Med 1997; 14 Suppl. 3: S6–S11

    Article  PubMed  Google Scholar 

  16. Barrett-Connor E. Does hyperglycaemia really cause coronary heart disease? Diabetes Care 1997; 20: 1620–3

    PubMed  CAS  Google Scholar 

  17. Fontbonne AM, Eschwege EM. Insulin and cardiovascular disease: Paris Prospective Study. Diabetes Care 1991; 14: 461–9

    Article  PubMed  CAS  Google Scholar 

  18. Pyörälä K, Savolainen E, Kaukola S, et al. Plasma insulin as coronary heart disease risk factor: relationship to other risk factors and predictive value during 9½-year follow-up of the Helsinki Policemen Study population. Acta Med Scand Suppl 1985; 701: 38–52

    PubMed  Google Scholar 

  19. Balkau B, Shipley M, Jarrett RJ, et al. High blood glucose concentration is a risk factor for mortality in middle-aged non-diabetic men. Diabetes Care 1988; 21: 360–7

    Article  Google Scholar 

  20. Russell JC, Koeslag DG, Dolphin PJ, et al. Beneficial effects of acarbose in the atherosclerosis-prone JCR LA-corpulent rat. Metabolism 1993; 42: 218–23

    Article  PubMed  CAS  Google Scholar 

  21. Balfour JA, McTavish D. Acarbose: an update of its pharmacology and therapeutic use in diabetes mellitus. Drugs 1993; 46: 1025–54

    Article  PubMed  CAS  Google Scholar 

  22. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 1997; 20: 1183–97

    Google Scholar 

  23. Groot PHE, Van Stiphour WAFU, Kraus XH, et al. Post-prandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease. Arterioscler Thromb 1991; 11: 653–62

    Article  PubMed  CAS  Google Scholar 

  24. Patsch JR, Miesenbock G, Hopferweiser T, et al. Relation of triglyceride metabolism and coronary artery disease studies in the post-prandial state. Arterioscler Thromb 1992; 12: 1336–45

    Article  PubMed  CAS  Google Scholar 

  25. Ginsberg HN, Jones T, Blaner WS, et al. Association of postprandial triglyceride and retinyl palmitate responses with newly diagnosed exercise-induced myocardial ischemia in middle-aged men and women. Arterioscler Thromb Vasc Biol 1995; 15: 1829–38

    Article  PubMed  CAS  Google Scholar 

  26. Ryu JE, Howard G, Craven TE, et al. Post-prandial triglyceridemia and carotid atherosclerosis in middle aged subjects. Stroke 1992; 23: 823–8

    Article  PubMed  CAS  Google Scholar 

  27. Patsch JR, Miesenbock G, Hopfewieser T. Relation of triglyceride metabolism and coronary heart disease: studies in the postprandial state. Arterioscler Thromb 1992; 12: 1336–45

    Article  PubMed  CAS  Google Scholar 

  28. Habib MP, Dickerson FD, Mooradian AD. Effect of diabetes, insulin and glucose load on lipid peroxidation in the rat. Metabolism 1994; 43: 1442–5

    Article  PubMed  CAS  Google Scholar 

  29. Wehmeier KR, Mooradian AD. Autooxidative and antioxidative potential of simple CHOs. Free Radic Biol Med 1994; 17: 83–6

    Article  PubMed  CAS  Google Scholar 

  30. Mooradian AD, Habib MP, Dickerson F. Effect of simple CHOs, casein hydrolysate and a lipid test meal on ethane exhalation rate. J Appl Physiol 1994; 76: 1119–22

    PubMed  CAS  Google Scholar 

  31. Stolk RP, Breteler MMB, Ott A, et al. Insulin and cognitive function in an elderly population. Diabetes Care 1997; 20: 792–5

    Article  PubMed  CAS  Google Scholar 

  32. Nuttall FQ, Gannon MC, Wald JL, et al. Plasma glucose and insulin profiles in normal subjects ingesting diets of varying CHO, fat and protein content. J Am Coll Nutr 1985; 4(4): 437–50

    PubMed  CAS  Google Scholar 

  33. Nuttal FQ, Mooradian AD, DeMarais R, et al. The glycemic effect of different meals approximately isocaloric and similar in protein, CHO and fat content as calculated using the ADA exchange lists. Diabetes Care 1983; 6: 432–5

    Article  Google Scholar 

  34. Nuttal FQ, Mooradian AD, Gannon MC, et al. Effect of protein ingestion on the glucose and insulin response to a standardized oral glucose load. Diabetes Care 1984; 7: 465–70

    Article  Google Scholar 

  35. Frantz MJ, Horton ES, Bantle JP, et al. Nutritional principles for the management of diabetes and related complications [technical review]. Diabetes Care 1994; 17: 490–518

    Google Scholar 

  36. American Diabetes Association. Nutritional recommendations and principles for individuals with diabetes mellitus [position statement]. Diabetes Care 1997; 20 Suppl. 1: S15–8

    Article  Google Scholar 

  37. Major CA, Henry MJ, de Veciana M, et al. The effects of CHO restriction in patients with diet controlled gestational diabetes. Obstet Gynecol 1998; 91: 600–4

    Article  PubMed  CAS  Google Scholar 

  38. Jenkins DJA, Wolever TMS, Jenkins AL, et al. The glycemic index of foods tested in diabetic patients: a new basis for CHO exchange favoring the use of legumes. Diabetologia 1983; 24: 257–64

    Article  PubMed  CAS  Google Scholar 

  39. Wolever TMS, Jenkins DJA, Vuksan V, et al. Beneficial effect of a low-glycemic index diet in type 2 diabetes. Diabet Med 1992; 9: 451–8

    Article  PubMed  CAS  Google Scholar 

  40. Nuttall FQ. Dietary fiber in the management of diabetes. Diabetes 1993; 42: 503–8

    Article  PubMed  CAS  Google Scholar 

  41. Holleman F, Hoekstra JB. Insulin lispro. N Engl J Med 1997; 337(3): 176–83

    Article  PubMed  CAS  Google Scholar 

  42. Howey DC, Bowsher RR, Brunelle RL, et al. [Lys (B28), Pro(B29)]-human insulin: effect of injection time on postprandial glycemia. Clin Pharmacol Ther 1995; 58: 459–69

    Article  PubMed  CAS  Google Scholar 

  43. Anderson Jr JH, Brunelle RL, Koivisto VA, et al. Reduction of postprandial hyperglycaemia and frequency of hypoglycaemia in IDDM patients on insulin-analog treatment. Multicenter Insulin Lispro Study Group. Diabetes 1997; 46(2): 265–70

    Article  PubMed  CAS  Google Scholar 

  44. Holleman F, Schmitt H, Rottiers R, et al. Reduced frequency of severe hypoglycaemia and coma in well-controlled IDDM patients treated with insulin lispro. Diabetes Care 1997; 20: 1827–32

    Article  PubMed  CAS  Google Scholar 

  45. Anderson Jr JH, Brunelle RL, Keohane P, et al. Mealtime treatment with insulin analog improves post-prandial hyperglycaemia and hypoglycaemia in patient with non-insulin-dependent diabetes mellitus. Arch Intern Med 1997; 157: 1249–55

    Article  PubMed  CAS  Google Scholar 

  46. Cooper GJS, Willis AC, Clark A, et al. Purification and characterization of a peptide from amyloid-rich pancreases of type II diabetic patients. Proc Natl Acad Sci U S A 1987; 84: 8628–32

    Article  PubMed  CAS  Google Scholar 

  47. Koda JE, Fineman M, Rink TJ, et al. Amylin concentration and glucose control. Lancet 1992; 339: 1179–80

    Article  PubMed  CAS  Google Scholar 

  48. Young A, Pittner R, Gedulin B, et al. Amylin regulation of CHO metabolism. Biochem Soc Trans 1995; 23: 325–31

    PubMed  CAS  Google Scholar 

  49. Schmitz O, Nyholm B, Orskov L, et al. Effects of amylin and the amylin agonist pramlintide on glucose metabolism. Diabetes Med 1992; 14 Suppl. 2: S19–S23

    Article  Google Scholar 

  50. Kong MF, King P, MacDonald I, et al. Infusion of pramlintide, a human amylin analogue, delays gastric emptying in men with insulin dependent diabetes mellitus. Diabetologia 1997; 40: 82–8

    Article  PubMed  CAS  Google Scholar 

  51. Kolterman OG, Gottlieb A, Moyses C, et al. Reduction of postprandial hyperglycaemia in subjects with IDDM by intravenous infusion of AC137, a human amylin analogue. Diabetes Care 1995; 18: 1179–82

    Article  PubMed  CAS  Google Scholar 

  52. Gedulin BR, Rink TJ, Young AA. Dose-response for glucago-nostatic effect of amylin in rats. Metabolism 1997; 46: 67–70

    Article  PubMed  CAS  Google Scholar 

  53. Ludvik B, Lill B, Hartter E, et al. Decrease of stimulated amylin release precedes impairment of insulin secretion in type II diabetes. Diabetes 1991; 40: 1615–9

    Article  PubMed  CAS  Google Scholar 

  54. Mooradian AD, Bernbaum M, Albert SG, et al. The effect of glipizide gastrointestinal therapeutic system on islet cell hormonal responses to a test meal in NIDDM. Diabetes Care 1996; 19: 883–4

    Article  PubMed  CAS  Google Scholar 

  55. Giddings SJ, Carnaghi LR, Mooradian AD. Age-related changes in pancreatic islet cell gene expression. Metabolism 1991; 44: 320–4

    Article  Google Scholar 

  56. Tokuyama Y, Kanatsuka A, Yamaguchi T, et al. Islet amyloid polypeptide/amylin contents in pancreatic increase in genetically obese and diabetic mice. Horm Metab Res 1993; 25: 289–91

    Article  PubMed  CAS  Google Scholar 

  57. Inoue K, Hiramatsu S, Histomi A, et al. Hypersecretion of amylin from the perfused pancreas of genetically obese (fa/fa) rats and its alterations with aging. Metabolism 1993; 42: 654–8

    Article  PubMed  CAS  Google Scholar 

  58. Thompson RG, Orgen K, Gottlieb A, et al. Pramlintide (AC137) reduced post-prandial hyperglycaemia, insulin, and C peptide in patients with type 2 diabetes [abstract]. Diabet Med 1995; 12 (10 Suppl.) S45

    Article  Google Scholar 

  59. Thompson RG, Peterson J, Gotlieb A, et al. Effects of pramlintide, an analog of human amylin, on plasma glucose profiles in patients with IDDM: results of a multicenter trial. Diabetes 1997; 46: 632–6

    Article  PubMed  CAS  Google Scholar 

  60. Fraser RJ, Horowitz M, Maddox AF, et al. Hyperglycaemia slows gastric emptying in type I (insulin-dependent) diabetes mellitus. Diabetologia 1990; 33: 675–80

    Article  PubMed  CAS  Google Scholar 

  61. Jackson RA, Hawa MI, Roshania RD, et al. Influence of aging on hepatic and peripheral glucose metabolism in humans. Diabetes 1988; 37: 119–29

    Article  PubMed  CAS  Google Scholar 

  62. Rosenstock J, Whitehouse F, Schoenfeld S, et al. Effect of pramlintide on metabolic control and safety profile in people with type 1 diabetes [abstract]. Diabetes 1998; 47 Suppl. 1: A88

    Google Scholar 

  63. Ratner R, Levetan C, Schoenfeld S, et al. Pramlintide therapy in the treatment of insulin requiring type 2 diabetes: results of a 1-year placebo-controlled trial [abstract]. Diabetes 1998; 47 Suppl. 1: A88

    Google Scholar 

  64. Bischoff H. Pharmacology of α-glucosidase inhibition. Eur J Clin Invest 1994; 24: 3–10

    PubMed  CAS  Google Scholar 

  65. Segal P, Rybka J, Feig PU, et al. The efficacy and safety of miglitol therapy compared with glibenclamide in patients with NIDDM inadequately controlled by diet alone. Diabetes Care 1997; 20: 687–91

    Article  PubMed  CAS  Google Scholar 

  66. Johnston PS, Coniff RF, Hoogwerf BJ, et al. Effect of the CHO inhibitor miglitol in sulfonylurea-treated NIDDM patients. Diabetes Care 1994; 17: 20–8

    Article  PubMed  CAS  Google Scholar 

  67. Kingma PJ, Menheere PPCA, Sels JP, et al. α-Glucosidase inhibition by miglitol in NIDDM patients. Diabetes Care 1992; 15: 478–83

    Article  PubMed  CAS  Google Scholar 

  68. Johnston PS, Feig PU, Coniff RF, et al. Chronic treatment of African-American type 2 diabetic patients with α-glucosidase inhibition. Diabetes Care 1988; 21: 416–22

    Article  Google Scholar 

  69. Johnston PS, Feig PU, Coniff RF, et al. Long-term titrated-dose α-glucosidase inhibition in non-insulin-requiring Hispanic NIDDM patients. Diabetes Care 1988; 21: 409–15

    Article  Google Scholar 

  70. Joubert PH, Venter HL, Foukaridis GN. The effect of miglitol and acarbose after an oral glucose load: a novel hypoglycaemic mechanism. Br J Clin Pharmacol 1990; 30: 391–6

    Article  PubMed  CAS  Google Scholar 

  71. Hanefeld M, Fischer S, Schulze J, et al. Therapeutic potentials of acarbose as first line drug in NIDDM insufficiency treated with diet alone. Diabetes Care 1991; 14: 732–8

    Article  PubMed  CAS  Google Scholar 

  72. Hoffman J, Spengler M. Efficacy of 24-week monotherapy with acarbose, glibenclamide, or placebo in NIDDM patients. Diabetes Care 1994; 17: 561–6

    Article  Google Scholar 

  73. Chiasson JL, Josse RG, Hunt JA, et al. The efficacy of acarbose in the treatment of patients with non-insulin-dependent diabetes mellitus: a multicenter, controlled clinical trial. Ann Intern Med 1994; 121: 928–35

    PubMed  CAS  Google Scholar 

  74. Coniff RF, Shapiro JA, Seaton TB, et al. Multicenter, placebo-controlled trial comparing acarbose (BAY g5421) with placebo, tolbutamide, and tolbutamide-plus-acarbose in non-insulin-dependent diabetes mellitus. Am J Med 1995; 98: 443–51

    Article  PubMed  CAS  Google Scholar 

  75. Coniff RF, Shapiro JA, Robbins D, et al. Reduction of glycosylated hemoglobin and postprandial hyperglycaemia by acarbose in patients with NIDDM. Diabetes Care 1995; 18: 817–24

    Article  PubMed  CAS  Google Scholar 

  76. Schnack C, Prager RJF, Winkler J, et al. Effects of 8-wk α-glucosidase inhibition on metabolic control, C-peptide secretion, hepatic glucose output, and peripheral insulin sensitivity in poorly controlled type II diabetic patients. Diabetes Care 1989; 12: 537–43

    Article  PubMed  CAS  Google Scholar 

  77. Ikenoue T, Okazaki K, Fujitani S, et al. Effect of a new hypoglycemic agent, A-4166[(−)-N-(trans-4-isopropylcyclohexanecarbonyl)-D-phenylalanine], on postprandial blood glucose excursion: comparison with voglibose and glibenclamide. Biol Pharm Bull 1997; 20(4): 354–9

    Article  PubMed  CAS  Google Scholar 

  78. Shinozaki K, Suzuki M, Ikebuchi M, et al. Improvement of insulin sensitivity and dyslipidemia with a new alpha-glucosidase inhibitor, voglibose, in nondiabetic hyperinsulinemic subjects. Metabolism 1996; 45(6): 731–7

    Article  PubMed  CAS  Google Scholar 

  79. Lembcke B, Folsch UR, Creutzfeldt W. Effect of 1-desoxynojirimycin derivatives on small intestinal disaccharidase activities and on active transport in vitro. Digestion 1985; 31: 120–7

    Article  PubMed  CAS  Google Scholar 

  80. Holt PR, Atillasoy E, Lindenbaum J, et al. Effects of acarbose on fecal nutrients, colonic pH, and short-chain fatty acids and rectal proliferative indices. Metabolism 1996; 45: 1179–87

    Article  PubMed  CAS  Google Scholar 

  81. Failla ML, Seidel KE. The absorption and retention of dietary zinc by type 1 diabetic rats are increased by chronic treatment with acarbose. In: Vasselli JR, Maggio CA, Scriabine A, editors. Drugs in development. Vol. 1. Branford (CT): Neva Press, 1993: 155–63

    Google Scholar 

  82. Fukase N, Takahashi H, Manaka H, et al. Differences in glucagon-like peptide 1 and GIP responses following sucrose ingestion. Diabetes Res Clin Pract 1992; 15: 187–95

    Article  PubMed  CAS  Google Scholar 

  83. Goeke B, Fuder H, Wieckhorst G, et al. Voglibose (AO-128) is an efficient alpha-glucosidase inhibitor and mobilizes the endogenous GLP-1 reserve. Digestion 1995; 56(6): 493–501

    Article  CAS  Google Scholar 

  84. Gutniak MK, Larsson H, Sanders SW, et al. GLP-1 tablet in type 2 diabetes in fasting and postprandial conditions. Diabetes Care 1997; 20: 1874–9

    Article  PubMed  CAS  Google Scholar 

  85. Kawagishi T, Nishizawa Y, Taniwaki H, et al. Relationship between gastric emptying and alpha glucosidase inhibitor effect on post-prandial hyperglycaemia in NIDDM patients. Diabetes Care 1997; 20: 1529–32

    Article  PubMed  CAS  Google Scholar 

  86. Baron A, Neumann C. PROTECT interim results: a large, multi-center study of patients with type II diabetes. Clin Ther 1997; 19: 282–95

    Article  PubMed  CAS  Google Scholar 

  87. Mooradian AD, Neumann C. PRECOSE Resolution of optimal titration to enhance current therapies (P.R.O.T.E.C.T.) Study: experience in the elderly. J Am Geriatr Soc 1997; 45: S49

    Google Scholar 

  88. Rabasa-Lhoret R, Chiasson J-L. Potential of α-glucosidase inhibitors in elderly patients with diabetes mellitus and impared glucose tolerance. Drugs Aging 1998; 13: 131–43

    Article  PubMed  CAS  Google Scholar 

  89. Malaisse WJ. Stimulation of insulin release by non-sulfonylurea hypoglycemic agents: the meglitinide family. Horm Metab Res 1995; 27: 263–6

    Article  PubMed  CAS  Google Scholar 

  90. Bakkali-Nadi A, Malaisse-Lagae F, Malaisse WJ. Insulinotropic action of meglitinide analogs: concentration-response relationship and nutrient dependency. Diabetes Res 1994; 27: 81–7

    PubMed  CAS  Google Scholar 

  91. Wolffenbuttel BH, Nijst L, Sels JP, et al. Effects of a new oral hypoglycaemic agent, repaglinide, on metabolic control in sulphonylurea-treated patients with NIDDM. Eur J Clin Pharmacol 1993; 45: 113–6

    Article  PubMed  CAS  Google Scholar 

  92. Berger S, Strange P, for the Repaglinide Study group. Repaglinide, a novel oral hypoglycemic agent in type 2 diabetes: a randomized, placebo-controlled, double-blind fixed dose study [abstract]. Diabetes 1998; 47 Suppl. 1: A18

    Google Scholar 

  93. Schwartz SL, Goldberg RB, Strange P. Repaglinide in type 2 diabetes: a randomized, double-blind placebo-controlled dose response study [abstract]. Diabetes 1998; 47 Suppl. 1: A98

    Article  Google Scholar 

  94. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837–53

    Article  Google Scholar 

  95. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes. (UKPDS 34). Lancet 1998; 352: 854–65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshag D. Mooradian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mooradian, A.D., Thurman, J.E. Drug Therapy of Postprandial Hyperglycaemia. Drugs 57, 19–29 (1999). https://doi.org/10.2165/00003495-199957010-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199957010-00003

Navigation