Skip to main content
Log in

Choosing the Right Macrolide Antibiotic

A Guide to Selection

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Macrolide antibiotics have proven to be valuable alternatives to penicillins and cephalosporins for the treatment of a number of infections. Currently, a number of macrolides are available. When choosing a particular macrolide, the types of organisms causing the infection, the tolerability of the drug, convenience of dosing and possible drug interactions all must be taken into account.

Erythromycin, azithromycin and clarithromycin are equally effective against most gram-positive organisms. However, clarithromycin and azithromycin have much better activity against Haemophilus influenza and Moraxella catarrhalis. Thus, these 2 drugs are better choices for the treatment of community-acquired pneumonia. However, the low serum concentrations of azithromycin may be a problem in patients with bacteraemia associated with with community-acquired pneumonia.

Clarithromycin appears to be effective for the treatment and prophylaxis of Mycobacterium avium complex (MAC) in patients with AIDS, while azithromycin appears to be effective for prophylaxis. Treatment of MAC with azithromycin is currently undergoing study.

Although clarithromycin is the macrolide of choice for the treatment of Helicobacter pylori, azithromycin is the preferred macrolide for the treatment of Chlamydia trachomatis infections. The major factor limiting the use of azithromycin and clarithromycin has been their cost. However, these drugs may be cost effective if compliance is improved due to better tolerability and more convenient dosing regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Piscitelli S, Danziger L, Rodvold K. Clarithromycin and azithromycin: new macrolide antibiotics. Clin Pharm 1992; 11: 137–52

    PubMed  CAS  Google Scholar 

  2. Kirst HA, Sides GD. New directions for macrolide antibiotics: pharmacokinetics and clinical efficacy. Antimicrob Agents Chemother 1989; 33: 1419–22

    Article  PubMed  CAS  Google Scholar 

  3. Chu S-Y, Deaton R, Cavanaugh J. Absolute bioavailability of clarithromycin after oral administration in humans. Antimicrob Agents Chemother 1992; 36: 1147–50

    Article  PubMed  CAS  Google Scholar 

  4. Foulds G, Shepard RM, Johnson RB. The pharmacokinetics of azithromycin in human serum and tissues. J Antimicrob Chemother 1990; 25 Suppl. A: 73–82

    Article  PubMed  CAS  Google Scholar 

  5. Girard AE, Girard A, English AR, et al. Pharmacokinetic and in vivo studies with azithromycin (CP-62,993), a new macrolide with an extended half-life and excellent tissue distribution. Anti-microb Agents Chemother 1987; 31: 1948–54

    Article  CAS  Google Scholar 

  6. Gladue RP, Snider ME. Intracellular accumulation of azithromycin by cultured human fibroblasts. Antimicrob Agents Chemother 1990; 34: 1056–60

    Article  PubMed  CAS  Google Scholar 

  7. Bonnet M, Van der Auwera P. In vitro and in vivo intraleukocytic accumulation of azithromycin (CP-62, 993) and its influence on ex vivo leukocyte chemiluminescence. Antimicrob Agents Chemother 1992; 36: 1302–9

    Article  PubMed  CAS  Google Scholar 

  8. Amacher DE, Schomaker SJ, Retsema JA. Comparison of the effects of the new azalide antibiotic, azithromycin, and erythromycin estolate on rat liver cytochrome P-450. Antimicrob Agents Chemother 1991; 35: 1186–90

    Article  PubMed  CAS  Google Scholar 

  9. Lindstrom TD, Hanssen BR, Wrighton SA. Cytochrome P-450 complex formation by dirithromycin and other macrolides in rat and human livers. Antimicrob Agents Chemother 1993; 37: 265–9

    Article  PubMed  CAS  Google Scholar 

  10. Tremblay D, Mignot A, Couraud L, et al. Concentrations of roxithromycin in lung tissue after repeat dosing. Br J Clin Pract 1988; 44 Suppl. 55: 64–6

    Google Scholar 

  11. Nilsen OG. Pharmacokinetics of macrolides: comparison of plasma, tissue and free concentrations with special reference to roxithromycin. Infection 1995; 23 Suppl. 1: 55–9

    Article  Google Scholar 

  12. Hardy D, Hensey D, Beyer J, et al. Comparative in vitro activities of new 14-, 15- and 16-membered macrolides. Antimicrob Agents Chemother 1988; 32: 1710–9

    Article  PubMed  CAS  Google Scholar 

  13. Neu HC. The development of macrolides: clarithromycin in perspective. J Antimicrob Chemother 1991; 27 Suppl. A: 1–9

    Article  PubMed  CAS  Google Scholar 

  14. Ednie LM, Visalli MA, Jacobs MR, et al. Comparative activities of clarithromycin, erythromycin, and azithromycin against penicillin-susceptible and penicillin-resistant pneumococci. Anti-microb Agents Chemother 1996; 40: 1950–2

    CAS  Google Scholar 

  15. Fernandes PB, Bailer R, Swanson R, et al. In vitro and in vivo evaluation of A-56268 (TE-031), a new macrolide. Antimicrob Agents Chemother 1986; 30: 865–73

    Article  PubMed  CAS  Google Scholar 

  16. Segreti J. In vitro activity of macrolides against intracellular Legionella pneumophila. Diag Microbiol Infect Dis 1996; 25: 123–6

    Article  CAS  Google Scholar 

  17. Chin N-X, Neu NM, Labthavikul P, et al. Activity of A-56268 compared with that of erythromycin and other oral agents against aerobic and anaerobic bacteria. Antimicrob Agents Chemother 1987; 31: 463–6

    Article  PubMed  CAS  Google Scholar 

  18. Segreti J, Kessler HA, Kapell KS, et al. In vitro activity of A-56268 (TE-031) and four other antimicrobial agents against Chlamydia trachomatis. Antimicrob Agents Chemother 1987; 31: 100–1

    Article  PubMed  CAS  Google Scholar 

  19. Benson CA, Segreti J, Beaudette FE, et al. In vitro activity of A-56268 (TE-031), a new macrolide, compared with that of erythromycin and clindamycin against selected gram-positive and gram-negative organisms. Antimicrob Agents Chemother 1987; 31: 328–30

    Article  PubMed  CAS  Google Scholar 

  20. Jorgensen JH, Maher LA, Howell AW. Activity of clarithromycin and its principal human metabolite against Haemophilus influenzae. Antimicrob Agents Chemother 1991; 35: 1524–6

    Article  PubMed  CAS  Google Scholar 

  21. Hardy D, Swanson RN, Rode R, et al. Enhancement of the in vitro and in vivo activities of clarithromycin against Hemophilus influenzae by 14 hydroxy-clarithromycin, its major metabolite in humans. Antimicrob Agents Chemother 1990; 34(7): 1407–13

    Article  PubMed  CAS  Google Scholar 

  22. Rastogi N, Labrousse V. Extracellular and intracellular activities of clarithromycin used alone and in association with ethambutol and rifampin against Mycobacterium avium complex. Anti-microb Agents Chemother 1991; 35: 462–70

    Article  CAS  Google Scholar 

  23. Perronne C, Gikas A, Truffot-Pernot C, et al. Activities of clarithromycin, sulfisoxazole, and rifabutin against Mycobacterium avium complex multiplication within human macrophages. Antimicrob Agents Chemother 1990; 34: 1508–11

    Article  PubMed  CAS  Google Scholar 

  24. Fernandes PB, Hardy DJ, McDaniel D, et al. In vitro and in vivo activities of clarithromycin against Mycobacterium avium. Anti-microb Agents Chemother 1989; 33: 1531–4

    Article  CAS  Google Scholar 

  25. Gelber RH, Siu P, Tsang M, et al. Activities of various macrolide antibiotics against Mycobacterium leprae infection in mice. Antimicrob Agents Chemother 1991; 35: 760–3

    Article  PubMed  CAS  Google Scholar 

  26. Franzblau SG, Hastings RC. In vitro and in vivo activities of macrolides against Mycobacterium leprae.Antimicrob Agents Chemother 1988; 32: 1758–62

    Article  PubMed  CAS  Google Scholar 

  27. Ji B, Perani EG, Grosset JH. Effectiveness of clarithromycin and minocycline alone and in combination against experimental Mycobacterium leprae infection in mice. Antimicrob Agents Chemother 1991; 35: 579–81

    Article  PubMed  CAS  Google Scholar 

  28. Kirst HA, Sides GD. New directions for macrolide antibiotics: structural modifications and in vitro activity. Antimicrob Agents Chemother 1989; 33: 1413–8

    Article  PubMed  CAS  Google Scholar 

  29. Brown B A, Wallace Jr RJ, Onyi GO. Activities of four macrolides including clarithromycin, against Mycobacterium fortuitum, Mycobacterium chelonae, and M. chelonae-like organisms. Antimicrob Agents Chemother 1992; 36(1): 180–4

    Article  PubMed  CAS  Google Scholar 

  30. Hardy DJ, Hanson CW, Hensey DM, et al. Susceptibility of Campylobacterpylorito macrolides and fluoroquinolones. J Antimicrob Chemother 1988; 22: 631–6

    Article  PubMed  CAS  Google Scholar 

  31. Levin JM, Nelson JA, Segreti J, et al. In vitro susceptibility of Borrelia burgdorferi to 11 antimicrobial agents. Antimicrob Agents Chemother 1993; 37: 1444–6

    Article  PubMed  CAS  Google Scholar 

  32. Barry AL, Jones RN, Thornsberry C. Invitroactivities of azithromycin (CP 62,993), clarithromycin (A-56268; TE-031), erythromycin, roxithromycin, and clindamycin. Antimicrob Agents Chemother 1988; 32: 752–4

    Article  PubMed  CAS  Google Scholar 

  33. Retsema J, Girard A, Schelkly W, et al. Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms. Antimicrob Agents Chemother 1987; 31: 1939–47

    Article  PubMed  CAS  Google Scholar 

  34. Gordillo ME, Singh KV, Murray BE. Invitroactivity of azithromycin against bacterial enteric pathogens. Antimicrob Agents Chemother 1993; 37: 1203–5

    Article  PubMed  CAS  Google Scholar 

  35. Edelstein PH, Edelstein MAC. In vitro activity of azithromycin against clinical isolates of Legionella species. Antimicrob Agents Chemother 1991; 35: 180–1

    Article  PubMed  CAS  Google Scholar 

  36. Naik S, Ruck R. In vitro activities of several new macrolide anti-biotics against Mycobacterium avium complex. Antimicrob Agents Chemother 1989; 33: 1614–6

    Article  PubMed  CAS  Google Scholar 

  37. Bermudez LEM, Young LS. Activities of amikacin, roxithromycin, and azithromycin alone or in combination with tumor necrosis factor against Mycobacterium avium complex. Anti-microb Agents Chemother 1988; 32: 1149–53

    Article  CAS  Google Scholar 

  38. Inderlied CB, Kolonoski PT, Wu M, et al. In vitro and in vivo activity of azithromycin (CP 62,993) against the Mycobacterium avium complex. J Infect Dis 1989; 159: 994–7

    Article  PubMed  CAS  Google Scholar 

  39. Scieux C, Bianchi A, Chappey B, et al. In vitro activity of azithromycin against Chlamydia trachomatis. J Antimicrob Chemother 1990; 25: 7–10

    Article  PubMed  CAS  Google Scholar 

  40. Counter FT, Ensminger PW, Preston DA, et al. Synthesis and antimicrobial evaluation of dirithromycin (AS-# 136; LY237216), a new macrolide antibiotic derived from erythromycin. Antimicrob Agents Chemother 1991; 35: 1116–26

    Article  PubMed  CAS  Google Scholar 

  41. Yu K-W, Neu HC. Invitroactivity of dirithromycin (LY 237216) compared with activities of other macrolide antibiotics. Antimicrob Agents Chemother 1990; 34: 1839–42

    Article  PubMed  CAS  Google Scholar 

  42. Segreti J, Kapell KS. In vitro activity of dirithromycin against Chlamydia trachomatis. Antimicrob Agents Chemother 1994; 38: 2213–4

    Article  PubMed  CAS  Google Scholar 

  43. Hopkins S. Clinical toleration and safety of azithromycin. Am J Med 1991; 91 Suppl. 3A: 40–5

    Article  Google Scholar 

  44. Levenstein JH. Clarithromycin versus penicillin in the treatment of streptococcal pharyngitis. J Antimicrob Chemother 1991; 27 Suppl. A: 67–74

    Article  PubMed  Google Scholar 

  45. Bachand RT. A comparative study of clarithromycin and penicillin VK in the treatment of outpatients with Streptococcalpharyngitis. J Antimicrob Chemother 1991; 27 Suppl. A: 75–82

    Article  PubMed  Google Scholar 

  46. Gillum JG, Israel DS, Scott RB, et al. Effect of combination therapy with ciprofloxacin and clarithromycin on theophylline pharmacokinetics in healthy volunteers. Antimicrob Agents Chemother 1996; 40: 1715–6

    PubMed  CAS  Google Scholar 

  47. Lindstrom TD, Hanssen BR, Wrighton SA. Cytochrome P450 complex formation by dirithromycin and other macrolides in rat and human livers. Antimicrob Agents Chemother 1993; 37: 265–9

    Article  PubMed  CAS  Google Scholar 

  48. Lode HC. The pharmacokinetics of azithromycin and their clinical significance. Eur J Clin Microbiol Infect Dis 1991; 10: 807–12

    Article  PubMed  CAS  Google Scholar 

  49. Clarithromycin and azithromycin. Med Lett 1992; 34(870): 45–7

    Google Scholar 

  50. Wallace RJ, Brown BA, Griffith DE. Drug intolerance to high dose clarithromycin among elderly patients. Diag Microbiol Infect Dis 1993; 16: 215–21

    Article  Google Scholar 

  51. Vance E, Watson-Bitar M, Gustavson L, et al. Pharmacokinetics of clarithromycin and zidovudine in patients with AIDS. Antimicrob Agents Chemother 1995; 39: 1355–60

    Article  PubMed  CAS  Google Scholar 

  52. Chave J-P, Munafo A, Chatton J-Y, et al. Once-a-week azithromycin in AIDS patients: tolerability, kinetics, and effects on zidovudine disposition. Antimicrob Agents Chemother 1992; 36: 1013–8

    Article  PubMed  CAS  Google Scholar 

  53. Pichichero M, Margolis P. A comparison of cephalosporins and penicillins in the treatment of Group A beta-hemolytic streptococcal pharyngitis: a meta-analysis supporting the concept of microbial copathogenicity. Pediatr Infect Dis J 1991; 10: 275–81

    Article  PubMed  CAS  Google Scholar 

  54. Derriennic M, Conforti PM, Sides GD. Dirithromycin in the treatment of streptococcal pharyngitis. J Antimicrob Chemother 1993; 31 Suppl. C: 89–95

    Article  PubMed  Google Scholar 

  55. Hooton TM. A comparison of azithromycin and penicillin V for the treatment of streptococcal pharyngitis. Am J Med 1991; 91: 23S–6S

    Article  PubMed  CAS  Google Scholar 

  56. Karma P, Pukander J, Perittila M, et al. The comparative efficacy and safety of clarithromycin and amoxicillin in the treatment of outpatients with acute maxillary sinusitis. J Antimicrob Chemother 1990; 27 Suppl. A: 8–90

    Google Scholar 

  57. Casiano RR. Azithromycin and amoxicillin in the treatment of acute maxillary sinusitis. Am J Med 1991; 91 Suppl. 3A: 27S–30S

    Article  PubMed  CAS  Google Scholar 

  58. Muller O. Comparison of azithromycin versus clarithromycin in the treatment of patients with upper respiratory tract infections. J Antimicrob Chemother 1993; 31: 137–46

    Article  PubMed  Google Scholar 

  59. Pukander JS, Jero JP, Kaprio EA, et al. Clarithromycin vs. amoxicillin suspensions in the treatment of pediatric patients with acute otitis media. Pediatr Infect Dis J 1993; 12: S118–21

    Article  PubMed  CAS  Google Scholar 

  60. McCarty JM, Phillips A, Wiisanen R. Comparative safety and efficacy of clarithromycin and amoxicillin/clavulanate in the treatment of acute otitis media in children. Pediatr Infect Dis J 1993; 12 Suppl. 3: S122–7

    PubMed  CAS  Google Scholar 

  61. Gooch WM, Gan VN, Corder WI. Clarithromycin and cefaclor suspensions in the treatment of acute otitis media in children. Pediatr Infect Dis J 1993; 12 Suppl. 3: S128–33

    PubMed  Google Scholar 

  62. Girard AE, Cimochowski CR, Faiella JA. The comparative activity of azithromycin, macrolides and amoxycillin against streptococci in experimental infections. J Antimicrob Chemother 1993; 31 Suppl. E: 29–37

    Article  PubMed  CAS  Google Scholar 

  63. Ramet J. A comparative safety and efficacy of clarithromycin and azithromycin in the short course treatment of children with acute otitis media [abstract no. 10.9]. Third International Conference on the Macrolides, Azalides and Streptogramins: 1996 Jan 24–26: Lisbon

  64. Arguedas AG, Loaiza C, Rodriguez F, et al. Comparative trial of azithromycin versus clarithromycin in the treatment of children with acute otitis media with effusion [abstract no.10.10]. Third International Conference on the Macrolides, Azalides and Streptogramins: 1996 Jan 24–26: Lisbon

  65. Rodriguez AF. An open study to compare azithromycin with cefaclor in the treatment of paediatric patients with acute otitis media. Third International Conference on the Macrolides, Azalides and Streptogramins: 1996 Jan 24–26: Lisbon

  66. Alper CM, Doyle WJ, Seroky JT, et al. Efficacy of clarithromycin treatment of acute otitis media caused by infection with penicillin-susceptible,-intermediate, and -resistant Streptococcus pneumoniaein the chinchilla. Antimicrob Agents Chemother 1996; 40: 1889–92

    PubMed  CAS  Google Scholar 

  67. Dark D. Multicenter evaluation of azithromycin and cefaclor in acute lower respiratory tract infection. Am J Med 1991; 91 Suppl. 3A: 31–5

    Article  Google Scholar 

  68. Aidons PM. A comparison of clarithromycin and ampicillin in the treatment of outpatients with acute bacterial exacerbation of chronic bronchitis. J Antimicrob Chemother 1991; 27 Suppl. A: 101–8

    Article  Google Scholar 

  69. Mertens JC, van Barneveld PWC, Asin HRG, et al. Double-blind randomized study comparing the efficacies and safeties of a short (3-day) course of azithromycin and a 5-day course of amoxicillin in patients with acute exacerbations of chronic bronchitis. Antimicrob Agents Chemother 1992; 36: 1456–9

    Article  PubMed  CAS  Google Scholar 

  70. Anderson G, Esmonde TS, Coles S, et al. A comparative safety and efficacy study of clarithromycin and erythromycin stearate in community acquired pneumonia. J Antimicrob Chemother 1991; 27 Suppl. A: 117–24

    Article  PubMed  Google Scholar 

  71. Hoepelman AIM, Sips AP, van Helmond JLM, et al. A single-blind comparison of three-day azithromycin and ten-day coamoxiclav treatment of acute lower respiratory tract infections. J Antimicrob Chemother 1993; 31: 147–52

    Article  PubMed  Google Scholar 

  72. Myburgh J, Nagel GJ, Petschel E. The efficacy and tolerance of a three-day course of azithromycin in the treatment of community-acquired pneumonia. J Antimicrob Chemother 1993; 31: 163–9

    Article  PubMed  Google Scholar 

  73. Bradbury F. Comparison of azithromycin versus clarithromycin in the treatment of patients with lower respiratory tract infection. J Antimicrob Chemother 1993; 31 Suppl. E: 153–62

    Article  PubMed  Google Scholar 

  74. Hamedani P, Ali J, Hafeez S, et al. The safety and efficacy of clarithromycin in patients with Legionellapneumonia. Chest 1991; 100: 1503–6

    Article  PubMed  CAS  Google Scholar 

  75. Fitzgeorge RB, Lever S, Baskerville A. A comparison of the efficacy of azithromycin and clarithromycin in oral therapy of experimental airborne Legionnaire’s disease. J Antimicrob Chemother 1993; 31: 171–6

    Article  PubMed  Google Scholar 

  76. Strle F, Preac-Mursic V, Cimperman J, et al. Azithromycin versus doxycycline for treatment of erythema migrans: clinical and microbiological findings. Infection 1993; 21: 83–8

    Article  PubMed  CAS  Google Scholar 

  77. Strle F, Ruzic E, Cimperman J. Erythema migrans: comparison of treatment with azithromycin, doxycycline, and phenoxymethylpenicillin. J Antimicrob Chemother 1992; 30: 543–50

    Article  PubMed  CAS  Google Scholar 

  78. Weber K, Wilske B, Preac-Mursic V, et al. Azithromycin versus penicillin V for the treatment of early Lyme borreliosis. Infection 1993; 21: 367–72

    Article  PubMed  CAS  Google Scholar 

  79. Luft BJ, Dattwyler RJ, Johnson RC, et al. Azithromycin compared with amoxicillin in the treatment of erythema migrans: a double-blind, randomized, controlled trial. Ann Intern Med 1996; 124: 785–91

    PubMed  CAS  Google Scholar 

  80. Alder J, Mitten M, Jarvis K, et al. Efficacy of clarithromycin for treatment of experimental Lyme disease in vivo. Antimicrob Agents Chemother 1993; 37: 1329–33

    Article  PubMed  CAS  Google Scholar 

  81. Demarco CC. Clarithromycin and its use in the treatment of late stage Lyme disease [abstract no. 1.12]. Third International Conference on the Macrolides, Azalides, and Streptogramins: 1996 Jan 24–26: Lisbon

  82. Dattwyler RJ, Grunwaldt E, Luft BJ. Clarithromycin in treatment of early Lyme disease: a pilot study. Antimicrob Agents Chemother 1996; 40: 468–9

    PubMed  CAS  Google Scholar 

  83. Steingrimsson O, Olafsson JH, Thorarinsson H, et al. Azithromycin in the treatment of sexually transmitted disease. J Antimicrob Chemother 1990; 25 Suppl. A: 109–14

    Article  PubMed  Google Scholar 

  84. Lauraranta J, Saarinen K, Mustonen M, et al. Single dose oral azithromycin versus seven day doxycycline in the treatment of non-gonococcal urethritis in males. J Antimicrob Chemother 1993; 31 Suppl. E: 177–83

    Article  Google Scholar 

  85. Martin D, Mroczkowski TF, Dalu T, et al. A controlled trial of a single dose of azithromycin for the treatment of chlamydial urethritis and cervicitis. N Engl J Med 1992; 327: 921–5

    Article  PubMed  CAS  Google Scholar 

  86. Handsfield HH, Siegal NA, Verdon MS. Single dose azithromycin vs. ceftriaxone for treatment of uncomplicated gonorrhea. 31st Interscience Conference on Antimicrobial Agents and Chemotherapy: 1991 Sep 30: Chicago

  87. Nuovo J, Melnikow J, Paliescheskey M, et al. Cost-effectiveness analysis of five different antibiotic regimens for the treatment of uncomplicated Chlamydia trachomatis cervicitis. J Am Board Fam Pract 1995; 8: 7–16

    PubMed  CAS  Google Scholar 

  88. Magid D, Douglas JM, Schwartz JS. Doxycycline compared with azithromycin for treating women with genital Chlamydia trachomatis infections: an incremental cost-effectiveness analysis. Ann Intern Med 1996; 124: 389–99

    PubMed  CAS  Google Scholar 

  89. Glupczynski Y, Burette A. Failure of azithromycin to eradicate Campylobacter pylori from the stomach because of acquired resistance during treatment. Am J Gastroenterol 1990; 85: 98–9

    PubMed  CAS  Google Scholar 

  90. Logan RP, Gummett PA, Schaufelberger HO, et al. Eradication of Helicobacter pylori with clarithromycin and omeprazole. Gut 1994; 35: 323–6

    Article  PubMed  CAS  Google Scholar 

  91. Hunt RH. Eradication of Helicobacter pylori infection. Am J Med 1996; 100: 42S–51S

    PubMed  CAS  Google Scholar 

  92. Vakil N, Fennerty B. The economics of eradicating Helicobacter pylori infection in duodenal ulcer disease. Am J Med 1996; 100: 60S–4S

    Article  PubMed  CAS  Google Scholar 

  93. O’Brien B, Goeree R, Mohamed AH, et al. Cost-effectiveness of Helicobacter pylori eradication for the long-term management of duodenal ulcer in Canada. Arch Intern Med 1995; 155: 1958–64

    Article  PubMed  Google Scholar 

  94. Imperiale TF, Speroff T, Cebul RD, et al. A cost analysis of alternative treatment for duodenal ulcer. Ann Intern Med 1995; 123: 665–72

    PubMed  CAS  Google Scholar 

  95. Sonnenberg A, Townsend WE Costs of duodenal ulcer therapy with antibiotics. Arch Intern Med 1995; 155: 922–8

    Article  PubMed  CAS  Google Scholar 

  96. Benson CA. Treatment of disseminated disease due to Mycobacterium avium complex in patients with AIDS. Clin Infect Dis 1994; 18 Suppl. 3: 237–42

    Article  Google Scholar 

  97. Inderlied CB, Kolonoski PT, Wu M, et al. Amikacin, ciprofloxacin and imipenem treatment for disseminated Mycobacterium avium complex infection in beige mice. Antimicrob Agents Chemother 1989; 33: 176–80

    Article  PubMed  CAS  Google Scholar 

  98. Naik S, Ruck R. In vitro activities of several new macrolide antibiotics against Mycobacterium avium complex. Antimicrob Agents Chemother 1989; 33: 1614–6

    Article  PubMed  CAS  Google Scholar 

  99. Dautzenberg B, Tuffot C, Legris S, et al. Activity of clarithromycin against Mycobacterium avium infection in patients with the acquired immune deficiency syndrome. Am Rev Respir Dis 1991; 144: 564–9

    Article  PubMed  CAS  Google Scholar 

  100. Barradell LB, Plosker GL, McTavish D. Clarithromycin: a review of its pharmacological properties and therapeutic efficacy in Mycobacterium avium-intracellulare complex infection in patients with acquired immune deficiency syndrome. Drugs 1993; 46(2): 289–312

    Article  PubMed  CAS  Google Scholar 

  101. Dautzenberg B, Saint Mare T, Meyohas MC, et al. Clarithromycin and other antimicrobial agents in the treatment of disseminated Mycobacterium avium infections in patients with acquired immunodeficiency syndrome. Arch Int Med 1993; 153(3): 368–72

    Article  CAS  Google Scholar 

  102. Young LS, Wiviott L, Wu M, et al. Azithromycin for treatment of Mycobacterium avium intracellulare complex infections in patients with AIDS. Lancet 1991; 338: 1107–9

    Article  PubMed  CAS  Google Scholar 

  103. Shafrin SD, Singer J, Zarowny DP, et al. A comparison of two regimens for the treatment of Mycobacterium avium complex bacteremia in AIDS: rifabutin, ethambutol, and clarithromycin versus rifampin, ethambutol, clofazimine, and ciprofloxacin. N Engl J Med 1996; 335: 377–83

    Article  Google Scholar 

  104. Pierce M, Crampton S, Henry D, et al. A randomized trial of clarithromycin as prophylaxis against disseminated Mycobacterium avium complex infection in patients with advanced acquired immunodeficiency syndrome. N Engl J Med 1996; 335: 384–91

    Article  PubMed  CAS  Google Scholar 

  105. Havlir DV, Dube MP, Sattler FR, et al. Prophylaxis against disseminated Mycobacterium avium complex with weekly azithromycin, daily rifabutin, or both. N Engl J Med 1996; 335: 392–8

    Article  PubMed  CAS  Google Scholar 

  106. Wallace Jr RJ, Tanner D, Brennan PJ, et al. Clinical trial of clarithromycin for cutaneous (disseminated) infection due to Mycobacterium chelonae. Ann Int Med 1993; 119: 482–6

    PubMed  Google Scholar 

  107. Ji B, Jamet P, Perani EG, et al. Powerful bactericidal activities of clarithromycin and minocycline against Mycobacterium leprae in lepromatous leprosy. J Infect Dis 1993; 168: 188–90

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charles, L., Segreti, J. Choosing the Right Macrolide Antibiotic. Drugs 53, 349–357 (1997). https://doi.org/10.2165/00003495-199753030-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199753030-00002

Keywords

Navigation