Skip to main content
Log in

The Non-Antiemetic Uses of Serotonin 5-HT3 Receptor Antagonists

Clinical Pharmacology and Therapeutic Applications

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Summary

The discovery of multiple subtypes of the serotonin 5-HT receptor has generated enormous interest over the past few years. Possibly the most exciting, in terms of psychiatric clinical practice, appeared to be the 5-HT3 receptor. Early animal studies suggested that the 5-HT3 receptor antagonists, in addition to their well recognised antiemetic use, might be clinically useful in a number of areas. These included anxiety disorders, psychotic disorders, drug and alcohol abuse disorders, depressive disorders, cognitive disorders, the treatment of pain and the treatment of irritable bowel syndrome. With the exception of antiemetic actions, this review examines these potential therapeutic areas carefully, paying particular attention not only to the animal literature, but to the clinical studies which have resulted from these initial findings. Unfortunately, studies in many of these therapeutic areas have not lived up to their initial promise. Indeed, no clinical studies have yet clearly demonstrated the usefulness of 5-HT3 receptor antagonists in the treatment of CNS disorders. Nonetheless, in view of the absence of published results from double-blind, placebo-controlled studies in many of these therapeutic areas, further research would be useful in confirming the effectiveness, or otherwise, of this group of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moulignier A. Central serotonin receptors: principal fundamental and functional aspects. Therapeutic applications. Rev Neurol Paris 1994; 150: 3–15

    PubMed  CAS  Google Scholar 

  2. Palfreyman MG, Schmidt CJ, Sorensen SM, et al. Electrophysiological, biochemical and behavioral evidence for 5-HT2 and 5-HT3 mediated control of dopaminergic function. Psychopharmacology 1993; 112: S60–7

    PubMed  CAS  Google Scholar 

  3. Elliott JM, Flanigan TP, Newberry NR, et al. 5-HT receptor sub-types: aspects of their regulation and function. Neurochem Int 1994; 25: 537–43

    PubMed  CAS  Google Scholar 

  4. Tyers MB. 5-HT3 receptors and the therapeutic potential of 5-HT3 antagonists. Therapie 1991; 46: 431–5

    PubMed  CAS  Google Scholar 

  5. Launay JM, Callebert J, Bondoux D, et al. Serotonin receptors and therapeutics. Cell Mol Biol 1994; 40: 327–36

    PubMed  CAS  Google Scholar 

  6. Hagan RM, Kilpatrick GJ, Tyers MB. Interactions between 5-HT3 receptors and cerebral dopamine function: implications for the treatment of schizophrenia and psychoactive substance abuse. Psychopharmacology 1993; 112: S68–75

    PubMed  CAS  Google Scholar 

  7. Marty M, Pouillart P, Schol S, et al. Comparison of the 5-hydroxytryptamine-3 (serotonin) antagonist ondansetron (GR38032F) with high-dose metoclopramide in the control of cisplatin-induced emesis. N Engl J Med 1990; 322: 816–21

    PubMed  CAS  Google Scholar 

  8. Gyermek L. 5-HT3 receptors: pharmacologic and therapeutic aspects. J Clin Pharmacol 1995; 35: 845–55

    PubMed  CAS  Google Scholar 

  9. Kilpatrick GJ, Jones BJ, Tyers MB. Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 1987; 330: 746–8

    PubMed  CAS  Google Scholar 

  10. Derkach V, Surprenant A, North RA. 5-HT3 receptors are membrane ion channels. Nature 1989; 339: 706–8

    PubMed  CAS  Google Scholar 

  11. Jackson MB, Yakel JL. The 5-HT3 receptor channel. Annu Rev Physiol 1995; 57: 447–68

    PubMed  CAS  Google Scholar 

  12. Bonhaus DW, Stefanich E, Loury DN, et al. Allosteric interactions among agonists and antagonists at 5-hydroxytryptamine3 receptors. J Neurochem 1995; 65: 104–10

    PubMed  CAS  Google Scholar 

  13. Emerit MB, Martres MP, Micquel MC, et al. Differentiation alters the expression of two splice variants of the serotonin 5-HT3 receptor-A mRNA in NG108-15 cells. J Neurochem 1995; 65: 1917–25

    PubMed  CAS  Google Scholar 

  14. Maricq AV, Peterson AS, Brake AJ, et al. Primary structure and functional expression of the 5-HT3 receptor, a serotonin gated ion channel. Science 1991; 254: 432–7

    PubMed  CAS  Google Scholar 

  15. Miyake A, Mochizuki S, Takemoto Y, et al. Molecular cloning of human 5-hydroxytryptamine-3 receptor: heterogeneity in distribution and function among species. Mol Pharmacol 1995; 48: 407–16

    PubMed  CAS  Google Scholar 

  16. Boess FG, Martin IL. Molecular biology of 5-HT receptors. Neuropharmacology 1994; 33: 275–317

    PubMed  CAS  Google Scholar 

  17. Kilpatrick GJ, Bulter A, Burridge J, et al. l-(m-Chlorophenyl)-biguanide, a potent high affinity 5-HT3 receptor agonist. Eur J Pharmacol 1990; 182: 193–7

    PubMed  CAS  Google Scholar 

  18. Bachy A, Héaulme M, Giudice A, et al. SR 57227A: a potent and selective agonist at central and peripheral 5-HT3 receptors in vitro and in vivo. Eur J Pharmacol 1993; 237: 299–309

    PubMed  CAS  Google Scholar 

  19. Ford APDW, Clarke DE. The 5-HT4 receptor. Med Res Rev 1993; 13: 633–62

    PubMed  CAS  Google Scholar 

  20. Greenshaw AJ. Behavioural pharmacology of 5-HT3 receptor antagonists: a critical update on therapeutic potential. Trends Pharmacol Sci 1993; 14: 265–70

    PubMed  CAS  Google Scholar 

  21. Acquas E, Carboni E, Garau L, et al. Blockade of acquisition of drug-conditioned place aversion by 5-HT3 antagonists. Psychopharmacology 1990; 100: 459–63

    PubMed  CAS  Google Scholar 

  22. Papp M. Similar effects of diazepam and the 5-HT3 receptor antagonist ICS 205-930 on place aversion conditioning. Eur J Pharmacol 1988; 151: 321–4

    PubMed  CAS  Google Scholar 

  23. Jenck F, Broekkamp CL, Van Delft AM. Effects of serotonin receptor antagonists on PAG stimulation induced aversion: different contributions of 5-HT1, 5-HT2 and 5-HT3 receptors. Psychopharmacology 1989; 97: 489–95

    PubMed  CAS  Google Scholar 

  24. Arnold B, Allison K, Ivanová S, et al. 5-HT3 receptor antagonists do not block nicotine induced hyperactivity in rats. Psychopharmacology 1995; 119: 213–21

    PubMed  CAS  Google Scholar 

  25. Costall B, Naylor RJ. The psychopharmacology of 5-HT3 receptors. Pharmacol Toxicol 1992; 71: 401–15

    PubMed  CAS  Google Scholar 

  26. Griebel G. 5-Hydroxytryptamine-interacing drugs in animal models of anxiety disorders: more than 30 years of research. Pharmacol Ther 1995; 65: 319–95

    PubMed  CAS  Google Scholar 

  27. Higgins GA, Jones BJ, Oakley NR, et al. Evidence that the amygdala is involved in the disinhibitory effects of 5-HT3-receptor antagonists. Psychopharmacology 1991; 104: 545–51

    PubMed  CAS  Google Scholar 

  28. Rezazadeh SM, Prather PL, Emmett-Oglesby MW, et al. Evaluation of anxiolytic action of ondansetron in rats during withdrawal from chronic chlordiazepoxide. Ann NY Acad Sci 1992; 264: 472–3

    Google Scholar 

  29. File SE, Johnston AL. Lack of effects of 5-HT3 receptor antagonists in the social interaction and elevated plus-maze tests of anxiety in the rat. Psychopharmacology 1989; 99: 248–51

    PubMed  CAS  Google Scholar 

  30. Morinan A. Effects of the 5-HT3 receptor antagonists, GR38032F and BRL 24924, on anxiety in socially isolated rats [abstract]. Br J Pharmacol 1989; 97: 457P

    Google Scholar 

  31. Andrews N, File SE. Handling history of rats modifies behavioural effects of drugs in the elevated plus-maze test of anxiety. Eur J Pharmacol 1993; 235: 109–12

    PubMed  CAS  Google Scholar 

  32. Gao B, Cutler MG. Effects of acute administration of the 5-HT3 receptor antagonist, BRL-46470A, on the behaviour of mice in a 2 compartment light dark box and during social interactions in their home cage and unfamiliar neutral cage. Neuropharmacology 1992; 31: 743–8

    PubMed  CAS  Google Scholar 

  33. Bill DJ, Fletcher A, Glenn BD, et al. Behavioural studies on WAY 100289, a novel 5-HT3 receptor antagonist, in two animal models of anxiety. Eur J Pharmacol 1992; 218: 327–33

    PubMed  CAS  Google Scholar 

  34. Blackburn TP, Baxter GS, Kennett GA, et al. BRL 46047A: a highly potent, selective and long-acting 5-HT3 receptor antagonist with anxiolytic-like properties. Psychopharmacology 1993; 110: 257–64

    PubMed  CAS  Google Scholar 

  35. Steward LJ, Ge J, Bentley KR, et al. Evidence that the aytpical 5-HT3 receptor ligand 3H-BRL46470, labels addtional 5-HT3 binding sites compared to 3H-granisetron. Br J Pharmacol 1995; 116: 1781–8

    PubMed  CAS  Google Scholar 

  36. Nevins ME, Anthony EW. Antagonists at the serotonin-3 receptor can reduce the fear-potentiated startle response in the rat: evidence for different types of anxiolytic activity?. J Pharmacol Exp Ther 1994; 268: 248–68

    PubMed  CAS  Google Scholar 

  37. Olivier B, Molewijk E, van Oorschot R, et al. New animal models of anxiety. Eur Neuropsychopharmacol 1994; 4: 93–102

    PubMed  CAS  Google Scholar 

  38. Miczek KA, Weerts EM, Vivian JA, et al. Aggression, anxiety and vocalizations in animals: GABAA and 5-HT anxiolytics. Psychopharmacology 1995; 121: 38–56

    PubMed  CAS  Google Scholar 

  39. Olivier B, Mos J, van der Heyden JAM, et al. Anxiolytic properties of 5-HT3 antagonists: a review. Stress Med 1992; 8: 117–36

    Google Scholar 

  40. Goudie AJ, Leathley MJ. Effects of the 5-HT3 antagonist GR38032F (ondansetron) on benzodiazepine withdrawal in rats. Eur J Pharmacol 1990; 185: 179–86

    PubMed  CAS  Google Scholar 

  41. Mehta AK, Ticku MK. Ethanol- and diazepam-withdrawal hyperlocomotion is not due to 5-HT3 receptor stimulation. Pharmacol Biochem Behav 1993; 45: 755–7

    PubMed  CAS  Google Scholar 

  42. Goudie AJ, Leathley MJ. Effects of the 5-HT3 antagonist ondansetron on benzodiazepine-induced operant behavioural dependence in rats. Psychopharmacology 1992; 109: 461–5

    PubMed  CAS  Google Scholar 

  43. Saphier D, Welch JE. 5-HT3 receptor activation in the rat increases adrenocortical secretion at the level of the central nervous system. Neurosci Res Commun 1994; 14: 167–73

    CAS  Google Scholar 

  44. Silverstone PH, Cowen PJ. The 5-HT3 antagonist BRL 46470 does not attenuate m-chlorophenylpiperazine (mCPP)-induced changes in human volunteers. Biol Psychiatry 1994; 36: 309–16

    PubMed  CAS  Google Scholar 

  45. Paudice P, Raiteri M. Cholecystokinin release mediated by 5-HT3 receptors in rat cerebral cortex and nucleus accumbens. Br J Pharmacol 1991; 103: 1790–4

    PubMed  CAS  Google Scholar 

  46. Harro J, Vasar E, Bradwejn J. Cholecystokinin in animal and human research on anxiety. Trends Pharmacol Sci 1993; 14: 244–9

    PubMed  CAS  Google Scholar 

  47. Lecrubier V, Puech AJ, Azcona A, et al. A randomised double-blind placebo-controlled study of tropisetron in the treatment of outpatients with generalized anxiety disorder. Psychopharmacology 1993; 112: 129–33

    PubMed  CAS  Google Scholar 

  48. Mosconi M, Chiamulera C, Recchia G. New anxiolytics in development. Int J Clin Pharm Res 1993; 13: 331–44

    CAS  Google Scholar 

  49. Costall B, Domeney AM, Naylor RJ, et al. Effects of the 5-HT3 receptor antagonist GR38032F on raised dopaminergic activity in the mesolimbic system of the rat and marmoset brain Br J Pharmacol 1987; 92: 881–94

    PubMed  CAS  Google Scholar 

  50. Costall B, Domeney AM, Naylor RJ, et al. Antipsychotic potential of GR38032F, a selective antagonist of 5-HT3 receptors in the central nervous system [abstract]. Br J Pharmacol 1987; 90: 89P

    Google Scholar 

  51. Palfreyman MG, Sorensen SM, Baron BM, et al. Antipsychotic potential of 5HT3 antagonists. In: Meitzer HY, editor. Novel antipsychotic drugs. New York: Raven, 1992: 211–23

    Google Scholar 

  52. Hagan RM, Butler A, Hill JM, et al. Effect of the 5-HT3 receptor antagonist, GR38032F, on responses to injection of a neurokinin agonist into the ventral tegmental area of the rat brain. Eur J Pharmacol 1987; 138: 303–5

    PubMed  CAS  Google Scholar 

  53. Kriem B, Rostain JC, Abraini JH. Involvement of 5-HT3 receptor in the pressure-induced increase in striatal and accumbens dopamine release and the occurrence of behavioral disorders in free-moving rats. Neurosci Lett 1995; 197: 57–60

    PubMed  CAS  Google Scholar 

  54. Layer RT, Uretsky NJ, Wallace LJ. Effect of serotonergic agonists in the nucleus accumbens on d-amphetamine-stimulated locomotion. Life Sci 1992; 50: 813–20

    PubMed  CAS  Google Scholar 

  55. Santiago M, Machado A, Cano J. 5-HT3 receptor agonist induced carrier-mediated release of dopamine in rat striatum in vivo. Br J Pharmacol 1995; 116: 1545–50

    PubMed  CAS  Google Scholar 

  56. Carboni E, Acquas E, Leone P, et al. 5-HT3 receptor antagonists block morphine- and nicotine-but not amphetamine-induced reward. Psychopharmacology 1989; 97: 175–8

    PubMed  CAS  Google Scholar 

  57. Higgins GA, Joharchi N, Nguyen P, et al. Effect of the 5-HT3 receptor antagonists, MDL 72222 and ondansetron on morphine place conditioning. Psychopharmacology 1992; 106: 315–20

    PubMed  CAS  Google Scholar 

  58. Imperato A, Angelucci L. 5-HT3 receptors control dopamine release in nucleus accumbens of freely moving rats. Neurosci Lett 1989; 101: 214–7

    PubMed  CAS  Google Scholar 

  59. Gifford AN, Wang RY. The effect of 5-HT3 receptor antagonists on the morphine-induced excitation of A10 dopamine cells: electrophysiological studies. Brain Res 1994; 638: 325–8

    PubMed  CAS  Google Scholar 

  60. Ashby Jr CR, Jiang LH, Wang RY. Chronic BRL43694, a selective 5-HT3 receptor antagonist, fails to alter the number of spontaneously active midbrain dopamine neurons. Eur J Pharmacol 1990; 175: 347–50

    PubMed  CAS  Google Scholar 

  61. Rasmussen K, Stockton ME, Czachura JF. The 5-HT3 antagonist zatosetron decreases the number of spontaneously active A10 dopamine neurons. Eur J Pharmacol 1991; 205: 113–6

    PubMed  CAS  Google Scholar 

  62. Sorensen SM, Humphreys TM, Palfreyman MG. Effect of acute and chronic MDL 73,147EF, a 5-HT3 receptor antagonist, on A9 and A10 dopamine neurons. Eur J Pharmacol 1989; 163: 115–8

    PubMed  CAS  Google Scholar 

  63. Pei Q, Zetterstrom T, Leslie RA, et al. 5-HT3 antagonists inhibit morphine-induced stimulation of mesolimbic dopamine release and function in the rat. Eur J Pharmacol 1993; 230: 63–8

    PubMed  CAS  Google Scholar 

  64. Moser PC. The effect of 5-HT3 receptor antagonists on the discriminative stimulus effects of amphetamine. Eur J Pharmacol 1990; 212: 271–4

    Google Scholar 

  65. Volonté M, Ceci A, Borsini F. Effect of the 5-hydroxytryptamine3 receptor antagonist itasetron (DAU 6214) on (+)-N-allylnormetazocine-induced dopamine release in the nucleus accumbens and in the corpus striatum of the rat: an in vivo microdialysis study. J Pharmacol Exp Ther 1995; 275: 358–67

    PubMed  Google Scholar 

  66. Geissler MA, Torrente JR, Eison AS, et al. Effects of BMY 33462, a selective and potent serotonin type-3 receptor antagonist, on mesolimbic dopamine-mediated behavior. Drug Dev Res 1993; 29: 18–24

    CAS  Google Scholar 

  67. Greenshaw AJ. Differential effects of ondansetron, haloperidol and clozapine on electrical self-stimulation of the ventral tegmental area. Behav Pharmacol 1993; 4: 479–85

    PubMed  CAS  Google Scholar 

  68. Dunn RW, Carlezon Jr WA, Corbett R. Preclinical anxiolytic versus antipsychotic profiles of the 5-HT3 antagonists ondansetron, zacopride, 3-tropanyl-1H-indole-3-carboxylic acid ester, and 1H, 3, 5H-tropan-3-yl-3,5-dichlorobenzoate. Drug Dev Res 1991; 23: 289–300

    CAS  Google Scholar 

  69. Herberg LJ, De Belleroche JS, Rose IC, et al. Effect of the 5-HT3 receptor antagonist ondansetron on hypothalamic selfstimulation in rats and its interaction with the CCK analogue caerulein. Neurosci Lett 1992; 140: 16–8

    PubMed  CAS  Google Scholar 

  70. Ivanova S, Allison K, Greenshaw AJ. Effects of ondansetron on the rewarding and aversive stimulus properties of nicotine. Proceedings of the 16th Annual Meeting of the Canadian College of Neuropsychopharmacology; 1993

  71. Lane JD, Pickering CL, Hooper ML, et al. Failure of ondansetron to block the discriminative or reinforcing stimulus properties of cocaine in the rat. Drug Alcohol Depend 1992; 30: 151–62

    PubMed  CAS  Google Scholar 

  72. Montgomery AMJ, Rose IC, Herberg LJ. The effect of a 5-HT3 receptor antagonist, ondansetron, on brain stimulation reward, and its interaction with direct and indirect stimulants of central dopaminergic transmission. J Neural Transm 1993; 91: 1–11

    CAS  Google Scholar 

  73. Greenshaw AJ. Differential effects of antipsychotics and the 5-HT3 antagonist ondansetron on electrical self-stimulation of the VTA in rats [abstract]. Clin Neuropsychopharmacol 1992; 15(B): P88

    Google Scholar 

  74. Koulu M, Lappalainen J, Hietala J, et al. Effects of chronic administraiton of ondansetron (GR38032F), a selective 5-HT3 receptor antagonist, on monoamine metabolism in mesolimbic and nigrostriatal dopaminergic neurons and on striatal D2-receptor binding. Psychopharmacology 1990; 101: 168–71

    PubMed  CAS  Google Scholar 

  75. Silva SR, Futuro-Neto HA, Pires JGP. Effects of 5-HT3 receptor antagonists on neuroleptic-induced catalepsy in mice. Neuropharmacology 1995; 34: 97–9

    PubMed  CAS  Google Scholar 

  76. McMillen BA, Scott SM, Davanzo EA. Reversal of neuroleptic-induced catalepsy by novel aryl-piperazine anxiolytic drugs. J Pharm Pharmacol 1988; 40: 885–7

    PubMed  CAS  Google Scholar 

  77. White A, Com T, Feetham C, et al. Ondansetron in treatment of schizophrenia. Lancet 1991; 337: 1173

    PubMed  CAS  Google Scholar 

  78. Breier A. Serotonin, schizophrenia and antipsychotic drug action. Schizophr Res 1995; 14: 187–202

    PubMed  CAS  Google Scholar 

  79. Newcomer JW, Faustman WO, Zipursky RB, et al. Zacopride in schizophrenia: a single-blind serotonin type 3 antagonist trial. Arch Gen Psychiat 1992; 49: 751–2

    PubMed  CAS  Google Scholar 

  80. Meitzer HY. Studies on ondansetron in schizophrenia. Biol Psychiatry 1991; 2: 891–3

    Google Scholar 

  81. Zoldan J, Griedberg G, Livneh M, et al. Psychosis in advanced Parkinson’s disease: treatment with ondansetron, a 5-HT3 receptor antagonist. Neurology 1995; 45: 1305–8

    PubMed  CAS  Google Scholar 

  82. Abi-Dargham A, Laruelle M, Lipska B, et al. Serotonin 5-HT3 receptors in schizophrenia: a postmortem study of the amygdala. Brain Res 1993; 616: 53–7

    PubMed  CAS  Google Scholar 

  83. Steward LJ, Bufton KE, Hopkins PC, et al. Reduced levels of 5-HT3 receptor recognition sites in the putamen of patients with Huntington’s disease. Eur J Pharmacol 1993; 242: 137–43

    PubMed  CAS  Google Scholar 

  84. Bilsky EJ, Reid LD. MDL 72222, a serotonin 5-HT3 receptor antagonist, blocks MDMA’s ability to establish a conditioned place-preference. Pharmacol Biochem Behav 1991; 39: 509–12

    PubMed  CAS  Google Scholar 

  85. Reith MEA. 5-HT3 receptor antagonists attenuate cocaine-induced locomotion in mice. Eur J Pharmacol 1990; 186: 327–30

    PubMed  CAS  Google Scholar 

  86. Corrigall WA, Coen KM. Nicotine self-administration and locomotor activity are not modified by the 5-HT3 antagonists ICS 205-930 and MDL 72222. Pharmacol Biochem Behav 1994; 49: 67–71

    PubMed  CAS  Google Scholar 

  87. Paris JM, Cunningham KA. Serotonin 5-HT3 antagonists do not alter the discriminative stimulus properties of cocaine. Psychopharmacol 1991; 104: 475–8

    CAS  Google Scholar 

  88. Peltier R, Schenk S. GR38032F, a serotonin 5-HT3 antagonist, fails to alter cocaine self administration in rats. Pharmacol Biochem Behav 1991; 39: 133–6

    PubMed  CAS  Google Scholar 

  89. Lacosta S, Roberts DCS. MDL 72222, ketanserin, and methysergide pretreatments fail to alter breaking points on a progressive ratio schedule reinforced by intravenous cocaine. Pharmacol Biochem Behav 1993; 45: 161–5

    Google Scholar 

  90. Depoortere RY, Li DH, Lane JD, et al. Parameters of self-administration of cocaine in rats under a progressive-ratio schedule. Pharmacol Biochem Behav 1993; 45: 1–10

    Google Scholar 

  91. King GR, Xue Z, Calvi C, et al. 5-HT3 agonist-induced dopamine overflow during withdrawal from continuous or intermittent cocaine administration. Psychopharmacology 1995; 117: 458–65

    PubMed  CAS  Google Scholar 

  92. Silverstone PH, Oldman B, Johnson B, et al. Ondansetron, a 5-HT3 receptor antagonist, partially attenuates the effects of amphetamine: a pilot study in volunteers. Int Clin Psychopharmacol 1992; 7: 37–43

    PubMed  CAS  Google Scholar 

  93. Jasinski DR, Preston KL, Testa M, et al. Evaluation of the 5-HT3 antagonist ondansetron (O) for cocaine (C)-like activity and abuse potential [abstract]. NIDARes Monogr 1991; 105: 515

    Google Scholar 

  94. Bisaga A, Sikova J, Kostowski W. The effects of drugs interacting with serotonin 5-HT3 and 5-HT4 receptors on place preference conditioning. Pol J Pharmacol 1993; 45: 513–9

    PubMed  CAS  Google Scholar 

  95. Hui S-CG, Sevilla EL, Ogle CW. 5-HT3 antagonists reduce morphine self-administration in rats. Br J Pharmacol 1993; 110: 1341–6

    PubMed  CAS  Google Scholar 

  96. Higgins GA, Wang Y, Corrigall WA, et al. Influence of 5-HT3 receptor antagonists and the indirect 5-HT agonist, dexfenfluramine, on heroin self-administration in rats. Psychopharmacology 1994; 114: 611–9

    PubMed  CAS  Google Scholar 

  97. Joharchi N, Sellers EM, Higgins GA. Effect of 5-HT3 receptor antagonists on the discriminative stimulus properties of morphine in rats. Psychopharmacology 1993; 112: 111–5

    PubMed  CAS  Google Scholar 

  98. Sell LA, Cowen PJ, Robson PJ. Ondansetron and opiate craving: a novel pharmacological approach to addiction. Br J Psychiatry 1995; 166: 511–4

    PubMed  CAS  Google Scholar 

  99. Zacny JP, Apfelbaum JL, Lichtor JL, et al. Effects of 5-hydroxytryptamine3 antagonist, ondansetron, on cigarette smoking, smoke exposure and mood in humans. Pharmacol Biochem Behav 1993; 44: 387–91

    PubMed  CAS  Google Scholar 

  100. Sellers EM, Higgins GA, Sobell MB. 5-HT and alcohol abuse. Trends Pharmacol Sci 1992; 13: 69–75

    PubMed  CAS  Google Scholar 

  101. Grant KA. The role of 5-HT3 receptors in drug dependence. Drug Alcohol Depend 1995; 38: 155–71

    PubMed  CAS  Google Scholar 

  102. Cooper SJ, Barber DJ. Effects of d-fenfluramine, MK-212, and ondansetron on saline drinking in two-choice tests in the rehydrating rat. Pharmacol Biochem Behav 1993; 45: 593–6

    PubMed  CAS  Google Scholar 

  103. Jankowska E, Bidzinski A, Kostowski W. Alcohol drinking in rats treated with 5,7-dihydroxytryptamine: effect of 8-OH-DPAT and tropisetron (ICS 205-930). Alcohol 1994; 11: 283–8

    PubMed  CAS  Google Scholar 

  104. Sellers EM, Toneatto T, Romach MK, et al. Clinical efficacy of the 5-HT3 antagonist ondansetron in alcohol abuse and dependence. Alcohol Clin Exp Res 1994; 18: 879–85

    PubMed  CAS  Google Scholar 

  105. Johnson BA, Cowen PJ. Alcohol-induced reinforcement: dopamine and 5-HT3 receptor interactions in animals and humans. Drug Dev Res 1993; 30: 153–69

    CAS  Google Scholar 

  106. Doty P, Zacny JP, de Wit H. Effects of ondansetron pretreatment on acute responses to ethanol in social drinkers. Behav Pharmacol 1994; 5: 461–9

    PubMed  CAS  Google Scholar 

  107. Grant KA, Hellevuo K, Tabakoff B. The 5-HT3 antagonist MDL-72222 exacerbates ethanol withdrawal seizures in mice. Alcoholism: Clin Exp Res 1994; 18: 410–4

    CAS  Google Scholar 

  108. Kostowski W, Dyr W, Krzacik P. The abilities of 5-HT3 receptor antagonist ICS 205-930 to inhibit alcohol preference and withdrawal seizures in rats. Alcohol 1993; 10: 369–73

    PubMed  CAS  Google Scholar 

  109. Beardsley PM, Lopez OT, Gullikson G, et al. Serotonin 5-HT3 antagonists fail to affect ethanol self-administration of rats. Alcohol 1994; 11: 389–95

    PubMed  CAS  Google Scholar 

  110. Tanco SA, Wtason NV, Gorzalka BB. Lack of effects of 5-HT3 antagonists on normal and morphine-attenuated sexual behaviours in female and male rats. Experientia 1993; 49: 238–41

    PubMed  CAS  Google Scholar 

  111. Tanco SA, Watson NV, Gorzalka BB. Effects of 5-HT3 agonists on reproductive behaviors in rats. Psychopharmacology 1994; 115: 245–8

    PubMed  CAS  Google Scholar 

  112. Shepherd JK, Rodgers RJ. 8-OH-DPAT specifically enhances feeding behaviour in mice: evidence from behavioural competition. Psychopharmacology 1990; 101: 408–13

    PubMed  CAS  Google Scholar 

  113. Hammer VA, Gietzen DW, Beverly JL et al. Serotonin 3 receptor antagonists block anorectic responses to amino acid imbalance. Am J Physiol 1990; 259: R627–36

    PubMed  CAS  Google Scholar 

  114. Jiang JC, Gietzen DW. Aromatic response to amino acid imbalance: a selective serotonin-3 effect. Pharmacol Biochem Behav 1994; 47: 59–63

    PubMed  CAS  Google Scholar 

  115. Terry-Nathan VR, Gietzen DW, Rogers QR. Serotonin3 antagonists block aversion to saccharin in an amino acid-imbalanced diet. Am J Physiol 1995; 268: R1203–8

    PubMed  CAS  Google Scholar 

  116. Fletcher PJ, Davies M. Effects of 8-OH-DPAT, buspirone and ICS 205-930 on feeding in a novel environment: comparison with chlordiazepoxide and FG-7142. Psychopharmacology 1990; 102: 301–8

    PubMed  CAS  Google Scholar 

  117. Higgins GA, Tomkins DM, Fletcher PJ, et al. Effect of drugs influencing 5-HT function on ethanol drinking and feeding behavior in rats: studies using a drinkometer system. Neurosci Biobehav Rev 1992; 16: 535–52

    PubMed  CAS  Google Scholar 

  118. Beczkowska IW, Bodnar RJ. Naloxone and serotonin receptor subtype antagonists: interactive effects upon deprivation-induced intake. Pharmacol Biochem Behav 1991; 38: 605–10

    PubMed  CAS  Google Scholar 

  119. Cooper SJ, Greenwood SE, Gilbert DB. The selective 5-HT3 receptor antagonist ondansetron augments the anorectic effects of d-amphetamine in non-deprived rats. Pharmacol Biochem Behav 1993; 45: 589–92

    PubMed  CAS  Google Scholar 

  120. van der Hoek GA, Cooper SJ. Ondansetron, a selective 5-HT3 antagonist reduces palatable food consumption in the non-deprived rat. Neuropharmacology 1994; 33: 805–11

    PubMed  Google Scholar 

  121. Silverstone PH, Greenshaw AJ. 5-HT3 receptor antagonists. Expert Opin Ther Patents 1996; 6: 471–81

    CAS  Google Scholar 

  122. Hoyer D, Waeber C, Karpf A, et al. [3H1-ICS 205-930 labels 5-HT3 recognition sites in membranes of cat and rabbit vagus nerve and superior cervical ganglion. Naunyn Schmiedebergs Arch Pharmacol 1989; 340: 396–402

    PubMed  CAS  Google Scholar 

  123. Lucchelli A, Santagostino-Barbone MG, Barbieri A, et al. The interaction of antidepressant drugs with central and peripheral (enteric) 5-HT3 and 5-HT4 receptors. Br J Pharmacol 1995; 114: 1017–25

    PubMed  CAS  Google Scholar 

  124. Tanda G, Frau R, Di Chiara G. Local 5-HT3 receptors mediate fluoxetine but not desipramine-induced increase of extracellular dopamine in the prefrontal cortex. Psychopharmacology 1995; 119: 15–9

    PubMed  CAS  Google Scholar 

  125. Blier P, Bouchard C. Functional characterisation of a 5-HT(3)-receptor which modulates the release of 5-HT in the guinea pig brain. Br J Pharmacol 1993; 108: 13–22

    PubMed  CAS  Google Scholar 

  126. Fan P. Effects of antidepressants on the inward current mediated by 5-HT3 receptors in rat nodose ganglion neurones. Br J Pharmacol 1994; 112: 741–4

    PubMed  CAS  Google Scholar 

  127. Fan P. Inhibition of a 5-HT3 receptor-mediate current by the selective serotonin uptake inhibitor, fluoxetine. Neurosci Lett 1994; 173: 210–2

    PubMed  CAS  Google Scholar 

  128. Kooyman AR, Zwart R, Vanderheijden PML, et al. Interaction between enantiomers of mianserin and ORG3770 at 5-HT3 receptors in cultured mouse neuroblastoma cells. Neuropharmacology 1994; 33: 501–7

    PubMed  CAS  Google Scholar 

  129. Mongeau R, De Montigny C, Blier B. Activation of 5-HT3 receptors enhances the electrically evoked release of [3H]noradrenaline in rat brain limbic structures. Eur J Pharmacol 1994; 256: 269–79

    PubMed  CAS  Google Scholar 

  130. Poncelet M, Pério A, Simiand J, et al. Antidepressant-like effects of SR 57227A, a 5-HT3 receptor agonist, in rodents. J Neural Trans 1995; 102: 83–90

    CAS  Google Scholar 

  131. Angel I, Schoemaker H, Prouteau M, et al. Litoxetine: a selective 5-HT uptake inhibitor with concomitant 5-HT3 receptor antagonist and antiemetic properties. Eur J Pharmacol 1993; 232: 139–45

    PubMed  CAS  Google Scholar 

  132. Boyer WF, Feighner JP. An overview of fluoxetine, a new serotonin-specific antidepressant. Mount Sinai J Med 1989; 56: 136–40

    CAS  Google Scholar 

  133. Feighner JP, Boyer WF, Meredith CH, et al. A placebo controlled inpatient comparison of fluvoxamine maleate and imipramine in major depression [abstract]. Int Clin Psychopharmacol 1989; 4: 239

    PubMed  CAS  Google Scholar 

  134. Laws D, Ashford JJ, Anstee JA. A multicenter double-blind comparative trial of fluvoxamine versus lorazepam in mixed anxiety and depression treated in general practice [abstract]. Acta Psychiatr Scand 1990; 81: 185

    PubMed  CAS  Google Scholar 

  135. Adrien J, Tissier MH, Lanfumey L, et al. Central action of 5-HT3 receptor ligands in the regulation of sleep-wakefulness and raphe neuronal activity in the rat. Neuropharmacology 1992; 31: 519–29

    PubMed  CAS  Google Scholar 

  136. Rothe B, Buldner J, Hohlfeldt E, et al. Effects of 5-HT3 receptor antagonism by tropisetron on the sleep EEG and on nocturnal hormone secretion. Neuropsychopharmacology 1994; 11: 101–6

    PubMed  CAS  Google Scholar 

  137. Barnes JM, Barnes NM, Costall B, et al. 5-HT3 receptors mediate inhibition of acetylcholine release in cortical tissue. Nature 1989; 338: 762–3

    PubMed  CAS  Google Scholar 

  138. Domeney AM, Costall B, Gerrard PA, et al. The effect of ondansetron on cognitive performance in the marmoset. Pharmacol Biochem Behav 1991; 38: 169–75

    PubMed  CAS  Google Scholar 

  139. Johnson RM, Inouye GT, Eglen RM, et al. 5-HT3 receptor ligands lack modulatory influence on acetylcholine release in rat entorhinal cortex. Naunyn Schmiedebergs Arch Pharmacol 1993; 347: 241–7

    PubMed  CAS  Google Scholar 

  140. Maura G, Andrioli GC, Cavazzani P, et al. 5-Hydroxytryptamine-3 receptors sited on cholinergic axon terminals of human cerebral cortex mediate inhibition of acetylcholine release. J Neurochem 1992; 58: 2334–7

    PubMed  CAS  Google Scholar 

  141. Consolo S, Bertorelli R, Russi G, et al. Serotonergic facilitation of acetylcholine release in vivo from rat dorsal hippocampus via serotonin 5-HT3 receptors. J Neurochem 1994; 62: 2254–61

    PubMed  CAS  Google Scholar 

  142. Dawson GR, Heyes CM, Iversen SD. Pharmacological mechanisms and animal models of cognition. Behav Pharmacol 1992; 3: 285–97

    PubMed  CAS  Google Scholar 

  143. Passani MB, Pugliese AM, Azzurrini M, et al. Effects of DAU 6215, a novel 5-hydroxytryptamine3 (5-HT3) antagonist on electrophysiological properties of the rat hippocampus. Br J Pharmacol 1994; 112: 695–703

    PubMed  CAS  Google Scholar 

  144. Pitsikas N, Brambilla A, Borsini F. Effect of DAU 6215, a novel 5-HT3 receptor antagonist, on scopolamine-induced amnesia in the rat in a spatial learning task. Pharmacol Biochem Behav 1994; 47: 95–9

    PubMed  CAS  Google Scholar 

  145. Brambilla A, Ghiorzi A, Pitsikas N, et al. DAU 6215, a novel 5-HT3-receptor antagonist, selectivley antagonizes scopolamine-induced deficit in a passive-avoidance task, but not scopolamine-induced hypermotility in rats. J Pharm Pharmacol 1993; 45: 841–3

    PubMed  CAS  Google Scholar 

  146. Hodges H, Sowinski P, Sinden JD, et al. The selective 5-HT3 receptor antagonist, WAY 100289, enhances spatial memory in rats with ibotenate lesions of the forebrain cholinergic projection system. Psychopharmacology 1995; 117: 318–32

    PubMed  CAS  Google Scholar 

  147. Fontana DJ, Daniels SE, Henderson C, et al. Ondansetron improves cognitive performance in the Morris water maze spatial navigation task. Psychopharmacology 1995; 120: 409–17

    PubMed  CAS  Google Scholar 

  148. Chugh Y, Saha N, Sankaranarayanan A, et al. Enhancement of memory retrieval and attenuation of scopolarmine-induced amnesia following administration of 5-HT3 antagonist ICS 205-930. Pharmacol Toxicol 1991; 69: 105–6

    PubMed  CAS  Google Scholar 

  149. Stäubli U, Xu FB. Effects of 5-HT3 receptor antagonism on hippocampal theta thythm, memory and LTP induction in the freely moving rat. J Neurosci 1995; 15: 2445–52

    PubMed  Google Scholar 

  150. Reikkinen Jr P, Sirvo J, Rekkinen P. Non-reversal of scopolamine- or age-related EEG changes by ondansetron, methyl-sergide or alaproclate. Psychopharmacology 1991; 103: 567–70

    Google Scholar 

  151. Jakala P, Sirvio J, Riekkinen PJ. The effects of tacrine and zacopride on the performance of adult rats in the working memory task. Gen Pharmacol 1994; 24: 675–9

    Google Scholar 

  152. Bratt AM, Kelly E, Domeney AM, et al. Ondansetron fails to attenuate a scopolamine-induced deficit in a Stone maze task. Neuroreport 1994; 5: 1921–4

    PubMed  CAS  Google Scholar 

  153. Preston GC. 5-HT3 antagonists and disorders of cognition. In: Racagni G, Brunello N, Langer SZ, editors. Recent advances in the treatment of neurodegenerative disorders and cognitive dysfunction. Int Acad Biomed Drug Res Basel, Karger, 1994; 7: 89–93

    Google Scholar 

  154. Preston GC, Millson DS, Cueppens PR, et al. Effects of the 5-HT3 receptor antagonist GR68755 on a scopolamine induced cognitive deficit in healthy subjects [abstract]. Br J Clin Pharmacol 1991; 32: 546P

    Google Scholar 

  155. Crook TH, Lakin M. Effects of ondansetron in age-associated memory impairment. Proceedings of 5th World Congress of Psychiatry; 1991: Florence

  156. Barnes NM, Costall B, Naylor RJ, et al. Normal densities of 5-HT3 receptor recognition sites in Alzheimer’s disease. Neuroreport 1990; 1: 253–4

    PubMed  CAS  Google Scholar 

  157. Glaum SR, Proudfit HK, Anderson EG. 5-HT3 receptors modulate spinal nociceptive reflexes. Brain Res 1990; 510: 12–6

    PubMed  CAS  Google Scholar 

  158. Meller ST, Lewis SJ, Brody MJ, et al. Vagal afferent-mediated inhibition of a nociceptive reflex by iv serotonin in the rat II role of the 5-HT receptor subtypes. Brain Res 1992; 585: 71–86

    PubMed  CAS  Google Scholar 

  159. Moser PC. The effect of 5-HT3 receptor antagonists on the writhing response in mice. Gen Pharmac 1995; 26: 1301–6

    CAS  Google Scholar 

  160. Gehlert DR, Geckenheimer SL, Wong DT et al. Localisation of 5-HT3 receptors in the rat using [3H] LY278584. Brain Res 1991; 553: 149–54

    PubMed  CAS  Google Scholar 

  161. Hamon M, Gallissot MC, Menard F, et al. 5-HT3 receptor binding sites are on capsaicin-sensitive fibres in rat spinal cord. Eur J Pharmacol 1989; 164: 315–22

    PubMed  CAS  Google Scholar 

  162. Kia HK, Miquel M-C, McKernan RM, et al. Localization of 5-HT3 receptors in the rat spinal cord: immunohistochemistry and in situ hybridization. Neuroreport 1995; 6: 257–61

    PubMed  CAS  Google Scholar 

  163. Laporte AM, Koscielniak T, Ponchant M, et al. Quantitative autoradiographic mapping of 5-HT3 receptors in the rat CNS using [125I] iodo-zacopride and [3H] zacopride as radioligands. Synapse 1992; 10: 271–81

    PubMed  CAS  Google Scholar 

  164. Alhaider AA, Lei SZ, Wilcox GL. Spinal 5-HT3-mediated antinociception-possible release of GAB A. J Neurosci 1991; 11: 1881–8

    PubMed  CAS  Google Scholar 

  165. Sawynok J, Reid A. Spinal supersensitivity to 5-HT1, 5-HT2 and 5-HT3 receptor agonists following 5,7-dihydroxytryptamine. Eur J Pharmacol 1994; 264: 249–57

    PubMed  CAS  Google Scholar 

  166. Alhaider AA, Hamon M, Wilcox GL. Intrathecal 5-methoxy-N,N-dimethyltryptamine in mice modulates 5-HT1 and 5-HT3 receptors. Eur J Pharmacol 1993; 249: 151–60

    PubMed  CAS  Google Scholar 

  167. Champaneria S, Costall B, Naylor RJ, et al. Identification and distribution of 5-HT3 recognition sites in the rat gastrointestinal tract. Br J Pharmacol 1992; 106: 693–6

    PubMed  CAS  Google Scholar 

  168. Yuan SY, Bornstein JC, Furness JB. Investigation of the role of 5-HT3 and 5-HT4 receptors in ascending and descending reflexes to the circular muscle of guinea-pig small intestine. Br J Pharmacol 1994; 112: 1095–100

    PubMed  CAS  Google Scholar 

  169. Sanger GJ, Wardle KA. Constipation evoked by 5-HT3-receptor antagonism: evidence for heterogeneous efficacy among different antagonists in guinea-pigs. J Pharm Pharmacol 1994; 46: 666–70

    PubMed  CAS  Google Scholar 

  170. Banner SE, Sanger GJ. Differences between 5-HT3 receptor antagonists in modulation of visceral hypersensitivity. Br J Pharmacol 1995; 114: 558–62

    PubMed  CAS  Google Scholar 

  171. Morteau O, Julia V, Eeckhout C, et al. Influence of 5-HT3 receptor antagonists in visceromotor and nociceptive responses to rectal distension before and during experimental colitis in rats. Fundam Clin Pharmacol 1994; 8: 553–62

    PubMed  CAS  Google Scholar 

  172. Kishibayashi N, Miwa Y, Hayashi H, et al. 5-HT3 receptor antagonists: 3. Quinoline derivatives which may be effective in the therapy of irritable bowel syndrome. J Med Chem 1993; 36: 3286–92

    PubMed  CAS  Google Scholar 

  173. Gué M, Alary C, Del Rio-Lacheze C, et al. Comparative involvement of 5-HT1, 5-HT2 and 5-HT3 receptors in stress-induced colonic motor alterations in rats. Eur J Pharmacol 1993; 233: 193–9

    PubMed  Google Scholar 

  174. Prior A, Read NW. Reduction of rectal sensitivity and postprandial motility by granisetron, a 5-HT3 receptor antagonist, in patients with irritable bowel syndrome (IBS) [abstract]. Gut 1990; 31: A1174

    Google Scholar 

  175. Maxton DG, Haigh CG, Whorwell PJ. Clinical trial of ondansetron, a selective 5-HT3 antagonist in irritable bowel syndrome (IBS) [abstract]. Gastroenterol 1991; 100: A468

    Google Scholar 

  176. Steadman CJ, Talley NJ, Phillips SF, et al. Trial of a selective serotonin type 3 (5-HT3) antagonist ondansetron (GR38032F) in diarrhoea predominant irritable bowel syndrome (IBS) [abstract]. Gastroenterology 1990; 98: A394

    Google Scholar 

  177. Steadman CJ, Talley NJ, Phillips SF, et al. Selective 5-hydroxy-tryptamine type 3 receptor antagonism as treatment for diarrhoea-predominant irritable bowel syndrome — a pilot study. Mayo Clin Proc 1992; 67: 732–8

    PubMed  CAS  Google Scholar 

  178. Hammer J, Phillips SF, Talley NJ, et al. Effect of a 5-HT3 antagonist (ondansetron) on rectal sensitivity and compliance in health and irritable bowel syndrome. Aliment Pharmacol Ther 1993; 7: 543–51

    PubMed  CAS  Google Scholar 

  179. Loisy C, Beorchia S, Centonze V, et al. Effects on migraine headache of MDL 72222, an antagonist at neuronal 5-HT receptors, double-blind, placebo-controlled study. Cephalalgia 1985; 5: 79–82

    PubMed  CAS  Google Scholar 

  180. Couturier EGM, Hering R, Foster CA, et al. First clinical study of the selective 5-HT3 antagonist, granisetron (BRL 43694), in the acute treatment of migraine headache. Headache 1991; 31: 296–7

    PubMed  CAS  Google Scholar 

  181. Rowat BMT, Merrill CF, Davis A, et al. A double-blind comparison of granisetron and placebo for the treatment of acute migraine in the emergency department. Cephalalgia 1991; 11: 207–13

    PubMed  CAS  Google Scholar 

  182. Chappell AS, Bay JM, Botzum GD, et al. Zatosetron, a 5-HT3 receptor antagonist in a multicenter trial for acute migraine. Neuropharmacology 1994; 33: 509–13

    PubMed  CAS  Google Scholar 

  183. Ferrari MD, Wilkinson M, Hirt D, et al. Efficacy of ICS 205-930, a novel 5-hydroxytryptamine-3 5-HT3 receptor antagonist, in the prevention of migraine attacks: a complex answer to a simple question. Pain 1991; 45: 283–92

    PubMed  CAS  Google Scholar 

  184. Hughes JB. Metoclopramide in migraine treatment. Med J Aust 1977; 2: 580

    PubMed  CAS  Google Scholar 

  185. Grauers O, Danneskiold-Samsoe P, Hasselgren KH, et al. Metoclopramide in acute pain caused by gallbladder- or kidney-stones [abstract]. Scand J Gastroenterol 1982; 17: A886

    Google Scholar 

  186. Rosenblatt WF, Cioffi AM, Sinatra R, et al. Metoclopramide: an adjunct to patient-controlled analgesia. Anesth Analg 1991; 73: 553–5

    PubMed  CAS  Google Scholar 

  187. Coppola M, Yealy DM, Liebold RA. Randomized placebo-controlled evaluation of prochlorperazine versus metoclopramide for emergency department treatment of migraine headache. Ann Emerg Med 1995; 26: 541–6

    PubMed  CAS  Google Scholar 

  188. Kandler D, Lisander B. Analgesic action of metoclopramide in prosthetic hip surgery. Acta Anaesthesiol Scand 1993; 37: 49–53

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Greenshaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenshaw, A.J., Silverstone, P.H. The Non-Antiemetic Uses of Serotonin 5-HT3 Receptor Antagonists. Drugs 53, 20–39 (1997). https://doi.org/10.2165/00003495-199753010-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199753010-00003

Keywords

Navigation