Skip to main content
Log in

Endothelial Function

General Considerations

  • Published:
Drugs Aims and scope Submit manuscript

Summary

The endothelium is involved in both the physiological regulation of vascular tone and the structural transformation of the vessel under pathological conditions. Under physiological conditions, endothelial cells continuously secrete nitric oxide (NO), which relaxes smooth muscle cells and ensures vessel patency. Damaged or excessively activated endothelial cells can also secrete vasoconstrictor factors, the best known of which is endothelin-1 (ET-1), as well as factors that affect the differentiation and growth of vascular smooth muscle cells.

How endothelial cell damage contributes, under pathological conditions, to vascular disease can best be illustrated in patients with diabetes mellitus, in whom there are pronounced changes in endothelial cell structure and function.

Endothelial cells also interact with cells in the bloodstream. ET-1 and other factors are released from endothelial cells into the bloodstream, where their chemotactic action can induce leucocytes and platelets to migrate to the endothelial wall. Endothelial cells induce adhesion by expression of specific surface adhesion molecules (selectins, integrins and a supergene family of immunoglobulins) that can interact with ligands on the leucocytes and platelets. The expression of adhesion molecules is increased in endothelial cells chronically damaged by risk factors for atherosclerosis. The disturbed permeability of the endothelial layer in patients with diabetes mellitus and/or hyperlipidaemia leads to an increased influx of substances from the circulation into the vessel wall. In addition, endothelial cell dysfunction can lead to accelerated intravessel blood coagulation.

It is evident that the endothelium plays a central role in many of the early pathophysiological processes involved in atherosclerosis. It is therefore important to investigate the effects of antiatherosclerotic therapy on endothelial cell function and cell-to-cell interactions. Until recently, little was known about the direct effects of calcium antagonists on endothelial cell function. Recent studies, including two clinical studies, indicate that calcium antagonists primarily affect interactions of endothelial cells, smooth muscle cells, monocytes and platelets, which play a central role in the early phases of the development of atherosclerosis, whereas the protective effect of these agents on the vascular system appears to be low at later stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folkow B. Physiological aspects of primary hypertension. Physiol Rev 1982; 62: 347–504

    PubMed  CAS  Google Scholar 

  2. Gordon D, Reidy MA, Benditt EP, et al. Cell proliferation in human coronary arteries. Proc Natl Acad Sci USA 1990; 87: 4600–4

    Article  PubMed  CAS  Google Scholar 

  3. Schwartz CJ, Valente AJ, Sprague EA. A modern view of atherogenesis. Am J Cardiol 1993; 71(6): 21–9

    Article  Google Scholar 

  4. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801–9

    Article  PubMed  CAS  Google Scholar 

  5. Luscher TF, Vanhoutte PM. The endothelium: modulator of cardiovascular function. Boca Raton: CRC Press, 1990

    Google Scholar 

  6. Dzau VJ, Gibbons GH. Cell biology of vascular hypertrophy in systemic hypertension. Am J Cardiol 1988; 62: 30–35G

    Article  Google Scholar 

  7. Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 1989; 1: 997–1000

    Article  Google Scholar 

  8. Luscher TF. Imbalance of endothelium-derived relaxing and contracting factors: a new concept in hypertension? Am J Hypertens 1990; 3: 317–30

    PubMed  CAS  Google Scholar 

  9. Palmer RJM, Ashtor DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664–6

    Article  PubMed  CAS  Google Scholar 

  10. Lorenzi M, Cagliero E. Pathobiology of endothelial and other vascular cells in diabetes mellitus; call for data. Diabetes 1991; 40: 653–9

    Article  PubMed  CAS  Google Scholar 

  11. Jensen T, Bjerre-Knudsen J, Feldt-Rasmussen B, et al. Features of endothelial dysfunction in early diabetic nephropathy. Lancet 1989; 1: 461–3

    Article  PubMed  CAS  Google Scholar 

  12. Guerra R, Brotherton AFA, Goodwin PJ, et al. Mechanisms of abnormal endothelium-dependent vascular relaxation in atherosclerosis: implications for altered autocrine and paracrine functions of EDRF. Blood Vessels 1989; 26: 300–14

    PubMed  Google Scholar 

  13. Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 388: 411–5

    Article  Google Scholar 

  14. Panza JA, Quyyumi AA, Brush Jr JE, et al. Endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990; 323: 22–7

    Article  PubMed  CAS  Google Scholar 

  15. Yang Z, Richard V, von Segesser L, et al. Threshold concentrations of endothelin-1 potentiate contractions to norepinephrine and serotonin in human arteries. A new mechanism of vasospasm. Circulation 1990; 82: 188–95

    Article  PubMed  CAS  Google Scholar 

  16. Strano A, Davi G, Patrono C. In vivo platelet activation in diabetes melllitus. Semin Thromb-Hemost 1991; 17(4): 422–5

    Article  PubMed  CAS  Google Scholar 

  17. DiCorleto PE, Fox PL. Growth factor production by endothelial cells. In: Endothelial cells. Vol. 2. Una R, editor. Boca Raton: CRC Press, 1988: 51–62

    Google Scholar 

  18. Egleme C, Creesier F, Wood JM. Local formation of angiotensin II in the rat aorta: effect of endothelium. Brit J Pharmacol 1990; 100: 237–40

    Article  CAS  Google Scholar 

  19. Davi G, Rini GB, Averna M, et al. Thromboxane B2 formation and platelet sensitivity to prostacyclin in insulin-dependent and insulin-independent diabetics. Thromb Res 1982; 26: 359–70

    Article  PubMed  CAS  Google Scholar 

  20. Butkus A, Srinska VA, Schumacher OP. Thromboxane production and platelet aggregation in diabetic subjects with clinical complications. Thromb Res 1980; 19: 211–23

    Article  PubMed  CAS  Google Scholar 

  21. Yamouchi T, Ohnaka K, Takayanagi R, et al. Enhanced secretion of endothelin-1 by elevated glucose levels from cultured bovine aortic endothelial cells. FEBS Lett 1990; 267: 16–8

    Article  Google Scholar 

  22. Williams E, Timperley WR, Ward JD, et al. Electron microscopic studies of vessels in diabetic peripheral neuropathy. J Clin Pathol 1980; 33: 462

    Article  PubMed  CAS  Google Scholar 

  23. Vracko R. A comparison of the microvascular lesions in diabetic mellitus with those of normal aging. J Am Geriatr Soc 1982; 30: 201–5

    PubMed  CAS  Google Scholar 

  24. DiCorleto PE, Chisolm GM. Participation of the endothelium in the development of the atherosclerotic plaque. Prog Lipid Res 1986; 25: 365–74

    Article  PubMed  CAS  Google Scholar 

  25. Meraji S, Jayakody L, Senaratne MP, et al. Endothelium-dependent relaxation in aorta of BB rat. Diabetes 1987; 36: 978–81

    Article  PubMed  CAS  Google Scholar 

  26. Tesfamariam B, Brown ML, Deykin D, et al. Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoids in rabbit aorta. J Clin Invest 1990; 85: 929–32

    Article  PubMed  CAS  Google Scholar 

  27. Epstein M, Sowers JR. Diabetes mellitus and hypertension. Hypertension 1992; 19: 403–18

    Article  PubMed  CAS  Google Scholar 

  28. Berk BC, Alexander RW, Brock TA, et al. Vasoconstriction — a new role for platelet-derived growth factor. Science 1986; 232: 87–90

    Article  PubMed  CAS  Google Scholar 

  29. Pober JS, Cotran RS. Cytokines and endothelial cell biology. Physiol Rev 1990; 70: 427–51

    PubMed  CAS  Google Scholar 

  30. Panza JA, Quyyumi AA, Brush Jr JE, et al. Endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990; 323: 22–7

    Article  PubMed  CAS  Google Scholar 

  31. Simionescu M, Simionescu N. Functions of the endothelial cell surface. Ann Rev Physiol 1986; 48: 279–304

    Article  CAS  Google Scholar 

  32. Scharf RE, Harker LA. Thrombosis and atherosclerosis: regulatory role of interactions among blood components and endothelium. Blut 1987; 55: 131

    Article  PubMed  CAS  Google Scholar 

  33. Springer TA. The sensation and regulation of interactions with the extracellular environment: the cell biology of lymphocyte adhesion receptors. Ann Rev Cell Biol 1990; 6: 359–402

    Article  PubMed  CAS  Google Scholar 

  34. Faggiotto A, Ross R, Harker L. Studies of hypercholesterolemia in the non-human primate. I. Changes that lead to fatty streak formation. Arteriosclerosis 1986; 4: 323–40

    Google Scholar 

  35. Gerrity RG. The role of monocyte in atherogenesis. 1. Transition of bloodborne monocytes into foam cells in fatty lesions. Am J Pathol 1981; 103: 181–90

    PubMed  CAS  Google Scholar 

  36. Cybulsky MI, Gimbrone MJ. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 1991; 251(4995): 788–91

    Article  PubMed  CAS  Google Scholar 

  37. Li H, Cybulsky MI, Gimbrone MJ, et al. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb 1993; 13(2): 197–204

    Article  PubMed  Google Scholar 

  38. Libby P, Hansson GK. Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions. Lab Invest 1991; 64: 5–15

    PubMed  CAS  Google Scholar 

  39. Alderson LM, Endemann G, Lindsey S, et al. LDL enhances monocyte adhesion to endothelial cells in vitro. Am J Pathol 1986; 123: 334–41

    PubMed  CAS  Google Scholar 

  40. Berliner JA, Territo MC, Sevanian A, et al. Minimally modified LDL stimulates monocyte endothelial interactions. J Clin Invest 1990; 85: 1260–7

    Article  PubMed  CAS  Google Scholar 

  41. Frostegard J, Haegerstrand A, Gidlund M, et al. Biologically modified LDL increases the adhesive properties of endothelial cells. Atherosclerosis 1991; 90: 119–26

    Article  PubMed  CAS  Google Scholar 

  42. Kume N, Cybulsky MI, Gimbrone MJ. Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest 1992; 90(3): 1138–44

    Article  PubMed  CAS  Google Scholar 

  43. Haller H, Schaper D, Philipp S, et al. LDL induces surface expression of adhesion molecules ICAM-1 and VCAM on endothelial cells via the activation of protein kinase C. J Am Soc Nephrol 1992; 3: 456

    Google Scholar 

  44. Gilcrease MZ, Hoover RL. Examination of monocyte adherence to endothelium under hyperglycaemic conditions. Am J Pathol 1991; 139: 1089–97

    PubMed  CAS  Google Scholar 

  45. DiCorleto PE. Cellular mechanisms of atherogenesis. Am J Hypertension 1993; 6: 314–18S

    Google Scholar 

  46. Schaberg T, Rau M, Kaiser D, et al. Increased number of alveolar macrophages expressing adhesion molecules of the leukocyte adhesion molecule family in smoking subjects: association with cell-binding ability and Superoxide anion production. Am Rev Respir Dis 1992; 146: 1287–93

    PubMed  CAS  Google Scholar 

  47. Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 1988; 318: 1315–21

    Article  PubMed  CAS  Google Scholar 

  48. Vlassara H, Brownlee M, Monogue K, et al. Cachectin/TNF and IL-1 induced by glucose-modified proteins: role in normal tissue remodelling. Science 1988; 240: 1546–8

    Article  PubMed  CAS  Google Scholar 

  49. Esposito C, Gerlach H, Brett J, et al. Endothelial receptor mediated binding of glucose-modified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. J Exp Med 1989; 170: 1387–407

    Article  PubMed  CAS  Google Scholar 

  50. Stout RW, Bierman EL, Ross R. Effect of insulin on the proliferation of cultured primate arterial smooth muscle cells. Circ Res 1975; 36: 319–27

    Article  PubMed  CAS  Google Scholar 

  51. King GL, Goodman AD, Buzney S, et al. Receptors and growth-promoting effects of insulin and insulin-like growth factors on cells from bovine retinal capillaries and aorta. J Clin Invest 1985; 75: 1028–36

    Article  PubMed  CAS  Google Scholar 

  52. Weinstein R, Stemerman MB, Maciag T. Hormonal requirements for growth of arterial smooth muscle cells in vitro: an endocrine approach to atherosclerosis. Science 1981; 212: 818–20

    Article  PubMed  CAS  Google Scholar 

  53. Capron L, Jarnet J, Kazandjian S, et al. Growth-promoting effects of diabetes and insulin on arteries: an in vivo study of rat aorta. Diabetes 1986; 35: 973–8

    Article  PubMed  CAS  Google Scholar 

  54. Stout RW. Insulin and atheroma. 20-yr perspective. Diabetes Care 1990; 13: 631–54

    Article  PubMed  CAS  Google Scholar 

  55. Shultz PJ, Raij L. Endogenously synthesized nitric oxide prevents endotoxin induced glomerular thrombosis. J Clin Invest 1990; 90: 1718–25

    Article  Google Scholar 

  56. Steiner G. Diabetes and atherosclerosis: an overview. Diabetes 1981; 30Suppl. 2: 1–7

    PubMed  CAS  Google Scholar 

  57. Cagliero E, Maiello M, Boeri D, et al. Increased expression of basement membrane components in human endothelial cells cultured in high glucose. J Clin Invest 1988; 82: 735–8

    Article  PubMed  CAS  Google Scholar 

  58. Ciriaco E, Abbate F, Ferrante F, et al. Structural changes in the endothelium of the femoral artery of spontaneously hypertensive rats: sensitivity to isradipine treatment. J Hypertens 1993; 11: 515–22

    Article  PubMed  CAS  Google Scholar 

  59. Himmel HM, Whorton AR, Strauss HC. Intracellular calcium, currents, and stimulus-response coupling in endothelial cells. Hypertension 1993; 21: 112–27

    Article  PubMed  CAS  Google Scholar 

  60. Gunther J, Dhein S, Rosen R, et al. Nitric oxide (EDRF) enhances the vasorelaxing effect of nitrendipine in various isolated arteries. Basic Res Cardiol 1992; 87: 452–60

    PubMed  CAS  Google Scholar 

  61. Wilkie ME, Stevens CR, Cunningham J, et al. Hypoxia-induced von Willebrand factor release is blocked by verapamil. Miner Electrolyte Metab 1992; 18: 141–4

    PubMed  CAS  Google Scholar 

  62. Luscher TF, Espinosa E, Dubey RK, et al. Vascular biology of human coronary artery and bypass graft disease. Curr Opin Cardiol 1993; 8: 963–74

    Article  Google Scholar 

  63. Yang Z, Bauer E, von Segesser L, et al. Different mobilization of calcium in endothelin-1-induced contractions in human arteries and veins: effects of calcium antagonists. J Cardiovasc Pharmacol 1990; 16: 654–66

    Article  PubMed  CAS  Google Scholar 

  64. Goto K, Kasuya Y, Matsuki N, et al. Endothelin activates the dihydropyridine-sensitive, voltage-dependent calcium channel in vascular smooth muscle. Proc Natl Acad Sci USA 1989; 86: 3915–8

    Article  PubMed  CAS  Google Scholar 

  65. Kiowski W, Luscher TF, Linder L, et al. Endothelin-1 induced vasocontriction in man: reversal by calcium channel blockade but not by nitrovasodilators or EDRF. Circulation 1991; 83: 469–75

    Article  PubMed  CAS  Google Scholar 

  66. Haller H, Schaberg T, Lindschau C, et al. Endothelin increases intracellular free calcium, protein phosphorylation and O2-production in human alveolar macrophages. Am J Physiol 1991; 261: L478–84

    PubMed  CAS  Google Scholar 

  67. Wright B, Zeidman I, Greig R, et al. Inhibition of macrophage function by calcium channel blockers and calmodulin antagonists. Cell Immmunol 1985; 95: 46–53

    Article  CAS  Google Scholar 

  68. Jouvin-Marche E, Cerrina J, Coeffier E, et al. Effect of the calcium antagonist nifedipine on the release of PAF, slow-reacting substance and beta-glucuronidase from human neutrophils. Eur J Pharmacol 1983; 89: 19–26

    Article  PubMed  CAS  Google Scholar 

  69. Tschope D, Kaufmann L, Roesen P, et al. Influence of a single dose of nitrendipine on whole platelet activity in healthy subjects. J Cardiovasc Pharmacol 1988; 12: S167–9

    Article  PubMed  Google Scholar 

  70. Rostagno C, Abbate R, Gensini GF, et al. In vitro effects of two novel calcium antagonists (nitrendipine and nisoldipine) on intraplatelet calcium distribution, platelet aggregation and thromboxane A2 formation. Thromb Res 1991; 63: 457–62

    Article  PubMed  CAS  Google Scholar 

  71. Haller H, Lenz T, Ludersdorf M, et al. Changes in sensitivity to angiotensin II in platelets. J Cardiovasc Pharmacol 1987; 10Suppl. 10: S44–6

    PubMed  CAS  Google Scholar 

  72. McDonagh PF, Rauzzino MJ. Stimulated leukocyte adhesion in coronary microcirculation is reduced by a calcium antagonist. Am J Physiol 1993; 265: H476–83

    PubMed  CAS  Google Scholar 

  73. Collins P, Rosano GM, Jiang C, et al. Cardiovascular protection by oestrogen — a calcium antagonist effect? Lancet 1993; 341: 1264–5

    Article  PubMed  CAS  Google Scholar 

  74. Fleckenstein-Grun G, Frey M, Thimm F, et al. Calcium overload — an important cellular mechanism in hypertension and arteriosclerosis. Drugs 1992; 44Suppl. 1: 23–30

    Article  PubMed  Google Scholar 

  75. Haller H. Calcium antagonists and cellular mechanisms of glomerulosclerosis and atherosclerosis. Am J Kidney Dis 1993; 21: 26–31

    PubMed  CAS  Google Scholar 

  76. Borcherding SM, Meeves SG, Klutman NE, et al. Calcium-channel antagonists for prevention of atherosclerosis. Ann Pharmacother 1993; 27: 61–7

    PubMed  CAS  Google Scholar 

  77. Lichtlen PR, Hugenholtz PG, Rafflenbeul W. Retardation of angiographic progression of coronary artery disease by nifedipine. Results of the International Nifedipine Trial of Anti-atherosclerotic Therapy (INTACT). Lancet 1990; 335: 1109–13

    Article  PubMed  CAS  Google Scholar 

  78. Waters D, Lesperance J, Francetich M. A controlled clinical trial to assess the effect of a calcium channel blocker on the progression of coronary atherosclerosis. Circulation 1990; 82: 1940–53

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haller, H. Endothelial Function. Drugs 53 (Suppl 1), 1–10 (1997). https://doi.org/10.2165/00003495-199700531-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199700531-00003

Keywords

Navigation