Skip to main content
Log in

Coronary Endothelial Function in Health and Disease

  • Published:
Drugs Aims and scope Submit manuscript

Summary

The endothelium participates in the control of coronary vascular tone and growth through the release of vasodilating and growth-inhibiting factors such as nitric oxide (NO) and C-type natriuretic peptide (CNP), and vasoconstricting and growth-promoting substances such as endothelin-1 (ET-1). Abnormalities in NO and/or CNP generation or actions have been demonstrated in various cardiovascular pathophysiological states, specifically atherosclerosis, congestive heart failure, hypertension and hypercholesterolaemia. Moreover, an increase in plasma ET-1 levels has also been reported in these disease states. When these observations are considered together, these states may be characterised by an attenuated release or action of NO and/or CNP, together with an augmented release of ET-1. Thus, an imbalance between these opposing factors may contribute to the alteration in vascular tone and the vascular remodelling characteristics of cardiovascular disease. The following article summarises the present knowledge of endothelial control of the coronary circulation and derangements associated with coronary endothelial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Florey HW. The endothelial cell. BMJ 1966; 2: 487–9

    Article  PubMed  CAS  Google Scholar 

  2. Marsden PA, Brenner BM. Nitric oxide and endothelins: novel autocrine/paracrine regulators of the circulation. Semin Nephrol 1991; 11: 169–85

    PubMed  CAS  Google Scholar 

  3. Stingo AJ, Clavell AL, Aarhus LL, et al. Cardiovascular and renal actions of C-type natriuretic peptide. Am J Physiol 1992; 262 (1Pt2): H308–12

    PubMed  CAS  Google Scholar 

  4. Jougasaki M, Wei C-M, Aarhus LL, et al. Renal localization and actions of adrenomedullin: a natriuretic peptide. Am J Physiol 1995; 268: F657–63

    PubMed  CAS  Google Scholar 

  5. Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332: 411–5

    Article  PubMed  CAS  Google Scholar 

  6. Lerman A, Hildebrand F, O’Murchu B, et al. Endothelin: a new cardiovascular regulatory peptide. Mayo Clin Proc 1990; 65: 1441–55

    PubMed  CAS  Google Scholar 

  7. Furchgott RF, Zawadski JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 188: 373–6

    Article  Google Scholar 

  8. Perrella MA, Hildebrand Jr FL, Margulies KB, et al. Endothelium-derived relaxing factor in the regulation of basal cardiopulmonary and renal function. Am J Physiol 1991; 261: R323–8

    PubMed  CAS  Google Scholar 

  9. Ono H, Ono Y, Frohlich ED. Nitric oxide synthase inhibition in spontaneously hypertensive rats: systemic, renal, and glomerular hemodynamics. Hypertension 1995; 26: 249–55

    Article  PubMed  CAS  Google Scholar 

  10. Chu A, Chambers DE, Lin CC, et al. Effects of inhibition of nitric oxide formation on basal vasomotion and endothelium-dependent responses of the coronary arteries in awake dogs. J Clin Invest 1991; 87: 1964–8

    Article  PubMed  CAS  Google Scholar 

  11. Kullo IJ, Burnett Jr JC. C-type natriuretic peptide: the vascular component of the natriuretic peptide system. In: Sowers JR, editor. Contemporary endocrinology: endocrinology of the vasculature. The endothelium Totowa, NJ: Humana Press, 1996: 79–93

    Chapter  Google Scholar 

  12. Wright RS, Wei CM, Kim CH, et al. C-type natriuretic peptidemediated coronary vasodilation: role of the coronary nitric oxide and paniculate guanylate cyclase systems. J Am Coll Cardiol 1996; 28: 1031–8

    Article  PubMed  CAS  Google Scholar 

  13. Supaporn T, Wennberg PW, Wei CM, et al. Role for the endogenous natriuretic peptide system in the control of basal coronary vascular tone in dogs. Clin Sci 1996; 90: 357–62

    PubMed  CAS  Google Scholar 

  14. Wei CM, Hu S, Burnett Jr JC. Vascular actions of C-type natriuretic peptide in isolated porcine coronary arteries and coronary VSMCs. Biochem Biophys Res Commun 1994; 205: 756–71

    Article  Google Scholar 

  15. Rubanyi GM, Vanhoutte PM. Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J Physiol (Lond) 1985; 364: 45–56

    CAS  Google Scholar 

  16. Miller VM, Burnett Jr JC. Modulation of NO and endothelin by chronic increases in blood flow in canine femoral arteries. Am J Physiol 1992; 263 (1 Pt 2): H103–8

    PubMed  CAS  Google Scholar 

  17. Miller WL, Redfield MM, Burnett Jr JC. Integrated cardiac, renal and endocrine actions of endothelin. J Clin Invest 1989; 83: 317–20

    Article  PubMed  CAS  Google Scholar 

  18. Weber H, Webb ML, Serafino R, et al. Endothelin-1 and angiotensin II stimulate delayed mitogenesis in cultured rat aortic smooth muscle cells: evidence for common signalling mechanisms. Mol Endocrinol 1994; 8: 148–58

    Article  PubMed  CAS  Google Scholar 

  19. Margulies KB, Hildebrand F, Burnett Jr JC. Increased endothelin in experimental heart failure. Circulation 1990; 82: 2226–30

    Article  PubMed  CAS  Google Scholar 

  20. Luscher TF, Vanhoutte PM. Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension 1986; 8: 344–8

    Article  PubMed  CAS  Google Scholar 

  21. Lerman A, Edwards B, Hallet J, et al. Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. N Engl J Med 1991; 325: 997–1001

    Article  PubMed  CAS  Google Scholar 

  22. Lerman A, Webster MWI, Chesebro JH, et al. Circulating and tissue endothelin immunoreactivity in hypercholesterolemic pigs. Circulation 1993; 88: 2923–8

    Article  PubMed  CAS  Google Scholar 

  23. Lerman A, Holmes D, Bell M, et al. Endothelin in coronary endothelial dysfunction and early atherosclerosis in humans. Circulation 1995; 92: 2426–31

    Article  PubMed  CAS  Google Scholar 

  24. Treasure CB, Vita JA, Cox DA, et al. Epicardial coronary artery responses to acetylcholine are impaired in hypertensive patients. Circ Res 1992; 72: 776–81

    Article  Google Scholar 

  25. Treasure CB, Cox DA, Vita JA, et al. Hypertension and left ventricular hypertrophy are associated with impaired endothelium-mediated relaxation in human coronary resistance vessels. Circulation 1993; 87: 86–93

    Article  PubMed  CAS  Google Scholar 

  26. Zeiher AM, Drexler H, Saurbier B, et al. Endothelium-mediated coronary blood flow modulation in humans: effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest 1993; 92: 652–62

    Article  PubMed  CAS  Google Scholar 

  27. Zeiher AM, Krause T, Schachinger V, et al. Impaired endothelium-dependent vasodilation of coronary resistance vessels is associated with exercise-induced myocardial ischemia. Circulation 1995; 91: 2345–52

    Article  PubMed  CAS  Google Scholar 

  28. Luscher TF, Noll G. Endothelium dysfunction in the coronary circulation. J Cardiovasc Pharmacol 1994; 24: 16S–26S

    Google Scholar 

  29. Minor Jr RL, Myers PR, Guerra Jr R, et al. Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta. J Clin Invest 1994; 86: 2109–16

    Article  Google Scholar 

  30. Clarkson P, Adams MR, Powe AJ, et al. Oral L-arginine improves endothelium-dependent dilation in hypercholesterolemic young adults. J Clin Invest 1996; 97: 1989–94

    Article  PubMed  CAS  Google Scholar 

  31. Dartsch PC. In vitro growth characteristics of human atherosclerotic plaque cells: comparison of cells from primary stenosing and restenosing lesions of peripheral and coronary arteries. Res Exp Med 1990; 190: 77–87

    Article  CAS  Google Scholar 

  32. Suga S, Nakao K. Phenotype-related alteration in expression of natriuretic peptide receptors in aortic smooth muscle cells. Circ Res 1992; 71: 34–9

    Article  PubMed  CAS  Google Scholar 

  33. Brown J, Chen Q. Regional expression of natriuretic peptide receptors during the formation of arterial neointima in the rabbit. Circ Res 1995; 77: 906–18

    Article  PubMed  CAS  Google Scholar 

  34. Kullo IJ, Muller VM, Lawson GM, et al. Dual inhibition of neutral endopeptidase (NEP) and angiotensin converting enzyme (ACE) suppresses atherogenesis and improves endothelial function in hypercholesterolemic rabbits [abstract]. J Am Coll Cardiol 1996; 27 (2 Suppl. A): 164A

    Article  Google Scholar 

  35. Frielingsdorf J, Seiler C, Kaufmann P, et al. Normalization of abnormal coronary vasomotion by calcium antagonists in patients with hypertension. Circulation 1996; 93: 1380–7

    Article  PubMed  CAS  Google Scholar 

  36. Nonogy H, Hess OM, Ritter M, et al. Prevention of coronary vasoconstriction by diltiazem during dynamic exercise in patients with coronary artery disease. J Am Coll Cardiol 1988; 12: 892–9

    Article  Google Scholar 

  37. Bertrand ME, Dupuis BA, Lablache JM, et al. Coronary hemodynamics following intravenous or intracoronary injection of diltiazem in man. Cardiovasc Pharmacol 1982; 4: 695–9

    Article  CAS  Google Scholar 

  38. Kaltenbach M, Schulz W, Kober G. Effects of nifedipine after intravenous and intracoronary administration. Am J Cardiol 1979; 44: 832–8

    Article  PubMed  CAS  Google Scholar 

  39. Rajagopalan S, Kurz S, Munzel T, et al. Angiotensin II-mediated hypertension in the rat increases vascular Superoxide production via membrane NADH/NADPH oxidase activation; contribution to alterations of vasomotor tone. J Clin Invest 1996; 97: 1916–23

    Article  PubMed  CAS  Google Scholar 

  40. Mancini GBJ, Henry GC, Macay C, et al. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing Endothelial Dysfunction) Study. Circulation 1996; 94: 258–65

    Article  PubMed  CAS  Google Scholar 

  41. Clavell AL, Mattingly M, Stevens T, et al. Angiotensin converting enzyme inhibition modulates endogenous endothelin in chronic canine thoracic inferior vena caval constriction. J Clin Invest 1996; 97: 1286–92

    Article  PubMed  CAS  Google Scholar 

  42. Cannan CR, Burnett Jr JC, Brandt RR, et al. Endothelin at pathophysiological concentrations mediates coronary vasoconstriction via the endothelin-A receptor. Circulation 1995; 92: 3312–7

    Article  PubMed  CAS  Google Scholar 

  43. Bacon CR, Cary NRB, Davenport AP. Endothelin peptide and receptors in human atherosclerotic coronary artery and aorta. Circ Res 1996; 79: 794–801

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burnett, J.C. Coronary Endothelial Function in Health and Disease. Drugs 53 (Suppl 1), 20–29 (1997). https://doi.org/10.2165/00003495-199700531-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199700531-00005

Keywords

Navigation