Skip to main content
Log in

Endothelial Function and the Kidney

An Emerging Target for Cardiovascular Therapy

  • Published:
Drugs Aims and scope Submit manuscript

Summary

Endothelial dysfunction is emerging as an important factor in the early development of acute and chronic renal disease. Drugs aimed specifically at rectifying this aberration are being developed, although other established agents such as calcium antagonists, angiotensin converting enzyme (ACE) inhibitors and HMG CoA reductase inhibitors also have beneficial effects in this setting. Calcium antagonists are particularly effective at ameliorating acute renal ischaemia associated with endothelial dysfunction. Combination therapy with a calcium antagonist and an ACE inhibitor might optimise the beneficial effects of calcium channel blockade on the sequelae of endothelial dysfunction in chronic renal failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. JNC V. Arch Intern Med 1993; 153: 154–83

    Google Scholar 

  2. Sytkowski PA, Kannel WB, D’Agostino RB. Changes in the risk factors and the decline in mortality from cardiovascular disease. The Framingham Heart Study. N Engl J Med 1990; 322: 1634–41

    Article  Google Scholar 

  3. Excerpts from United States Renal Data System. 1994 annual data report. Am J Kidney Dis 1994; 24 (4 Suppl. 2): S1–181

    Google Scholar 

  4. Port FK. End-stage renal disease: magnitude of the problem, prognosis of future trends and possible solutions. Kidney Int 1995; 48(Suppl. 50): S3–6

    Google Scholar 

  5. Iseki K, Ikemiya Y, Fukiyama K. Blood pressure and risk of end-stage renal disease in a screened cohort. Kidney Int 1996; 49(Suppl. 55): S69–71

    Google Scholar 

  6. Massy ZA, Kasiske BL. Hyperlipidemia and its management in renal disease. Curr Opin Nephrol Hypertens 1996; 5: 141–6

    Article  PubMed  CAS  Google Scholar 

  7. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on development and progression of long term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 977–86

    Article  Google Scholar 

  8. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801–8

    Article  PubMed  CAS  Google Scholar 

  9. Levine GN, Keaney JF, Vita JA. Cholesterol reduction in cardiovascular disease. Clinical benefits and possible mechanisms. N Engl J Med 1995; 332: 512–21

    Article  PubMed  CAS  Google Scholar 

  10. Lüscher TF, Bock HA, Yang Z, et al. Endothelium-derived relaxing and contracting factors: perspectives in nephrology. Kidney Int 1991; 39: 575–90

    Article  PubMed  Google Scholar 

  11. Treasure CB, Klien L, Weintraub WS, et al. Beneficial effects of cholesterol lowering therapy on the coronary endothelium in patients with coronary artery disease. N Engl J Med 1995; 332: 481–7

    Article  PubMed  CAS  Google Scholar 

  12. Stroes ESG, Koomans HA, deBruin TWA, et al. Short term deterioration and improvement in vascular function in the forearm of hypercholesterolemic patients off and on lipid lowering medication. Lancet 1995; 346: 467–71

    Article  PubMed  CAS  Google Scholar 

  13. Celermajer DS, Adams MR, Clarkson P, et al. Passive smoking and impaired endothelium-dependent arterial dilatation in healthy young adults. N Engl J Med 1996; 334: 150–4

    Article  PubMed  CAS  Google Scholar 

  14. Lüscher TF. The endothelium in hypertension: bystander, target or mediator? J Hypertens 1994; 12(Suppl. 10): S105–17

    Google Scholar 

  15. Johnstone MT, Creager SJ, Scales KM, et al. Impaired endothelium-dependent vasodilation in patients with insulin-dependent vasodilation. Circulation 1993; 88: 2510–6

    Article  PubMed  CAS  Google Scholar 

  16. Badr KF. Sepsis-associated renal vasoconstriction: potential targets for future therapy. Am J Kidney Dis 1992; 20: 207–13

    PubMed  CAS  Google Scholar 

  17. Gellai M, Jugus M, Fletcher T, et al. Reversal of postischemic acute renal failure with a selective endothelin A receptor antagonist in the rat. J Clin Invest 1994; 93: 900–6

    Article  PubMed  CAS  Google Scholar 

  18. Rabelink TJ, Kaasjager HAH, Stroes ESG, et al. Endothelin in renal medicine: from pathophysiology to therapy. Kidney Int. In press

  19. Brady HR, Singer GG. Acute renal failure. Lancet 1995; 346: 1533–40

    Article  PubMed  CAS  Google Scholar 

  20. Wakabayashi Y, Kikawada R. Effect of L-arginine on myoglobin-induced acute renal failure in the rabbit. Am J Physiol 1996; 270: F784–9

    PubMed  CAS  Google Scholar 

  21. Rabelink AJ, Kaasjager HAH, Boer P, et al. Effects of endothelin-1 infusion in humans: implications for cardiovascular and renal disease. Kidney Int 1994; 46: 376–81

    Article  PubMed  CAS  Google Scholar 

  22. Bech JN, Nielsen CB, Pedersen EB. Effects of systemic NO synthesis inhibition on RPF, GFR, Una and vasoactive hormones in healthy humans. Am J Physiol 1996; 270: F845–51

    PubMed  CAS  Google Scholar 

  23. Brezis M, Rosen S. Hypoxia of the renal medulla. Its implications for disease. N Engl J Med 1996; 332: 647–55

    Google Scholar 

  24. Brezis M, Heyman SN, Dinour D, et al. Role of nitric oxide in renal medullary oxygenation. J Clin Invest 1991; 88: 390–5

    Article  PubMed  CAS  Google Scholar 

  25. Rubanyi GM, Polokoff MA. Endothelins: molecular biology, biochemistry, pharmacology, physiology and pathophysiology. Pharmacol Rev 1994; 46: 328–94

    Google Scholar 

  26. Kaasjager HAH, van Rijn HJ, Koomans HA, et al. Interactions of nifedipine with the renovascular effects of endothelin in humans. J Pharmacol Exp Ther 1995; 275: 306–11

    PubMed  CAS  Google Scholar 

  27. Kaasjager HAH, Koomans HA, Rabelink TJ. Effectiveness of enalapril versus nifedipine to antagonize blood pressure and renal response to endothelin in humans. Hypertension 1995; 25: 620–5

    Article  PubMed  CAS  Google Scholar 

  28. Bank N, Aynedjian HS, Khan GA. Mechanism of vasoconstriction induced by chronic inhibition of nitric oxide in rats. Hypertension 1994; 24: 322–8

    Article  PubMed  CAS  Google Scholar 

  29. Michael UF, Lee SM. The role of calcium antagonists in nephrotoxic models of renal failure. In: Epstein and Loutzenhiser, editors. Calcium antagonists and the kidney. Philadelphia, Mosby Company, 1990: 187–201

    Google Scholar 

  30. Kon V, Sugiura M, Inagami T, et al. Role of endothelin in cyclosporine-induced glomerular dysfunction. Kidney Int 1990; 37: 1487–91

    Article  PubMed  CAS  Google Scholar 

  31. Diederich D, Yang Z, Luscher TF. Chronic cyclosporine therapy impairs endothelium-dependent relaxation in the renal artery of the rat. J Am Soc Nephrol 1992; 2: 1291–7

    PubMed  CAS  Google Scholar 

  32. Wagner K, Albrecht S, Neumayer HH. Prevention of posttransplant acute tubular necrosis by the calcium antagonist diltiazem: a prospective randomised study. Am J Nephrol 1987; 7: 287–91

    Article  PubMed  CAS  Google Scholar 

  33. Harper SJ, Moorhouse J, Abrams K, et al. The beneficial effects of oral nifedipine on cyclosporine-treated renal transplant recipients — a randomised prospective study. Transplant Int 1996; 9: 115–25

    Article  CAS  Google Scholar 

  34. Neumayer HH, Junge W, Kufner A, et al. Prevention of radiocontrast-media-induced nephrotoxicity by the calcium channel blocker nitrendipine: a prospective randomised clinical trial. Nephrol Dial Transplant 1989; 4: 1030–6

    PubMed  CAS  Google Scholar 

  35. Rabelink AJ, Hené RJ, Erkelens DW, et al. Effects of simvastatin and cholestyramine on lipoprotein profile in hyperlipidaemia of nephrotic syndrome. Lancet 1988; 2: 1335–8

    Article  PubMed  CAS  Google Scholar 

  36. Horkko S, Huttunen K, Korhonen T, et al. Decreased clearance of low-density lipoprotein in patients with chronic renal failure. Kidney Int 1994; 45: 561–70

    Article  PubMed  CAS  Google Scholar 

  37. Stroes ESG, Joles JA, Chang PC, et al. Impaired endothelial function in patients with nephrotic range proteinuria. Kidney Int 1995; 48: 544–50

    Article  PubMed  CAS  Google Scholar 

  38. Stroes ESG, DeBruin TWA, DeValk H, et al. Causes of endothelial dysfunction in familial combined hyperlipidemia. Circulation. In press

  39. Brown JH, Hunt LP, Vites NP, et al. Comparative mortality from cardiovascular disease in patients with chronic renal failure. Nephrol Dial Transplant 1994; 9: 1136–42

    PubMed  CAS  Google Scholar 

  40. Panza JA, Quyyumi AA, Brush JE, et al. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1993; 323: 22–7

    Article  Google Scholar 

  41. Cockroft JR, Chowienczyk PJ, Benjamin N, et al. Preserved endothelium-dependent vasodilation in patients with essential hypertension. N Engl J Med 1994; 330: 1036–40

    Article  Google Scholar 

  42. Vallance P, Leone A, Calver A, et al. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 1992; 339: 572–5

    Article  PubMed  CAS  Google Scholar 

  43. Bergstrom J, Alvestrand A, Fürst P. Plasma and muscle free amino acids in maintenance hemodialysis patients without protein malnutrition. Kidney Int 1990; 38: 108–14

    Article  PubMed  CAS  Google Scholar 

  44. Stamler JS, Osborne JA, Jaraki O, et al. Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin Invest 1993; 91: 308–18

    Article  PubMed  CAS  Google Scholar 

  45. Hostetter TH, Rennke HG, Brenner BM. The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies. Am J Med 1982; 72: 375–80

    Article  PubMed  CAS  Google Scholar 

  46. Anderson S, Rennke HG, Brenner BM. Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat. J Clin Invest 1986; 77: 1993–2000

    Article  PubMed  CAS  Google Scholar 

  47. Lewis EJ, Hunsicker LG, Bin RP, et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med 1993; 329: 1456–62

    Article  PubMed  CAS  Google Scholar 

  48. Fukuda K, Yanagida T, Okuda S, et al. Role of endothelin as a mitogen in experimental glomerulonephritis in rats. Kidney Int 1996; 49: 1320–9

    Article  PubMed  CAS  Google Scholar 

  49. Ruiz-Ortega M, Gomez-Garre D, Alcazar R, et al. Involvement of angiotensin II and endothelin in matrix protein production and renal sclerosis. J Hypertens 1994; 12Suppl. 4: S51–8

    CAS  Google Scholar 

  50. Raij L, Baylis C. Glomerular actions of nitric oxide (editorial). Kidney Int 1995; 48: 20–32

    Article  PubMed  CAS  Google Scholar 

  51. Benigni A, Zoja C, Corna D, et al. A specific endothelin subtype A receptor antagonist protects against injury in renal disease progression. Kidney Int 1993; 44: 440–4

    Article  PubMed  CAS  Google Scholar 

  52. Ribeiro MO, Antunes E, Muscara MN, et al. Nifedipine prevents renal injury in rats with chronic nitric oxide inhibition. Hypertension 1995; 26: 150–5

    Article  PubMed  CAS  Google Scholar 

  53. Stojanovic T, Gröne HJ, Gieseler RK, et al. Enhanced renal allograft rejection by inhibitors of nitric oxide synthase: a non-immunologic influence on alloreactivity. Lab Invest 1996; 74: 496–512

    PubMed  CAS  Google Scholar 

  54. Loutzenhiser R, Epstein M. Effects of calcium antagonists on renal hemodynamics. Am J Physiol 1985; 249: F619–29

    PubMed  CAS  Google Scholar 

  55. Reams GP. Calcium channel blockers for the treatment of renal disease. Expert Opin Invest Drugs. In press

  56. Feron O, Salamone S, Godfraind T. Inhibition by lacidipine of salt-dependent cardiac hypertrophy and endothelin gene expression in stroke-prone spontaneously hypertensive rats. Biochem Biophys Res Commun 1995; 210: 219–24

    Article  PubMed  CAS  Google Scholar 

  57. Jackson CL, Bush RC, Bowyer DE. Mechanism of antiatherogenic action of calcium antagonists. Atherosclerosis 1989; 80: 17–26

    Article  PubMed  CAS  Google Scholar 

  58. Takase H, Moreau P, Kung CF, et al. Antihypertensive therapy prevents endothelial dysfunction in chronic nitric oxide deficiency. Hypertension 1996; 27: 25–31

    Article  PubMed  CAS  Google Scholar 

  59. Dworkin LD, Benstein JA, Parker M, et al. Calcium antagonists and converting enzyme inhibitors reduce renal injury by different mechanisms. Kidney Int 1993; 43: 808–14

    Article  PubMed  CAS  Google Scholar 

  60. Keane WJ, Raij L. Relationship among altered glomerular barrier, permselectivity, angiotensin II, and mesangial uptake of macromolecules. Lab Invest 1985; 52: 599–604

    PubMed  CAS  Google Scholar 

  61. Burke TJ, Arnold PE, Gordon JA, et al. Protective effect of intrarenal calcium membrane blockers before or after renal ischemia. Functional, morphological and mitochondrial studies. J Clin Invest 1984; 74: 1830–41

    Article  PubMed  CAS  Google Scholar 

  62. Velussi M, Brocco E, Frigato F, et al. Effects of cilazapril and amlodipine on kidney function in hypertensive NIDDM patients. Diabetes 1996; 45: 216–22

    Article  PubMed  CAS  Google Scholar 

  63. Zucchelli P, Zuccala A, Gaggi R. Comparison of the effects of ACE inhibitors and calcium channel blockers on the progression of renal failure. Nephrol Dial Transplant 1995; 10 Suppl.: 46–51

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabelink, T.J., Koomans, H.A. Endothelial Function and the Kidney. Drugs 53 (Suppl 1), 11–19 (1997). https://doi.org/10.2165/00003495-199700531-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199700531-00004

Keywords

Navigation