Skip to main content
Log in

Recognition and Management of Pulmonary Hypertension

  • Disease Management
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Pulmonary hypertension (mean pulmonary arterial pressure >20mm Hg at rest or >30mm Hg during exercise) occurs (i) as primary pulmonary hypertension (no known underlying cause), (ii) as persistent pulmonary hypertension of the newborn or (iii) secondary to a variety of lung and cardiovascular diseases. In the last 10 to 15 years there have been significant advances in the medical management of this debilitating and life-threatening disorder. The main drugs in current use are anticoagulants (warfarin, heparin) and vasodilators, especially oral calcium antagonists, intravenous prostacyclin (prostaglandin I2; epoprostenol) and inhaled nitric oxide.

Calcium antagonists, (e.g. nifedipine, diltiazem) are used chiefly in primary pulmonary hypertension. They are effective in patients who give a pulmonary vasodilator response to an acute challenge with a short acting vasodilator (e.g. prostacyclin, nitric oxide or adenosine), and are used in doses greater than are usual in the treatment of other cardiovascular disorders.

Prostacyclin, given by continuous intravenous infusion, is effective in patients even if they do not respond to an acute vasodilator challenge. The long term benefit in these patients is thought to reflect the antiproliferative effects of the drug and/or its ability to inhibit platelet aggregation. It is used either as long term therapy or as a bridge to transplantation.

Inhaled nitric oxide, which is used mainly in persistent pulmonary hypertension of the newborn, has the particular benefit of being pulmonary selective, due to its route of administration and rapid inactivation.

Anticoagulants have a specific role in the treatment of pulmonary thrombo-embolic pulmonary hypertension and are also used routinely in patients with primary pulmonary hypertension.

Nondrug treatments for pulmonary hypertension include (i) supplemental oxygen (≥15 h/day), which is the primary therapy in patients with pulmonary hypertension secondary to chronic obstructive pulmonary disease and (ii) heart-lung or lung transplantation, which nowadays is regarded as a last resort.

Different types of pulmonary hypertension require different treatment strategies. Future advances in the treatment of pulmonary hypertension may come from the use of drug combinations, the development of new drugs, such as endothelin antagonists, nitric oxide donors and potassium channel openers, or the application of gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown G. Pharmacologic treatment of primary and secondary pulmonary hypertension. Pharmacotherapy 1991; 11: 137–56

    PubMed  CAS  Google Scholar 

  2. Rich S, Dantzker DR, Ayres SM, et al. Primary pulmonary hypertension: a national prospective study. Ann Intern Med 1987; 107: 216–23

    PubMed  CAS  Google Scholar 

  3. Salvaterra CG, Rubin LJ. Investigation and management of pulmonary hypertension in chronic obstructive pulmonary disease. Am Rev Respir Dis 1993; 148: 1414–7

    PubMed  CAS  Google Scholar 

  4. Dinh-Xuan AT. Disorders of endothelium-dependent relaxation in pulmonary disease. Circulation 1993; 87: V81–7

    Google Scholar 

  5. Loscalzo J. Endothelial dysfunction in pulmonary hypertension. N Engl J Med 1992; 327: 117–9

    Article  PubMed  CAS  Google Scholar 

  6. Christman BW, McPherson CD, Newman JH, et al. An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med 1992; 327: 70–5

    Article  PubMed  CAS  Google Scholar 

  7. Oakley CM. Investigation and diagnosis of pulmonary hypertension in adults. In: Morice AH, editor. Clinical pulmonary hypertension. London: Portland Press, 1995: 81–113

    Google Scholar 

  8. Barst RJ. Diagnosis and treatment of pulmonary artery hypertension. Curr Opin Pediatr 1996; 8: 512–9

    Article  PubMed  CAS  Google Scholar 

  9. Moraes D, Loscalzo J. Pulmonary hypertension: newer concepts in diagnosis and management. Clin Cardiol 1997; 20: 676–82

    Article  PubMed  CAS  Google Scholar 

  10. Chaouat A, Weitzenblum E, Higenbottam T. The role of thrombosis in severe pulmonary hypertension. Eur Respir J 1996; 9: 356–63

    Article  PubMed  CAS  Google Scholar 

  11. Rich S, Kauffman E, Levy PS. The effect of high doses of calcium channel blockers on survival in primary pulmonary hypertension. N Engl J Med 1992; 327: 76–81

    Article  PubMed  CAS  Google Scholar 

  12. Fuster V, Steele PM, Edwards WD, et al. Primary pulmonary hypertension: natural history and the importance of thrombosis. Circulation 1984; 70: 580–7

    Article  PubMed  CAS  Google Scholar 

  13. Frank H, Mlczoch J, Huber K, et al. The effect of anticoagulant therapy in primary and anorectic drug-induced pulmonary hypertension. Chest 1997; 112: 714–21

    Article  PubMed  CAS  Google Scholar 

  14. Camerini F, Alberti E, Klugman S, et al. Primary pulmonary hypertension: effects of nifedipine. Br Heart J 1980; 44: 352–6

    Article  PubMed  CAS  Google Scholar 

  15. Rubin LJ, Nicod P, Hisslis LD, et al. Treatment of primary pulmonary hypertension with nifedipine: a hemodynamic and scintigraphic evaluation. Ann Intern Med 1983; 99: 433–8

    PubMed  CAS  Google Scholar 

  16. De Feyter PJ, Kerkkamp HJJ, de Jong JR. Sustained beneficial effect of nifedipine in primary pulmonary hypertension. Am Heart J 1983; 105: 333–4

    Article  PubMed  Google Scholar 

  17. Rich S. Calcium channel blockers for the treatment of primary pulmonary hypertension. Eur Respir Rev 1995; 29: 252–4

    Google Scholar 

  18. Rich S, Kauffman E. High dose titration of calcium channel blocking agents for primary pulmonary hypertension: guidelines for short-term drug testing. J Am Coll Cardiol 1991; 18: 1323–7

    Article  PubMed  CAS  Google Scholar 

  19. Gassner A, Sommer G, Fridrich L, et al. Differential therapy with calcium antagonists in pulmonary hypertension secondary to COPD. Chest 1990; 98: 829–34

    Article  PubMed  CAS  Google Scholar 

  20. Alpert MA, Pressly TA, Mukerji V, et al. Acute and long-term effects of nifedipine on pulmonary and systemic hemodynamics in patients with pulmonary hypertension associated with diffuse systemic sclerosis, the CREST syndrome and mixed connective tissue disease. Am J Cardiol 1991; 68: 1687–91

    Article  PubMed  CAS  Google Scholar 

  21. Nootens M, Kauffman E, Rich S. Short-term effectiveness of nifedipine in secondary pulmonary hypertension. Am J Cardiol 1993; 71: 1475–6

    Article  PubMed  CAS  Google Scholar 

  22. Kalra L, Bone MF. Effect of nifedipine on physiologic shunting and oxygenation in chronic obstructive pulmonary disease. Am J Med 1993; 94: 419–23

    Article  PubMed  CAS  Google Scholar 

  23. Rich S, Brundage BH, Levy PS. The effect of vasodilator therapy on the clinical outcome of patients with primary pulmonary hypertension. Circulation 1985; 71: 1191–6

    Article  PubMed  CAS  Google Scholar 

  24. Rubin LJ. Primary pulmonary hypertension. N Engl J Med 1997; 336: 111–7

    Article  PubMed  CAS  Google Scholar 

  25. Malik AS, Warshafsky S, Lehrman S. Meta-analysis of the long-term effect of nifedipine for pulmonary hypertension. Arch Intern Med 1997; 157: 621–5

    Article  PubMed  CAS  Google Scholar 

  26. Sajkov D, Wang T, Frith PA, et al. A comparison of two long-acting vasoselective calcium antagonists in pulmonary hypertension secondary to COPD. Chest 1997; 111: 1622–30

    Article  PubMed  CAS  Google Scholar 

  27. Watkins WD, Peterson MB, Crone RK, et al. Prostacyclin and prostaglandin E1 for severe idiopathic pulmonary artery hypertension [letter]. Lancet 1980; I: 1083

    Article  Google Scholar 

  28. Rubin LJ, Groves BM, Reeves JT, et al. Prostacyclin-induced acute pulmonary vasodilation in primary pulmonary hypertension. Circulation 1982; 66: 334–8

    Article  PubMed  CAS  Google Scholar 

  29. Badesch DB. Clinical trials in pulmonary hypertension. Annu Rev Med 1997; 48: 399–408

    Article  PubMed  CAS  Google Scholar 

  30. Hinderliter AL, Willis PW, Barst RJ, et al. Effects of long-term infusion of prostacyclin (epoprostenol) on echocardiographic measures of right ventricular structure and function in primary pulmonary hypertension. Circulation 1997; 95: 1479–86

    Article  PubMed  CAS  Google Scholar 

  31. Magnani B, Galie N. Prostacyclin in primary pulmonary hypertension. Eur Heart J 1996; 17: 18–24

    Article  PubMed  CAS  Google Scholar 

  32. Higenbottam TW, Butt AY, Dinh-Xuan AT, et al. Treatment of pulmonary hypertension with the continuous infusion of a prostacyclin analogue, iloprost. Heart 1998; 79: 175–9

    PubMed  CAS  Google Scholar 

  33. Barst RJ, Rubin LJ, McGoon MD, et al. Survival in primary pulmonary hypertension with long-term continuous intravenous prostacyclin. Ann Intern Med 1994; 121: 409–15

    PubMed  CAS  Google Scholar 

  34. Barst RJ, Rubin LJ, Long W, et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. N Engl J Med 1996; 334: 296–301

    Article  PubMed  CAS  Google Scholar 

  35. McLaughlin VV, Genthner DE, Panella MM, et al. Reduction in pulmonary vascular resistance with long-term epoprostenol (prostacyclin) therapy in primary pulmonary hypertension. N Engl J Med 1998; 338: 273–7

    Article  PubMed  CAS  Google Scholar 

  36. Keogh A, Macdonald P, Glanville A, et al. Ambulatory prostacyclin therapy for severe primary pulmonary hypertension: a bridge to heart-lung transplantation [abstract]. Aust N Z J Med 1991; 21: 510

    Google Scholar 

  37. Butt AY, Cremona G, Katayama Y, et al. Effect of continuous infusion of prostacyclin (PGI2) on survival in moderate and severe pulmonary hypertension [abstract]. Am J Respir Crit Care Med 1994; 149: A748

    Google Scholar 

  38. Higenbottam TW, Spiegelhalter D, Scott JP, et al. Prostacyclin (epoprostenol) and heart-lung transplantation as treatments for severe pulmonary hypertension. Br Heart J 1993; 70: 366–70

    Article  PubMed  CAS  Google Scholar 

  39. Shapiro SM, Oudiz RJ, Cao T, et al. Primary pulmonary hypertension: improved long-term effects and survival with continuous intravenous epoprostenol infusion. J Am Coll Cardiol 1997; 30: 343–9

    Article  PubMed  CAS  Google Scholar 

  40. Eronen M, Pohjavuori M, Andersson S, et al. Prostacyclin treatment for persistent pulmonary hypertension of the newborn. Pediatr Cardiol 1997; 18: 3–7

    Article  PubMed  CAS  Google Scholar 

  41. Kermode J, Butt W, Shann F. Comparison between prostaglandin E1 and epoprostenol (prostacyclin) in infants after heart surgery. Br Heart J 1991; 66: 175–8

    Article  PubMed  CAS  Google Scholar 

  42. Schranz D, Zepp F, Iverson S, et al. Effects of tolazoline and prostacyclin on pulmonary hypertension in infants after cardiac surgery. Crit Care Med 1992; 20: 1243–9

    PubMed  CAS  Google Scholar 

  43. Radermacher P, Santak B, Wust HJ, et al. Prostacyclin for the treatment of pulmonary hypertension in the adult respiratory distress syndrome: effects on pulmonary capillary pressure and ventilation-perfusion distributions. Anesthesiol 1990; 72: 238–44

    Article  CAS  Google Scholar 

  44. de la Mata J, Gomez-Sanchez MA, Aranzana M, et al. Long-term iloprost infusion therapy for severe pulmonary hypertension in patients with connective tissue diseases. Arthritis Rheum 1994; 37: 1528–33

    Article  PubMed  Google Scholar 

  45. Menon N, McAlpine L, Peacock AJ, et al. The acute effects of prostacyclin on pulmonary hemodynamics in patients with pulmonary hypertension secondary to systemic sclerosis. Arthritis Rheum 1998; 41: 466–9

    Article  PubMed  CAS  Google Scholar 

  46. Archer SL, Mike D, Crow J, et al. A placebo-controlled trial of prostacyclin in acute respiratory failure in COPD. Chest 1996; 109: 750–5

    Article  PubMed  CAS  Google Scholar 

  47. Jones K. Prostacyclin. In: Peacock AJ, editor. Pulmonary circulation: a handbook for clinicians. London: Chapman & Hall Medical, 1996: 115–22

    Google Scholar 

  48. Peacock AJ. Treatment of pulmonary hypertension. Drugs Today 1995; 31: 201–11

    Google Scholar 

  49. Walmrath D, Schneider T, Pilch J, et al. Aerosolised prostacyclin in adult respiratory distress syndrome. Lancet 1993; 342: 961–2

    Article  PubMed  CAS  Google Scholar 

  50. Pappert D, Busch T, Gerlach H, et al. Aerosolized prostacyclin versus inhaled nitric oxide in children with severe acute respiratory distress syndrome. Anesthesiol 1995; 82: 1507–11

    Article  CAS  Google Scholar 

  51. Zwissler B, Rank N, Jaenicke U, et al. Selective pulmonary vasodilation by inhaled prostacyclin in a newborn with congenital heart disease and cardiopulmonary bypass. Anesthesiology 1995; 82: 1512–6

    Article  PubMed  CAS  Google Scholar 

  52. Haraldsson A, Kieler-Jensen N, Ricksten SE. Inhaled prostacyclin for treatment of pulmonary hypertension after cardiac surgery or heart transplantation: a pharmacodynamic study. J Cardiothorac Vasc Anesthes 1996; 10: 864–8

    Article  CAS  Google Scholar 

  53. Olschewski H, Walmrath D, Schermuly R, et al. Aerosolized prostacyclin and iloprost in severe pulmonary hypertension. Ann Intern Med 1996; 124: 820–4

    PubMed  CAS  Google Scholar 

  54. Webb SAR, Stott S, van Heerden PV. The use of inhaled aerosolized prostacyclin (IAP) in the treatment of pulmonary hypertension secondary to pulmonary embolism. Intensive Care Med 1996; 22: 353–5

    Article  PubMed  CAS  Google Scholar 

  55. Mikhail G, Gibbs JSR, Richardson M, et al. An evaluation of nebulized prostacyclin in patients with primary and secondary pulmonary hypertension. Eur Heart J 1997; 18: 1499–504

    Article  PubMed  CAS  Google Scholar 

  56. Saji T, Ozawa Y, Ishikita T, et al. Short-term hemodynamic effect of a new oral PGI2 analogue, beraprost, in primary and secondary pulmonary hypertension. Am J Cardiol 1996; 78: 244–7

    Article  PubMed  CAS  Google Scholar 

  57. Pepke-Zaba J, Higenbottam TW, Dinh-Xuan AT, et al. Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet 1991; 338: 1173–4

    Article  PubMed  CAS  Google Scholar 

  58. Adatia I, Wessel DL. Therapeutic use of inhaled nitric oxide. Curr Opin Pediatr 1994; 6: 583–90

    Article  PubMed  CAS  Google Scholar 

  59. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524–6

    Article  PubMed  CAS  Google Scholar 

  60. Cremona G, Wood AM, Hall LW, et al. Effect of inhibitors of nitric oxide release and action on vascular tone in isolated lungs of pig, sheep, dog and man. JPhysiol 1994; 481: 185–95

    CAS  Google Scholar 

  61. Davidson D. Nitric oxide from bench to bedside: a perinatal perspective: part II. Int J Obstet Anesth 1996; 5: 244–53

    Article  PubMed  CAS  Google Scholar 

  62. Brett SJ, Gibbs JSR, Pepper JR, et al. Impairment of endothelium-dependent pulmonary vasodilation in patients with primary pulmonary hypertension. Thorax 1996; 51: 89–91

    Article  PubMed  CAS  Google Scholar 

  63. Dollberg S, Warner BW, Myatt L. Urinary nitrite and nitrate concentrations in patients with idiopathic persistent pulmonary hypertension of the newborn and effect of extracorporeal membrane oxygenation. Pediatr Res 1995; 37: 31–4

    Article  PubMed  CAS  Google Scholar 

  64. Kharitonov SA, Cailes JB, Black CM, et al. Decreased nitric oxide in the exhaled air of patients with systemic sclerosis with pulmonary hypertension. Thorax 1997; 52: 1051–5

    Article  PubMed  CAS  Google Scholar 

  65. Wessel DL, Adatia I, Giglia TM, etal. Use of inhaled nitric oxide and acetylcholine in the evaluation of pulmonary hypertension and endothelial function after cardiopulmonary bypass. Circulation 1993; 88: 2128–38

    Article  PubMed  CAS  Google Scholar 

  66. Cornfield DN, Abman SH. Inhalational nitric oxide in pulmonary parenchymal and vascular disease. J Lab Clin Med 1996; 127: 530–9

    Article  PubMed  CAS  Google Scholar 

  67. Neonatal Inhaled Nitric Oxide Study Group. Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure. New Engl J Med 1997; 336: 597–604

    Article  Google Scholar 

  68. Davidson D, Barefield ES, Kattwinkel J, et al. Inhaled nitric oxide for the early treatment of persistent pulmonary hypertension of the term newborn: a randomized, double-masked, placebo-controlled, dose-response, multicenter study. The I-NO/PPHN study group. Pediatrics 1998; 101: 325–34

    CAS  Google Scholar 

  69. Wessel DL, Adatia I, Van Marter LJ, et al. Improved oxygenation in a randomized trial of inhaled nitric oxide for persistent pulmonary hypertension of the newborn [abstract E7]. Pediatrics 1997; 100: 888

    Article  Google Scholar 

  70. Kinsella JP, Abman SH. Controversies in the use of inhaled nitric oxide therapy in the newborn. Clin Perinatol 1998; 25: 203–17

    PubMed  CAS  Google Scholar 

  71. Kinsella JP, Truog WE, Walsh WF, et al. Randomized, multi-center trial of inhaled nitric oxide and high-frequency oscillatory ventilation in severe, persistent pulmonary hypertension of the newborn. J Pediatrics 1997; 131: 55–62

    Article  CAS  Google Scholar 

  72. Goldman AP, Tasker RC, Haworth SG, et al. Four patterns of response to inhaled nitric oxide for persistent pulmonary hypertension of the newborn. Pediatrics 1996; 98: 706–13

    PubMed  CAS  Google Scholar 

  73. Rosenberg AA, Kennaugh JM, Moreland SG, et al. Longitudinal follow-up of a cohort of newborn infants treated with inhaled nitric oxide for persistent pulmonary hypertension. J Pediatr 1997; 131: 70–5

    Article  PubMed  CAS  Google Scholar 

  74. Tang SF, Miller OI. Low-dose inhaled nitric oxide for neonates with pulmonary hypertension. J Paediatr Child Health 1996; 32: 419–23

    Article  PubMed  CAS  Google Scholar 

  75. Rossaint R, Falke KJ, Lopez F, et al. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 1993; 328: 399–405

    Article  PubMed  CAS  Google Scholar 

  76. Gerlach H, Rossaint R, Pappert D, et al. Time-course and dose-response of nitric oxide inhalation for systemic oxygenation and pulmonary hypertension in patients with adult respiratory distress syndrome. Eur J Clin Invest 1993; 23: 499–502

    Article  PubMed  CAS  Google Scholar 

  77. Dellinger RP, Zimmerman JL, Taylor RW, et al. Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: results of a randomized phase II trial. Inhaled nitric oxide in ARDS study group. Crit Care Med 1998; 26: 15–23

    Article  PubMed  CAS  Google Scholar 

  78. Manktelow C, Bigatello LM, Hess D, et al. Physiologic determinants of the response to inhaled nitric oxide in patients with acute respiratory distress syndrome. Anesthesiology 1997; 87: 297–307

    Article  PubMed  CAS  Google Scholar 

  79. Treggiari-Venzi M, Ricou B, Romand JA, et al. The response to repeated nitric oxide inhalation is inconsistent in patients with acute respiratory distress syndrome. Anesthesiology 1998; 88: 634–41

    Article  PubMed  CAS  Google Scholar 

  80. Payen D. Is nitric oxide inhalation a ’cosmetic’ therapy in acute respiratory distress syndrome? Am J Respir Crit Care Med 1998; 157: 1361–2

    PubMed  CAS  Google Scholar 

  81. Roger N, Barbera JA, Roca J, et al. Nitric oxide inhalation during exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1997; 156: 800–6

    PubMed  CAS  Google Scholar 

  82. Beghetti M, Habre W, Friedli B, et al. Continuous low dose inhaled nitric oxide for treatment of severe pulmonary hypertension after cardiac surgery in paediatric patients. Br Heart J 1995; 73: 65–8

    Article  PubMed  CAS  Google Scholar 

  83. Goldman AP, Delius RE, Deanfield JE, et al. Nitric oxide is superior to prostacyclin for pulmonary hypertension after cardiac operations. Ann Thorac Surg 1995; 60: 300–6

    Article  PubMed  CAS  Google Scholar 

  84. Adatia I, Lillehei C, Arnold JH, et al. Inhaled nitric oxide in the treatment of postoperative graft dysfunction after lung transplantation. Ann Thorac Surg 1994; 57: 1311–8

    Article  PubMed  CAS  Google Scholar 

  85. Journois D, Pouard P, Mauriat P, et al. Inhaled nitric oxide as a therapy for pulmonary hypertension after operations for congenital heart defects. J Thorac Cardiovasc Surg 1994; 107: 1129–35

    PubMed  CAS  Google Scholar 

  86. Shah AS, Smerling AT, Quaegebeur JM, et al. Nitric oxide treatment for pulmonary hypertension after neonatal cardiac operation. Ann Thorac Surg 1995; 60: 1791–3

    Article  PubMed  CAS  Google Scholar 

  87. Finer NN, Etches PC, Kamstra B, et al. Inhaled nitric oxide in infants referred for extracorporeal membrane oxygenation: dose response. J Pediatr 1994; 124: 302–8

    Article  PubMed  CAS  Google Scholar 

  88. Turanlahti MI, Laitinen PO, Sarna SJ, et al. Nitric oxide, oxygen, and prostacyclin in children with pulmonary hypertension. Heart 1998; 79: 169–74

    PubMed  CAS  Google Scholar 

  89. Mariani G, Barefield ES, Carlo WA. The role of nitric oxide in the treatment of neonatal pulmonary hypertension. Curr Opin Pediatr 1996; 8: 118–25

    Article  PubMed  CAS  Google Scholar 

  90. Goldman AP, Rees PG, Macrae DJ. Is it time to consider domiciliary nitric oxide? Lancet 1995; 345: 199–200

    Article  PubMed  CAS  Google Scholar 

  91. Meyer J, Theilmeier G, Van Aken H, et al. Inhaled prostaglandin E1 for treatment of acute lung injury in severe multiple organ failure. Anesth Analg 1998; 86; 753–8

    PubMed  CAS  Google Scholar 

  92. Putensen C, Hormann C, Kleinsasser A, et al. Cardiopulmonary effects of aersolized prostaglandin E1 and nitric oxide inhalation in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 1998; 157: 1743–7

    PubMed  CAS  Google Scholar 

  93. Kunimoto F, Arai K, Isa Y, et al. A comparative study of the vasodilator effects of prostaglandin E1 in patients with pulmonary hypertension after mitral valve replacement and with adult respiratory distress syndrome. Anesth Analg 1997; 85: 507–13

    PubMed  CAS  Google Scholar 

  94. Morgan JM, McCormack DG, Griffiths MJD, et al. Adenosine as a vasodilator in primary pulmonary hypertension. Circulation 1991; 84: 1145–9

    Article  PubMed  CAS  Google Scholar 

  95. Nootens M, Schrader B, Kauffman E, et al. Comparative acute effects of adenosine and prostacyclin in primary pulmonary hypertension. Chest 1995; 107: 54–7

    Article  PubMed  CAS  Google Scholar 

  96. Schrader BJ, Inbar S, Kaufmann L, et al. Comparison of the effects of adenosine and nifedipine in pulmonary hypertension. J Am Coll Cardiol 1992; 19: 1060–4

    Article  PubMed  CAS  Google Scholar 

  97. Fullerton DA, Jones SD, Grover FL, et al. Adenosine effectively controls pulmonary hypertension after cardiac operations. Ann Thorac Surg 1996; 61: 1118–24

    Article  PubMed  CAS  Google Scholar 

  98. Fullerton DA, Jaggers J, Jones SD, et al. Adenosine for refractory pulmonary hypertension. Ann Thorac Surg 1996; 62: 874–7

    PubMed  CAS  Google Scholar 

  99. Inbar S, Schrader BJ, Kauffman E, et al. Effects of adenosine in combination with calcium channel blockers in patients with primary pulmonary hypertension. J Am Coll Cardiol 1993; 21: 413–8

    Article  PubMed  CAS  Google Scholar 

  100. Vaz Fragoso CA, Miller MA. Review of the clinical efficacy of theophylline in the treatment of chronic obstructive pulmonary disease. Am Rev Respir Dis 1993; 147: S40–7

    PubMed  CAS  Google Scholar 

  101. Rabe KF, Magnussen H, Dent G. Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants. Eur Respir J 1995; 8: 637–42

    PubMed  CAS  Google Scholar 

  102. Leeman M, Lejeune P, Melot C, et al. Reduction in pulmonary hypertension and in airway resistance by enoximone (MDL 17043) in decompensated COPD. Chest 1987; 91: 662–6

    Article  PubMed  CAS  Google Scholar 

  103. Nenci GG, Berrettini M, Todisco T, et al. Effects of dipyridamole on the hypoxemic pulmonary hypertension of patients with chronic obstructive pulmonary disease. Respiration 1988; 53: 13–9

    Article  PubMed  CAS  Google Scholar 

  104. Feneck R, Sherry K, Withington S, et al. Comparison of milri-none and dobutamine in pulmonary hypertensive patients following cardiac surgery [abstract]. Br J Anaesth 1995; 74 Suppl. 2: 6

    Google Scholar 

  105. Boomers OW, Duncan F, Feneck RO, et al. Comparison of the haemodynamic effects of milrinone and GTN on pulmonary hypertension following mitral valve surgery [abstract]. Br J Anaesth 1995; 74 Suppl. 2: 6

    Google Scholar 

  106. Jenkins IR, Dolman J, O’Connor JP, et al. Amrinone versus dobutamine in cardiac surgical patients with severe pulmonary hypertension after cardiopulmonary bypass: a prospective, randomized double-blind trial. Anaesth Intensive Care 1997; 25: 245–9

    PubMed  CAS  Google Scholar 

  107. Patole SK, Finer NN. Experimental and clinical effects of magnesium infusion in the treatment of neonatal pulmonary hypertension. Magnes Res 1995; 8: 373–88

    PubMed  CAS  Google Scholar 

  108. Abu-Osba YK, Galal O, Manasra K, et al. Treatment of severe persistent pulmonary hypertension of the newborn with magnesium sulphate. Arch Dis Child 1992; 67: 31–5

    Article  PubMed  CAS  Google Scholar 

  109. Tolsa JF, Cotting J, Sekarski N, et al. Magnesium sulphate as an alternative and safe treament for severe persistent pulmonary hypertension of the newborn. Arch Dis Child 1995; 72: F184–7

    Article  CAS  Google Scholar 

  110. Brook MM, Fineman JR, Bolinger AM, etal. Use of ATP-MgCl2 in the evaluation and treatment of children with pulmonary hypertension secondary to congenital heart defects. Circulation 1994; 90: 1287–93

    Article  PubMed  CAS  Google Scholar 

  111. Parida SK, Baker S, Kuhn R, et al. Endotracheal tolazoline administration in neonates with persistent pulmonary hypertension. J Perinatal 1997; 17: 461–4

    CAS  Google Scholar 

  112. Welch JC, Bridson JM, Gibbs JL. Endotracheal tolazoline for severe persistent pulmonary hypertension of the newborn. Br Heart J 1995; 73: 99–100

    Article  PubMed  CAS  Google Scholar 

  113. Lewczuk J, Sobkowicz-Wozniak B, Piszko P, et al. Long-term prazosin therapy for COPD pulmonary hypertension. Chest 1992; 102: 635–6

    Article  PubMed  CAS  Google Scholar 

  114. Spah F, Kottman R, Schmidt U. Effects of single intravenous administration of urapidil and diltiazem in patients with non-fixed pulmonary hypertension secondary to chronic obstructive lung disease. J Cardiovasc Pharmacol 1994; 23: 517–24

    Article  PubMed  CAS  Google Scholar 

  115. Radermacher P, Huet Y, Pluskwa F, et al. Comparison of ketanserin and sodium nitroprusside in patients with severe ARDS. Anesthesiology 1988; 68: 152–7

    Article  PubMed  CAS  Google Scholar 

  116. van der Starre PJ, Feld RJ, Reneman RS. Ketanserin in the treatment of pulmonary hypertension after valvular surgery; a comparison with sodium nitroprusside. Crit Care Med 1989; 17: 613–8

    Article  PubMed  Google Scholar 

  117. Domenighetti G, Leuenberger P, Feihl F. Haemodynamic effects of ketanserin either alone or with oxygen in COPD patients with secondary pulmonary hypertension. Monald Arch Chest Dis 1997; 52: 429–33

    CAS  Google Scholar 

  118. MacLean MR, Clayton RA, Templeton AGB, et al. Evidence for 5-HT1-like receptor-mediated vasoconstriction in human pulmonary artery. Br J Pharmacol 1996; 119: 277–82

    Article  PubMed  CAS  Google Scholar 

  119. Waller DG. ACE inhibitors. In: Peacock AJ, ed. Pulmonary circulation: a handbook for clinicians. London: Chapman & Hall, 1996: 141–53

  120. Pison CM, Wolf JE, Levy PA, et al. Effects of captopril combined with oxygen therpay at rest and on exercise in patients with chronic bronchitis and pulmonary hypertension. Respiration 1991; 58: 9–14

    Article  PubMed  CAS  Google Scholar 

  121. Alpert MA, Pressly TA, Mukerji V, et al. Short-and long-term hemodynamic effects of captopril in patients with pulmonary hypertension and selected connective tissue disease. Chest 1992; 102: 1407–12

    Article  PubMed  CAS  Google Scholar 

  122. Niazova ZA, Batyraliev TA, Aikimbaev KS, et al. High-altitude pulmonary hypertension: effects of captopril on pulmonary and systemic arterial pressures. J Hum Hypertens 1996; 10 Suppl. 3: S141–S142

    PubMed  Google Scholar 

  123. Morrell NW, Morris KG, Stenmark KR. Role of angiotensin-converting enzyme and angiotensin II in development of hypoxic pulmonary hypertension. Am J Physiol 1995; 269: H1186–94

    PubMed  CAS  Google Scholar 

  124. Kiely DG, Cargill RI, Wheeldon NM, et al. Haemodynamic and endocrine effects of type 1 angiotensin II receptor blockade in patients with hypoxaemic cor-pulmonale. Cardiovasc Res 1997; 33: 201–8

    Article  PubMed  CAS  Google Scholar 

  125. Eisen HJ, Pina IL, Mather P, et al. Improvement in pulmonary hypertension refractory to standard vasodilators using the angtiotensin II receptor antagonist losartan in patients with severe congestive heart failure [abstract]. Circulation 1996; 94 Suppl.: 289

    Google Scholar 

  126. Levine BE, Bigelow DB, Hamstra RD, et al. The role of long-term continuous oxygen administration in patients with chronic airway obstruction with hypoxemia. Ann Intern Med 1967; 66: 639–50

    PubMed  CAS  Google Scholar 

  127. Abraham AS, Cole RB, Bishop JM. Reversal of pulmonary hypertension by prolonged oxygen administration to patients with chronic bronchitis. Circ Res 1968; 23: 147–57

    Article  PubMed  CAS  Google Scholar 

  128. Nocturnal Oxygen Therapy Trial Group. Continuous nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease. Ann Intern Med 1980; 93: 391–8

    Google Scholar 

  129. Weitzenblum E, Sautegeau A, Ehrhart M, et al. Long-term oxygen therapy can reverse the progression of pulmonary hypertension in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 1985; 131: 493–8

    PubMed  CAS  Google Scholar 

  130. Medical Research Council Working Party. Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Lancet 1981; I: 681–6

    Google Scholar 

  131. Zielinski J, Tobiasz M, Hawrylkiewicz I, et al. Effects of long-term oxygen therapy on pulmonary hemodynamics in COPD patients: a 6-year prospective study. Chest 1998; 113: 65–70

    Article  PubMed  CAS  Google Scholar 

  132. Dean NC, Brown JK, Himelman RB, et al. Oxygen may improve dyspnea and endurance in patients with chronic obstructive pulmonary disease and only mild hypoxemia. Am Rev Respir Dis 1992; 146: 941–5

    PubMed  CAS  Google Scholar 

  133. Wright JL, Petty T, Thurlbeck WM. Analysis of the structure of the muscular pulmonary arteries in patients with pulmonary hypertension and COPD: National Institutes of Health nocturnal oxygen therapy trial. Lung 1992; 170: 109–24

    Article  PubMed  CAS  Google Scholar 

  134. Reitz BA, Wallwork JL, Hunt SA, et al. Heart-lung transplantation: successful therapy for patients with pulmonary vascular disease. N Engl J Med 1982; 306: 557–64

    Article  PubMed  CAS  Google Scholar 

  135. Bando K, Armitage JM, Paradis IL, et al. Indications for and results of single, bilateral, and heart-lung transplantation for pulmonary hypertension. J Thorac Cardiovasc Surg 1994; 108: 1056–65

    PubMed  CAS  Google Scholar 

  136. Corris PA. Lung transplantation for pulmonary vascular disease. In: Morice AH, editor. Clinical pulmonary hypertension. London: Portland Press, 1995: 245–59

    Google Scholar 

  137. Registry of the International Society for Heart and Lung Transplantation: Eleventh Official Report 1994. J Heart Lung Transplant 1994; 13: 561-70

  138. Australian and New Zealand Cardiothoracic Transplant Registry. 6th Annual Report, 1984-1997; 1998

  139. Rich S. Medical treatment of primary pulmonary hypertension: a bridge to transplantation. Am J Cardiol 1995; 75: 63A–6A

    Article  PubMed  CAS  Google Scholar 

  140. Kneussl MP, Lang IM, Brenot FP. Medical management of primary pulmonary hypertension. Eur Respir J 1996; 9: 2401–9

    Article  PubMed  CAS  Google Scholar 

  141. Nakagawa TA, Morris A, Gomez RJ, et al. Dose response to inhaled nitric oxide in pediatric patients with pulmonary hypertension and acute respiratory distress syndrome. J Pediatr 1997; 131: 63–9

    Article  PubMed  CAS  Google Scholar 

  142. Abman SH. Inhaled nitric oxide therapy of severe neonatal pulmonary hypertension. Acta Anaesthes Scand 1995; 65-8

  143. Dev D, Howard P. Pulmonary hypertension in chronic obstructive pulmonary disease. In: Morice AH, editor. Clinical pulmonary hypertension. London: Portland Press, 1995: 115–28

    Google Scholar 

  144. Yoshida M, Taguchi O, Gabazza EC, et al. Combined inhalation of nitric oxide and oxygen in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1997; 155: 526–9

    PubMed  CAS  Google Scholar 

  145. McAlpine LG, Peacock AX. Thromboembolic pulmonary hypertension. In: Morice AH, editor. Clinical pulmonary hypertension. London: Portland Press, 1995: 129–51

    Google Scholar 

  146. Moser KM, Fedullo PF. Acute and chronic pulmonary thromboembolism. In: Peacock AJ, editor. Pulmonary circulation: a handbook for clinicians. London: Chapman & Hall Medical, 1996: 391–422

    Google Scholar 

  147. Vongpatanasin W, Brickner ME, Hillis LD, et al. The Eisenmenger syndrome in adults. Ann Intern Med 1998; 128: 745–55

    PubMed  CAS  Google Scholar 

  148. Cockrill B A. The use of nitric oxide in primary pulmonary hypertension. Respir Care Clin North Am 1997; 3: 505–19

    CAS  Google Scholar 

  149. Ivy DD, Griebel JL, Kinsella JP, et al. Acute hemodynamic effects of pulsed delivery of low flow nasal nitric oxide in children with pulmonary hypertension. J Pediatr 1998; 133: 453–6

    Article  PubMed  CAS  Google Scholar 

  150. Weis CM, Wolfson MR, Shaffer TH. Liquid assisted ventilation: physiology and clinical application. Ann Med 1997; 29: 509–17

    Article  PubMed  CAS  Google Scholar 

  151. Wilcox DT, Glick PL, Karamanoukian HL, et al. Partial liquid ventilation and nitric oxide in congenital diaphragmatic hernia. J Pediatr Surg 1997; 32: 1211–5

    Article  PubMed  CAS  Google Scholar 

  152. Zobel G, Urlesberger B, Dacar D, et al. Partial liquid ventilation combined with inhaled nitric oxide in acute respiratory failure with pulmonary hypertension in piglets. Pediatr Res 1997; 41: 172–7

    Article  PubMed  CAS  Google Scholar 

  153. Ichida F, Uese K, Tsubata A, et al. Additive effect of beraprost on pulmonary vasodilation by inhaled nitric oxide in children with pulmonary hypertension. Am J Cardiol 1997; 80: 662–4

    Article  PubMed  CAS  Google Scholar 

  154. Ziegler JW, Ivy DD, Fox IT, et al. Dipyridamole, a cGMP phosphodiesterase inhibitor, causes pulmonary vasodilation in the ovine fetus. Am J Physiol 1995; 269: H473–9

    PubMed  CAS  Google Scholar 

  155. Ichinose F, Adrie C, Hurford WE, et al. Selective pulmonary vasodilation induced by aerosolized zaprinast. Anesthesiology 1998; 88: 410–6

    Article  PubMed  CAS  Google Scholar 

  156. Oka M, Morris KG, McMurtry IF. NIP-121 is more effective than nifedipine in acutely reversing chronic pulmonary hypertension. J Appl Physiol 1993; 75: 1075–80

    PubMed  CAS  Google Scholar 

  157. Wanstall JC. The pulmonary vasodilator properties of potassium channel opening drugs. Gen Pharmacol 1996; 27: 599–605

    Article  PubMed  CAS  Google Scholar 

  158. Chen SJ, Chen YF, Meng QC, et al. Endothelin-receptor antagonist bosentan prevents and reverses hypoxic pulmonary hypertension in rats. J Appl Physiol 1995; 79: 2122–31

    PubMed  CAS  Google Scholar 

  159. Hill NS, Warburton RR, Pietras L, et al. Nonspecific endothelin-receptor antagonist blunts monocrotaline-induced pulmonary hypertension in rats. J Appl Physiol 1997; 83: 1209–15

    PubMed  CAS  Google Scholar 

  160. Hampl V, Tristani-Firouzi M, Hutsell TC, et al. Nebulized nitric oxide/nucleophile adduct reduces chronic pulmonary hypertension. Cardiovasc Res 1996; 31: 55–62

    PubMed  CAS  Google Scholar 

  161. Keefer LK, Nims RW, Davies KM, et al. ‘NONOates’ (1-sub-stituted diazen-l-ium-l,2-diolates) as nitric oxide donors: convenient nitric oxide dosage forms. Methods Enzymol 1996; 268: 281–93

    Article  PubMed  CAS  Google Scholar 

  162. Curiel DT, Pilewski JM, Albeda SM. Gene therapy approaches for inherited and acquired lung diseases. Am J Respir Cell Mol Biol 1996; 14: 1–18

    Article  PubMed  CAS  Google Scholar 

  163. Janssens SP, Bloch KD, Nong Z, et al. Adenoviral-mediated transfer of the human endothelial nitric oxide synthase gene reduces acute hypoxic pulmonary vasoconstriction in rats. J Clin Invest 1996; 98: 317–24

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet C. Wanstall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanstall, J.C., Jeffery, T.K. Recognition and Management of Pulmonary Hypertension. Drugs 56, 989–1007 (1998). https://doi.org/10.2165/00003495-199856060-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199856060-00004

Keywords

Navigation