Skip to main content
Log in

Endothelial Dysfunction and Hypertension

  • Published:
Drugs Aims and scope Submit manuscript

Summary

Vascular endothelial cells play a key role in cardiovascular regulation by producing a number of potent vasoactive agents, including the vasodilator molecule nitric oxide (NO) and the vasoconstrictor peptide endothelin (ET)-l. A dysfunction of the vascular endothelium has been implicated in the pathophysiology of a number of cardiovascular diseases, important among which is essential hypertension. Impairment of NO synthesis, or increased inactivation of NO by superoxide radicals, may account for the increased peripheral vascular tone associated with hypertension, as well as contribute to the clinical consequences of this condition, which include vascular hypertrophy, increased platelet and monocyte adhesion to the endothelium, atherosclerosis, myocardial infarction and stroke. Similarly, increased ET-1 synthesis, or increased smooth muscle sensitivity to ET-1, could account for many of the features of hypertension, including increased peripheral vascular tone and vascular hypertrophy. Modulation of endothelial function is, therefore, an attractive therapeutic option in the treatment of hypertension.

Calcium antagonists have been shown to enhance the effects of NO, and inhibit those of ET-1, on vascular smooth muscle cells. In addition, calcium antagonists have antiatherogenic and antioxidant properties and could, therefore, prove to be useful therapeutic agents in preventing some of the important complications of hypertension. The long term effects on cardiovascular morbidity and mortality of the long-acting nifedipine gastrointestinal therapeutic system (nifedipine GITS) used in the treatment of essential hypertension are currently being investigated in the first multinational outcome study (INSIGHT) of an antihypertensive agent since the major studies of β-adrenoceptor blockers or thiazide diuretics. The results of this study are awaited with considerable interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vanhoutte PM. Endothelium and control of cardiovascular function. Hypertension 1989; 13: 658–67

    PubMed  CAS  Google Scholar 

  2. Moncada S, Vane JR. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2 and prostacyclin. Pharmacol Rev 1979; 30: 293–331

    Google Scholar 

  3. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesise nitric oxide from L-arginine. Nature 1988; 333: 664–6

    PubMed  CAS  Google Scholar 

  4. Komatsu Y, Itoh H, Suga S, et al. Regulation of endothelial production of C-type natriuretic peptide in coculture with vascular smooth muscle cells: role of the vascular natriuretic peptide system in vascular growth inhibition. Circ Res 1996; 78: 606–14

    PubMed  CAS  Google Scholar 

  5. Vanhoutte PM. Vascular physiology: the end of the quest? Nature 1987: 327: 459–60

    PubMed  CAS  Google Scholar 

  6. Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332: 411–5

    PubMed  CAS  Google Scholar 

  7. Peart WS. Concepts in hypertension: the Croonian Lecture. J Coll Physicians Lond 1980; 14: 141–52

    CAS  Google Scholar 

  8. Vallance P, Collier J. Biology and clinical relevance of nitric oxide. BMJ 1994: 309: 453–7

    PubMed  CAS  Google Scholar 

  9. Ferro CJ, Webb DJ. The clinical potential of endothelin receptor antagonists in cardiovascular medicine. Drugs 1996; 51: 12–27

    PubMed  CAS  Google Scholar 

  10. Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 1989; 2: 998–1000

    Google Scholar 

  11. Haynes WG, Noon JP, Walker BR, et al. Inhibition of nitric oxide synthesis increases blood pressure in healthy humans. J Hypertens 1993; 11: 1375–80

    PubMed  CAS  Google Scholar 

  12. Haynes WG, Webb DJ. Contribution of endogenous generation of endothelin-1 to basal vascular tone. Lancet 1994; 344: 852–4

    PubMed  CAS  Google Scholar 

  13. Haynes WG, Ferro CJ, O’Kane KPJ, et al. Systemic endothelin receptor blockade decreases peripheral vascular resistance and blood pressure in man. Circulation 1996; 93: 1860–70

    PubMed  CAS  Google Scholar 

  14. Lamas L, Marsden PA, Li GK, et al. Endothelial nitric oxide synthase: molecular cloning and characterisation of a distinct constitutive enzyme isoform. Proc Natl Acad Sci USA 1992: 89: 6348–52

    PubMed  CAS  Google Scholar 

  15. Buga GM, Gold ME, Fukuto JM, et al. Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension 1991; 17: 187–93

    PubMed  CAS  Google Scholar 

  16. Weiner CP, Lizasoain I, Baylis SA, et al. Induction of calcium-dependent nitric oxide synthases by sex hormones. Proc Natl Acad Sci USA 1994; 91: 5212–6

    PubMed  CAS  Google Scholar 

  17. Schmidt HHHW, Zernikow B, Baeblich S, et al. Basal and stimulated formation and release of L-arginine-derived nitrogen oxides from cultured endothelial cells. J Pharmacol Exp Ther 1990; 254: 591–7

    PubMed  CAS  Google Scholar 

  18. Cooke J, Tsao P. Is nitric oxide an endogenous antiatherogenic molecule? Arterioscler Thromb 1994; 14: 653–5

    PubMed  CAS  Google Scholar 

  19. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989; 83: 1774–7

    PubMed  CAS  Google Scholar 

  20. Rees DD, Palmer RMJ, Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 1989; 86: 3375–8

    PubMed  CAS  Google Scholar 

  21. Radomski MW, Palmer RMJ, Moncada S. An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 1990; 87: 5193–7

    PubMed  CAS  Google Scholar 

  22. Winquist RJ, Bunting PB, Baskin EP, et al. Decreased endothelium-dependent relaxation in New Zealand genetic hypertensive rats. J Hypertens 1984; 2: 541–5

    PubMed  CAS  Google Scholar 

  23. Wu X, Mäkynen H, Kähönen M, et al. Mesenteric arterial function in vitro in three models of experimental hypertension. J Hypertens 1996; 14: 365–72

    PubMed  CAS  Google Scholar 

  24. Lyons D, Webster J, Benjamin N. The effect of antihypertensive therapy on responsiveness to local intra-arterial NG-monomethyl-L-arginine in patients with essential hypertension. J Hypertens 1994; 12: 1047–53

    PubMed  CAS  Google Scholar 

  25. Panza JA, Quyyumi AA, Callahan TS, et al. Effect of antihypertensive treatment on endothelium-dependent vascular relaxation in patients with essential hypertension. J Am Coll Cardiol 1993; 21: 1145–51

    PubMed  CAS  Google Scholar 

  26. Panza JA, Casino PR, Kilcoyne CM, et al. Role of endothelium-derived nitric oxide in the abnormal endothelium-dependent vascular relaxation of patients with essential hypertension. Circulation 1993; 87: 1468–74

    PubMed  CAS  Google Scholar 

  27. Taddei S, Virdis A, Mattei P, et al. Vasodilatation to acetylcholine in primary and secondary forms of human hypertension. Hypertension 1993; 21 (6 Pt 2): 929–33

    PubMed  CAS  Google Scholar 

  28. Treasure CB, Klein JL, Vita JA, et al. Hypertension and left ventricular hypertrophy are associated with impaired endothelium-dependent relaxation in human coronary resistance vessels. Circulation 1993; 7: 86–93

    Google Scholar 

  29. Egashira K, Suzuki S, Hirooka Y, et al. Impaired endothelium-dependent vasodilatation of large epicardial and resistance coronary arteries in patients with essential hypertension: different responses to acetylcholine and substance P. Hypertension 1995; 25: 201–6

    PubMed  CAS  Google Scholar 

  30. Taddei S, Mattei P, Virdis A, et al. Forearm vasodilatation in response to acetylcholine is increased by potassium in essential hypertensive patients. J Hypertens 1993; 11Suppl. 5: S144–5

    CAS  Google Scholar 

  31. Tschudi MR, Criscione L, Lüscher TF. Effect of aging and hypertension on endothelial function of rat coronary arteries. J Hypertens 1991; 9Suppl. 6: S164–5

    CAS  Google Scholar 

  32. Angus JA, Lew MJ. Interpretation of the acetylcholine test of endothelial dysfunction in hypertension. J Hypertens 1992; 10Suppl. 7: S179–86

    CAS  Google Scholar 

  33. Cockcroft JR, Chowienczyk PJ, Benjamin N, et al. Preserved endothelium-dependent vasodilatation in patients with essential hypertension. New Engl J Med 1994; 330: 1036–40

    PubMed  CAS  Google Scholar 

  34. Ferro CJ, Haynes WG, Hand MF, et al. Are the vascular endothelin and nitric oxide systems involved in the pathophysiology of essential hypertension. Eur J Clin Invest 1996; 26Suppl. 1: A51

    Google Scholar 

  35. Huang A, Koller A. Both nitric oxide and prostaglandin-mediated responses are impaired in skeletal muscle arterioles of hypertensive rats. J Hypertens 1996; 14: 887–95

    PubMed  CAS  Google Scholar 

  36. Panza JA, Casino PR, Kilcoyne CM, et al. Impaired endothelium-dependent vasodilatation in patients with essential hypertension: evidence that the abnormality is not at the muscarinic receptor level. J Am Coll Cardiol 1994; 23: 1610–6

    PubMed  CAS  Google Scholar 

  37. Nava E, Noll G, Lüscher TF. Increased activity of constitutive nitric oxide synthase in cardiac endothelium in spontaneous hypertension. Circulation 1995; 91: 2310–3

    PubMed  CAS  Google Scholar 

  38. Nava E, Lüscher TF. Endothelium-derived vasoactive factors in hypertension: nitric oxide and endothelin. J Hypertens 1995; 13Suppl. 2: S39–48

    CAS  Google Scholar 

  39. Diedrich D, Yang Z, Bühler FR, et al. Impaired endothelium-dependent relaxations in hypertensive resistance arteries involve the cyclooxygenase pathway. Am J Physiol 1990; 258: H445–51

    Google Scholar 

  40. Nakazono K, Watanabe N, Matsuno K, et al. Does Superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci USA 1991; 88: 10045–8

    PubMed  CAS  Google Scholar 

  41. Grunfeld S, Hamilton CA, Mesaros S, et al. Role of Superoxide in the depressed nitric oxide production by the endothelium of genetically hypertensive rats. Hypertension 1995; 26: 854–7

    PubMed  CAS  Google Scholar 

  42. Tschudi M, Mesaros S, Lüscher TF, et al. Direct in situ measurement of nitric oxide in mesenteric resistance arteries; increased decomposition by Superoxide in hypertension. Hypertension 1995; 27: 32–5

    Google Scholar 

  43. Anderson TJ, Meredith IT, Yeung AC, et al. Endothelium-dependent coronary vasomotion relates to the susceptibility of LDL to oxidation in humans. Circulation 1996; 93: 1647–50

    PubMed  CAS  Google Scholar 

  44. Stephens NG, Parsons A, Schofield PM, et al. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 1996; 347: 781–6

    PubMed  CAS  Google Scholar 

  45. Inoue A, Yanagisawa M, Kimura S, et al. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three different genes. Proc Natl Acad Sci USA 1989; 86: 2863–7

    PubMed  CAS  Google Scholar 

  46. Bloch KD, Eddy RL, Shows TB, et al. cDNA cloning and chromosomal assigment of the gene encoding endothelin-3. J Biol Chem 1989; 264: 18156–61

    PubMed  CAS  Google Scholar 

  47. Arai H, Hori H, Aramori I, et al. Cloning and expression of a cDNA encoding an endothelin receptor. Nature 1990; 348: 730–2

    PubMed  CAS  Google Scholar 

  48. Sakurai T, Yanagisawa M, Inoue I, et al. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 1990; 348: 732–5

    PubMed  CAS  Google Scholar 

  49. Spokes RA, Ghatei MA, Bloom SR. Studies with endothelin-3 and endothelin-1 on rat blood pressure and isolated tissues: evidence for multiple endothelin receptor subtypes. J Cardiovasc Pharmacol 1989; 13Suppl. 5: S191–2

    PubMed  CAS  Google Scholar 

  50. Davenport AP, O’Reilly G, Kuc RE. Endothelin ETA and ETB mRNA and receptors expressed by smooth muscle in the human vasculature: majority of the ETA subtype. Br J Pharmacol 1995; 114: 1110–6

    PubMed  CAS  Google Scholar 

  51. Tschudi MR, Lüscher TF. Characterisation of contractile endothelin and angiotensin receptors in human resistance arteries: evidence for two endothelin and one angiotensin receptor. Biochem Biophys Res Commun 1994; 204: 685–90

    PubMed  CAS  Google Scholar 

  52. Haynes WG, Strachan FE, Webb DJ. Endothelin ETA and ETB receptors cause vasoconstriction of human resistance and capacitance vessels in vivo. Circulation 1995; 92: 357–63

    PubMed  CAS  Google Scholar 

  53. Takayanagi R, Kitazumi K, Takashi C, et al. Presence of a non-selective type of endothelin receptor on vascular endothelium and its linkage to vasodilatation. FEBS Lett 1991; 282: 103–6

    PubMed  CAS  Google Scholar 

  54. Davenport AP, Maguire JJ. Is endothelin-induced vasoconstriction mediated only by ETA receptors in humans? Trends Pharmacol Sci 1994; 15: 9–11

    PubMed  CAS  Google Scholar 

  55. Douglas S, Gellai M, Ezekiel M, et al. BQ-123, a selective endothelin subtype A-receptor antagonist, lowers blood pressure in different rat models of hypertension. J Hypertens 1994; 12: 561–7

    PubMed  CAS  Google Scholar 

  56. Li JS, Larivière R, Schiffrin EL. Effect of a nonselective endothelin antagonist on vascular remodelling in deoxycorticosterone acetate-salt hypertensive rats; evidence for a role of endothelin in vascular hypertrophy. Hypertension 1994; 24: 183–8

    PubMed  CAS  Google Scholar 

  57. Yang Z, Richard V, von Segresser L, et al. Threshold concentrations of endothelin-1 potentiate contractions to norepinephrine and serotonin in human arteries: a new mechanism for vasospasm? Circulation 1990; 82: 188–95

    PubMed  CAS  Google Scholar 

  58. Kohno M, Murakawa K, Horio T, et al. Plasma immunoreactive endothelin-1 in experimental malignant hypertension. Hypertension 1991; 18: 93–100

    PubMed  CAS  Google Scholar 

  59. Wagner OF, Christ G, Wojta J, et al. Polar secretion of endothelin-1 by cultured endothelial cells. J Biol Chem 1992; 267: 16066–8

    PubMed  CAS  Google Scholar 

  60. Larivière R, Thibault G, Schriffin E. Increased endothelin-1 content in blood vessels of deoxycorticosterone acetate-salt hypertensive but not spontaneously hypertensive rats. Hypertension 1993; 21: 294–300

    PubMed  Google Scholar 

  61. Clozel M. Endothelin sensitivity and receptor binding in the aorta of spontaneously hypertensive rats. J Hypertens 1989; 7: 913–7

    PubMed  CAS  Google Scholar 

  62. Dohi Y, Lüscher TF. Endothelin-1 in hypertensive resistance arteries: intraluminal and extraluminal dysfunction. Hypertension 1991; 18: 543–9

    PubMed  CAS  Google Scholar 

  63. Roberts-Thomson P, McRitchie R, Chalmers R. Experimental hypertension produces diverse changes in the regional vascular responses to endothelin-1 in the rabbit and the rat. J Hypertens 1994; 12: 1225–34

    PubMed  CAS  Google Scholar 

  64. Haynes WG, Hand MF, Johnstone H, et al. Direct and sympathetically mediated venoconstriction in essential hypertension. J Clin Invest 1994; 94: 1359–64

    PubMed  CAS  Google Scholar 

  65. Yoshida M, Nonoguchi H, Owada A, et al. Three cases of malignant hypertension: the roles of endothelin-1 and the renin-angiotensin-aldosterone system. Clin Nephrol 1994; 42: 295–9

    PubMed  CAS  Google Scholar 

  66. Florijin K, Derkx F, Visser W, et al. Plasma immunoreactive endothelin-1 in pregnant women with and without preeclampsia. J Cardiovasc Pharmacol 1991; 17Suppl. 7: S446–8

    Google Scholar 

  67. Yokokawa K, Tahara H, Kohno M, et al. Hypertension associated with endothelin secreting malignant haemangioendothelioma. Ann Int Med 1991; 114: 213–5

    PubMed  CAS  Google Scholar 

  68. Schiffrin EL, Deng LY, Larochelle P. Blunted effects of endothelin upon small subcutaneous resistance arteries of mild essential hypertensive patients. J Hypertens 1992; 10: 437–44

    PubMed  CAS  Google Scholar 

  69. Schiffrin EL, Deng LY, Sventek P, et al. Expression of endothelin-1 gene in small arteries in human essential hypertension. J Hypertens 1996; 14Suppl. 1: S290

    Google Scholar 

  70. Noll G, Wenzel RR, Schneider M, et al. Increased activation of sympathetic nervous system and endothelin by mental stress in normotensive offspring of hypertensive parents. Circulation 1996; 93: 866–9

    PubMed  CAS  Google Scholar 

  71. Omlamd T, Lie R, Aakvaag A, et al. Plasma endothelin determination as a prognostic indicator of 1-year mortality after acute myocardial infarction. Circulation 1994; 89: 1573–9

    Google Scholar 

  72. Lerman A, Edwards B, Hallett J, et al. Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. N Engl Med J 1991; 325: 997–1001

    CAS  Google Scholar 

  73. Winkles J, Alberts G, Brogi E, et al. Endothelin-1 binding and endothelin immunoreactivity in normal and atherosclerotic human arteries. Biochem Biophys Res Commun 1993; 191: 1081–8

    PubMed  CAS  Google Scholar 

  74. Zeiher MA, Goebel H, Schachinger V, et al. Tissue endothelin-1 immunoreactivity in the active coronary atherosclerotic plaque. Circulation 1995; 91: 941–7

    PubMed  CAS  Google Scholar 

  75. Lüscher TF, Yang Z. Calcium antagonists and ACE inhibitors: effect on endothelium and vascular smooth muscle. Drugs 1993; 46Suppl. 2: 121–32

    PubMed  Google Scholar 

  76. Johns A, Freay AD, Adams DJ, et al. The role of calcium in the activation of endothelial cells. J Cardiovasc Pharmacol 1988; 12Suppl. 5: 119–23

    Google Scholar 

  77. Erne P, Bolli P, Burgisser E, et al. Correlation of platelet calcium with blood pressure: effect of antihypertensive therapy [letter]. N Engl J Med 1984; 310: 1084

    PubMed  CAS  Google Scholar 

  78. Folkow B, Hallback M, Jones JV, et al. Dependence on external calcium for the noradrenaline contractility of the resistance vessels in spontaneously hypertensive rats. Acta Physiol Scand 1977; 101: 84–97

    PubMed  CAS  Google Scholar 

  79. Himmel HM, Whorton AR, Strauss HC. Intracellular calcium, currents and stimulus-response coupling in endothelial cells. Hypertension 1993; 21: 112–27

    PubMed  CAS  Google Scholar 

  80. Yang ZH, Von SL, Bauer E, et al. Different activation of the endothelial L-arginine and cyclooxygenase pathway in the human internal mammary artery and saphenous vein. Circ Res 1991; 68: 52–60

    PubMed  CAS  Google Scholar 

  81. Goerre S, Wenk M, Bärtsch P, et al. Endothelin-1 in pulmonary hypertension associated with high altitude exposure. Circulation 1995; 91: 359–64

    PubMed  CAS  Google Scholar 

  82. Goto K, Kasuya Z, Matsuki N, et al. Endothelin activates the dihydropyridine-sensitive, voltage-dependent calcium channel in vascular smooth muscle. Proc Natl Acad Sci USA 1989; 86: 3915–8

    PubMed  CAS  Google Scholar 

  83. Clarke JG, Benjamin N, Larkin SW, et al. Endothelin is a potent long-lasting vasoconstrictor in men. Am J Physiol 1989; 257: H2033–5

    PubMed  CAS  Google Scholar 

  84. Clozel M, Kuhn H, Hefti F. Effects of angiotensin converting enzyme inhibitors and of hydralazine on endothelial function in hypertensive rats. Hypertension 1990; 16: 532–40

    PubMed  CAS  Google Scholar 

  85. Boulanger CM, Desta B, Clozel J-P, et al. Chronic treatment with the CA2+ channel inhibitor RO 40-5967 potentiates the endothelium-dependent relaxations in the aorta of the hypertensive salt sensitive Dahl rat. Blood Pressure 1994; 3: 193–6

    PubMed  CAS  Google Scholar 

  86. Hirooka Y, Imaizumi T, Masaki H, et al. Captopril improves impaired endothelium-dependent vasodilatation in hypertensive patients. Hypertension 1992; 20: 175–80

    PubMed  CAS  Google Scholar 

  87. Ghiadoni L, Taddei S, Magagna A, et al. Effect of lacidipine on endothelial function in hypertensive patients. Am J Hypertens 1996; 9: 155A

    Google Scholar 

  88. Perticone F, Ceravolo R, Maio R, et al. Effects of long term isradipine treatment on endothelial vasodilation in hypertensives. Am J Hypertens 1996; 9: 165A

    Google Scholar 

  89. Schiffrin EL, Deng LY, Larochelle P. Effects of a β-blocker or a converting enzyme inhibitor on resistance arteries in essential hypertension. Hypertension 1994; 23: 83–91

    PubMed  CAS  Google Scholar 

  90. Taddei S, Virdis MP, Arzilli F, et al. Endothelium-dependent forearm vasodilatation is reduced in normotensive subjects with familial history of hypertension. J Cardiovasc Pharmacol 1992; 20Suppl. 12: S193–5

    PubMed  Google Scholar 

  91. Willis AL, Nagel B, Churchill V, et al. Antiatherosclerotic effects of nicardipine and nifedipine in cholesterol-fed rabbits. Arteriosclerosis 1985; 5: 250–5

    PubMed  CAS  Google Scholar 

  92. Yamada Y, Furui H, Furumichi T, et al. Inhibitory effects of endothelial cells and calcium channel blockers on platelet aggregation. Jpn Heart J 1990; 31: 201–15

    PubMed  CAS  Google Scholar 

  93. Mentley RK, Brezinski ME, Tse E, et al. Cardioprotective actions of nisoldipine in postperfusion myocardial ischaemia. Am Heart J 1988; 115: 948–54

    PubMed  CAS  Google Scholar 

  94. Yang Z, Noll G, Lüscher TF. Calcium antagonists inhibit proliferation of human coronary artery smooth muscle cells in response to pulsatile stretch and platelet-derived growth factor. Circulation 1993; 88: 832–6

    PubMed  CAS  Google Scholar 

  95. Steinberg D, Parthasarathy S, Carew TE, et al. Beyond cholesterol; modification of low-density lipoproteins that increase its atherogenicity. N Engl J Med 1989; 320: 915–24

    PubMed  CAS  Google Scholar 

  96. Mak IT, Boehme P, Weglicki WB. Antioxidant effects of calcium channel blockers against free radical injury in endothelial cells. Correlation of protection with preservation of glutathione levels. Circ Res 1992; 70: 1099–103

    PubMed  CAS  Google Scholar 

  97. Lichtlen PR, Hugenholtz P, Rafflenbeul W, et al. Retardation of the angiographic progression of coronary artery disease in man by the calcium channel blocker nifedipine. Lancet 1990; 335: 1109–13

    PubMed  CAS  Google Scholar 

  98. Waters D, Lesperance J, Francetich M, et al. A controlled trial to assess the effect of a calcium channel blocker on the progression of coronary atherosclerosis. Circulation 1990; 82: 1940–53

    PubMed  CAS  Google Scholar 

  99. Brogden RN, Sarkin EM. Isradipine: an update of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in the treatment of mild to moderate hypertension. Drugs 1995; 49: 618–49

    PubMed  CAS  Google Scholar 

  100. Elliot HL. Endothelial dysfunction: clinical applicability of calcium antagonist drugs. In: Lüscher TF, editor. The endothelium in cardiovascular disease. Berlin: Springer-Verlag, 1995: 148–56

    Google Scholar 

  101. Zanchetti A, on behalf of the Italian Nifedipine GITS Study Group. The 24-hour efficacy of a new once-daily formulation of nifedipine. Drugs 1994; 48Suppl. 1: 23–31

    PubMed  Google Scholar 

  102. Brown MJ, Castaigne A, Mancia G, et al. Hypertension intervention trial in high risk patients: a comparison of the effects of nifedipine GITS and hydrochlorothiazide/amiloride on cardiovascular and cerebrovascular morbidity and mortality (INSIGHT) [Abstract no. 112]. Seventh European Meeting on Hypertension; 1995 Jun 9: Milan: 28

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferro, C.J., Webb, D.J. Endothelial Dysfunction and Hypertension. Drugs 53 (Suppl 1), 30–41 (1997). https://doi.org/10.2165/00003495-199700531-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199700531-00006

Keywords

Navigation