Skip to main content
Log in

Current Drug Treatment and Treatment Patterns with Antihypertensive Drugs

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Summary

The 4 major classes of antihypertensive drugs are diuretics, β-blockers, ACE inhibitors and calcium antagonists. The diuretics have recently regained prominence, largely due to the results of recent controlled trials. These trials in elderly patients demonstrated that low-dose diuretics were effective not only in preventing stroke but also in greatly reducing coronary-related events. Diuretics also decrease left ventricular mass more than the other major drug classes. In addition, they are the most effective drugs for use in combination therapy. By contrast, the safety of calcium antagonists has recently been questioned because of reports of increased coronary morbidity and mortality. However, these adverse events may be restricted to the short-acting preparations, especially nifedipine, which causes cardiac stimulation. ACE inhibitors, like β-blockers, are not only effective in reducing blood pressure, particularly when combined with a diuretic, but also improve angina and decrease postinfarction mortality. They also benefit congestive heart failure, stabilise or improve renal function in hypertensive and diabetic nephropathy and reduce albuminuria. β-Blockers are especially effective in reducing sudden cardiac death in patients with coronary heart disease, particularly in postinfarction patients.

Final proof of the relative effectiveness of these drugs in preventing morbidity and mortality must await the outcome of large comparative trials currently under way. A recent national survey in the US found that more than 75% of hypertensive patients did not have their hypertension completely controlled. Possible reasons for this disturbing statistic are discussed, along with suggestions for improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Center for Health Statistics. Health promotion and disease prevention: United States, 1990. Public Health Service publication 313. Hyattsville (MD): Public Health Services, 1993

    Google Scholar 

  2. Excerpts from te United States Renal Data System 1993 Annual Data Report: III. Incidence and causes of treated ESRD. Am J Kidney Dis 1993; 22 Suppl.2: 30–7

    Google Scholar 

  3. Materson BJ, Reda DJ, Cushman WC, et al. Single drug therapy for hypertension in men: a comparison of six antihypertensive drugs with placebo. N Engl J Med 1993; 328: 914–21

    Article  PubMed  CAS  Google Scholar 

  4. Liebson PR, Grandits GA, Dianzumba S, et al. Comparison of five antihypertensive monotherapies and placebo for change in left ventricular mass in patients receiving nutritional-hygienic therapy in the Treatment of Mild Hypertension Study (TOMHS). Circulation 1995; 91: 698–706

    Article  PubMed  CAS  Google Scholar 

  5. Materson J, Reda DJ, Preston RA, et al. Response to a second single antihypertensive agent used as monotherapy for hypertension after failure of the initial drug. Arch Intern Med 1995; 155: 1757–62

    Article  PubMed  CAS  Google Scholar 

  6. Freis ED, Wilson JM. Potentiating effect of chlorothiazide (Diuril) in combination with antihypertensive agents: preliminary report. Med Ann DC 1957; 9: 468

    Google Scholar 

  7. Fifth Report of the Joint National Committee on Detection, Evaluation and Treatment of High Blood Pressure (JNC-V) [editorial]. Arch Intern Med 1993; 153: 154-83

    Google Scholar 

  8. Wilson IM, Freis ED. Relationship between plasma and extra-cellular fluid volume depletion and the antihypertensive effect of chlorothiazide. Circulation 1959; 20: 1028–36

    Article  PubMed  CAS  Google Scholar 

  9. Frohlich ED, Schnaper HW, Wilson IM, et al. Hemodynamic alterations in hypertensive patients due to chlorothiazide. N Eng J Med 1960; 262: 1261–3

    Article  CAS  Google Scholar 

  10. Shah S, Khatri I, Freis ED. Mechanism of antihypertensive effect of thiazide diuretics. Am Heart J 1978; 95: 611–18

    Article  PubMed  CAS  Google Scholar 

  11. Freis ED. The efficacy and safety of diuretics in treating hypertension. Ann Intern Med 1995; 122: 223–6

    PubMed  CAS  Google Scholar 

  12. Kassirer JP, Harrington JT. Diuretics and potassium metabolism; a reassessment of the need, effectiveness and safety of potassium therapy. Kidney Int 1977; 11: 505–15

    Article  PubMed  CAS  Google Scholar 

  13. Collins R, Peto R, MacMahon S, et al. Blood pressure, stroke, and coronary heart disease: part 2. Short-term reduction in blood pressure: overview of randomized drug trials in their epidemiological context. Lancet 1990: 335: 827–38

    Article  PubMed  CAS  Google Scholar 

  14. Wilhelmsen I, Berglund G, Elmfeldt D, et al. Beta-blockers versus diuretics in hypertensive men: main results from the HAPPHY trial. J Hypertens 1987; 5: 561–72

    Article  PubMed  CAS  Google Scholar 

  15. Medical Research Council Working Party. MRC trial of treatment of mild hypertension: principal results. BMJ 1985; 291: 97–104

    Article  Google Scholar 

  16. IPPPSH Collaborative Group. Cardiovascular risk and risk factors in a randomized trial of treatment based on the beta-blocker osprenolol: the International Prospective Primary Prevention Study in Hypertension (IPPPSH). J Hypertens 1985; 3: 379–92

    Article  Google Scholar 

  17. MRC Working Party. Medical Research Council trial of treatment of hypertension in older adults: principal results. BMJ 1992; 304: 405–12

    Article  Google Scholar 

  18. SHEP Cooperative Research Group. Prevention of stroke by antihypertensive treatment in older persons with isolated systolic hypertension: final results of the Systolic Hypertension in the Elderly Program (SHEP). JAMA 1991; 265: 3255–64

    Article  Google Scholar 

  19. Amery A, Birkenhager W, Brixko P, et al. Mortality and morbidity results from the European Working Party on High Blood Pressure in the Elderly trial. Lancet 1985; I: 1349–54

    Article  Google Scholar 

  20. Dahlof B, Lindholm LH, Hansson L, et al. Morbidity and mortality in the Swedish Trial in Old Patients with Hypertension (STOP-Hypertension). Lancet 1992; 338: 1281–5

    Article  Google Scholar 

  21. Siscovick DS, Raghunathan TE, Psaty BM, et al. Diuretic therapy for hypertension and the risk of primary cardiac arrest. N Engl J Med 1994; 330: 1852–7

    Article  PubMed  CAS  Google Scholar 

  22. Cruickshank JM, Prichard BNC. Beta-blockers in clinical practice. London: Churchill Livingstone, 1988

    Google Scholar 

  23. Fitzgerald JD, Ruffin R, Smedstad R, et al. Studies on the pharmacokinetics and pharmacodynamics of atenolol in man. Eur J Clin Pharmacol 1978; 13: 81–9

    Article  PubMed  CAS  Google Scholar 

  24. McDevitt DG, Brown HC, Carruthers SG. Influence of intrinsic sympathermimetic activity and cardio-selectivity on beta-adrenoceptor blockade. Clin Pharmacol Ther 1977; 21: 356–66

    Google Scholar 

  25. Lund-Johansen P. The pharmacology of combined a- and β-blockers II: hemodynamic effects of labetolol. Drugs 1984; 28 Suppl.2: 35–50

    Article  PubMed  Google Scholar 

  26. Man in ’t Veld AJ, van den Meiracker AH. Effects of antihypertensive drugs on cardiovascular hemodynamics. In: Laragh JH, Brenner BM, editors. Hypertension: pathophysiology, diagnosis and management. 2nd ed. New York: Raven Press, 1995: 2753–63

    Google Scholar 

  27. Leonetti G, Sampieri L, Cuspidi C et al. Does β1-selective agonistic activity interfere with the antihypertensive efficacy of β1-selective blocking agents? J Hypertens 1985; 3 Suppl.3: S243–45

    CAS  Google Scholar 

  28. Douglas-Jones AP, Cruickshank JM. Once-daily dosing with atenolol in patients with mild to moderate hypertension. BMJ 1977; 1: 990–1

    Article  Google Scholar 

  29. Murphy MB, Scriven AJL, Dollery CT. Role of nifedipine in the treatment of hypertension. BMJ 1983; 287: 257–9

    Article  PubMed  CAS  Google Scholar 

  30. Buhler FR. Age and cardiovascular response adaptation. Determinants of an antihypertensive treatment concept primarily based on beta-blockers and calcium entry blockers. Hypertension 1983; 5(5 Pt 2): III94–100

    PubMed  CAS  Google Scholar 

  31. McAinsh J, Cruickshank JM. Beta-blockers and central nervous system side effects. Clin Pharmacol Ther 1990; 46: 163–97

    CAS  Google Scholar 

  32. Kendall MJ, Lynch KP, Hjalmarson A, et al. β -Blockers and sudden cardiac death. Ann Intern Med 1995; 123: 358–67

    PubMed  CAS  Google Scholar 

  33. Oparil S, Haber E. The renin-angiotensin system. N Engl J Med 1974; 291: 389–401

    Article  PubMed  CAS  Google Scholar 

  34. Atlas SA, Case DB, Sealsy JE, et al. Interruption of the renin-angiotensin system in hypertensive patients by captopril-induced sustained reduction in aldosterone secretion, potassium retension and natriuresis. Hypertension 1979; 1: 274–80

    Article  PubMed  CAS  Google Scholar 

  35. Dunn MJ, Hood VL. Prostaglandins and the kidney. Am J Physiol 1977; 233: F169–184

    CAS  Google Scholar 

  36. Zimmerman BG, Sybart EG, Wong PC. Interaction between sympathetic and renin-angiotensin system. J Hypertens 1984; 2: 581–8

    Article  PubMed  CAS  Google Scholar 

  37. Bonner G, editor. Pharmacological and clinical aspects of the kallikrein-kinin system. Basel: Birkhauser, 1992

    Google Scholar 

  38. Geisterfer AAT, Peach MG, Owens GK. Angiotensin II induces hypertrophy, not hyperplasia in cultural aortic smooth muscle cells. Circulation Res 1988; 62: 749–56

    Article  PubMed  CAS  Google Scholar 

  39. Muiesan G, Alicandri CL, Agabiti-Rosei E, et al. Angiotensin-converting enzyme inhibition, catecholomines and hemo-dynamics in essential hypertension in normotensive and hypertensive man. Clin Exp Hypertens 1982; A4: 761–89

    Article  Google Scholar 

  40. Malini PL, Strocchi E, Vatiancoli G, et al. Inhibition and pressure responsiveness to norepinephrine in hypertensive patients. J Clin Pharmacol 1990; 30: 422–4

    PubMed  CAS  Google Scholar 

  41. Cody RJ, Bravo EL, Fouad FM, et al. Cardiovascular reflexes during long-term converting enzyme inhibition and sodium depletion. Am J Med 1981; 71: 422–6

    Article  PubMed  Google Scholar 

  42. Heel RC, Brogden RN, Speight TM, et al. Captopril: a preliminary review of its pharmacological properties and therapeutic efficacy. Drugs 1980; 20: 409–52

    Article  PubMed  CAS  Google Scholar 

  43. Weinberger MH. Blood pressure and metabolic responses to hydrochlorothiazide/captopril and the combination in black and white mild-to-moderate hypertensive patients. J Cardiovasc Pharmacol 1985; 7 Suppl.1: 52–5

    Article  Google Scholar 

  44. Cooper WD, Glover DR, Kimber GR. Influence of age on blood pressure response to enalapril. Gerontology 1987; 33 Suppl.1: 48–54

    Article  PubMed  Google Scholar 

  45. Foult JM, Travolaro O, Antony J, et al. Direct myocardial and coronary effects of enalapril in patients with dilated cardio-myopathy: assessment by a bilateral intracoronary infusion technique. Circulation 1988; 77: 337–44

    Article  PubMed  CAS  Google Scholar 

  46. Mettauer B, Rouleau JL, Daly P. The effect of captopril in hypertensive patients with stable angina. Postgrad Med J 1986; 2 Suppl.: 54–8

    Google Scholar 

  47. Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity after myocardial infarction: results of the Survival and Ventricular Enlargement Study. N Engl J Med 1992; 327: 669–77

    Article  PubMed  CAS  Google Scholar 

  48. AIRE Study Investigators. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet 1993; 342: 821–8

    Google Scholar 

  49. Koher L, Torp-Pedersen C, Carlson JE, et al. A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril cardiac evaluation (TRACE) Study Group. N Engl J Med 1995; 333: 1670–6

    Article  Google Scholar 

  50. Deedwania PC. Angiotensin converting enzyme inhibitors in congestive heart failure. Arch Intern Med 1990: 150: 1798–805

    Article  PubMed  CAS  Google Scholar 

  51. Mulvaney MJ. Is there a role for the vascular renin-angiotensin system in the determination of vascular structure? Blood Vessels 1991; 28: 224–30

    Google Scholar 

  52. Parving HH, Jensen HE, Mogensen CE, et al. Increased urinary albumin excretion in benign essential hypertension. Lancet 1974; I: 231–7

    Google Scholar 

  53. Kannel WH, Stampfer MJ, Castelli WP. The prognostic significance of proteinuria: the Framingham Study. Am Heart J 1984; 108: 1347–52

    Article  PubMed  CAS  Google Scholar 

  54. Bianchi S, Bigazzi R, Balderi G, et al. Microalbuminuria in patients with essential hypertension: effects of an angiotensin converting enzyme inhibitor and of a calcium channel blocker. Am J Hypertens 1991; 4: 291–6

    PubMed  CAS  Google Scholar 

  55. Bauer JH, Ream C, Lal SM. Renal protective effect of strict blood pressure control with enalapril therapy. Arch Intern Med 1987; 147: 1397–400

    Article  PubMed  CAS  Google Scholar 

  56. Mann JFE, Reisch C, Cicerello E, et al. Use of angiotensin enzyme converting inhibitors for the preservation of kidney function: a retrospective study. Nephron 1990; 55: 38–42

    Article  PubMed  Google Scholar 

  57. Bjoreck S, Nyberg G, Mulec H, et al. Beneficial effects of angiotensin converting enzyme inhibition on renal function in patients with nephropathy. BMJ 1996; 293: 411–4

    Google Scholar 

  58. Smith RD, Franklin SS. Comparison of effects of enalapril plus hydrochlorothiazide versus triple therapy on renal function in renovascular hypertension. Am J Med 1985; 79 Suppl.3C: 14–23

    PubMed  Google Scholar 

  59. Kricik DE, Browning PJ, Kopelman RI, et al. Captopril-induced functional renal insufficiency in patients with bilateral renal artery stenosis or renal artery stenosis in a single kidney. N Engl J Med 1983; 308: 373–6

    Article  Google Scholar 

  60. Lewis EL, Hunsicker LG, Pain RP, et al. The effect of converting enzyme inhibition on diabetic nephropathy. N Engl J Med 1993; 329: 1456–62

    Article  PubMed  CAS  Google Scholar 

  61. Matthews DM, Walhen CG, Bell D, et al. The effect of captopril on blood pressure and glucose tolerance in hypertensive non-insulin dependent diabetics. Postgrad Med J 1986; 62 Suppl.5: 73–5

    PubMed  Google Scholar 

  62. Gauch KW, Guenther B, Hart W, et al. Improvement of impaired postoperative insulin action by bradykinin. Biol Chem Hoppe Seyler 1991; 367: 207–10

    Google Scholar 

  63. Veterans Administration Cooperative Study Group on Antihy-pertensive Agents. Low-dose captopril for the treatment of mild to moderate hypertension. Arch Intern Med 1984; 144: 1947–53

    Article  Google Scholar 

  64. Freis ED, Materson BL. Captopril in mild to moderate hyper-tension: effect of low doses and of added diuretic. Prog Pharmacol 1984; 5: 87–92

    Google Scholar 

  65. Materson BJ, Reda WC, Cushman WC. Results of combination anti-hypertensive therapy after failure of each of the components. J Hum Hypertens 1995; 9: 791–96

    PubMed  CAS  Google Scholar 

  66. Weinberger MH. Influence of an angiotensin converting enzyme inhibitor on diuretic-induced metabolic effects in hypertension. Hypertension 1983; 5 Suppl.III: 132–38

    Google Scholar 

  67. Crogg SH, Lemine S, Testa MA, et al. The effects of antihypertensive therapy on the quality of life. N Engl J Med 1986; 314: 1657–64

    Article  Google Scholar 

  68. Sebastian JL, McKinney WP, Kaufman J, et al. Angiotensin-converting enzyme inhibitors and cough: prevalence in an outpatient clinic population. Chest 1991; 99: 36–9

    Article  PubMed  CAS  Google Scholar 

  69. Pister Bm, Timmermans PC, Wong AJ, et al. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 1993; 45: 205–1

    Google Scholar 

  70. Brunier M, Rutschman Nussbarger J, et al. Renal effects of the angiotensin II antagonist losartan in volunteers on a low and high sodium diet. Circulation 1992; 86:1–545

    Article  Google Scholar 

  71. Brunner HR, Christen Y. Clinical experience with angiotensin II receptor antagonists. Am J Hypertens 1992; 5: 2438–45

    Google Scholar 

  72. Nelson E, Merrill D. Efficacy and safety of oral MK-954 (DuP 753), an angiotensin receptor antagonist in essential hypertension. J Hypertens 1991; 9: S468–9

    Google Scholar 

  73. Weber M. Clinical experience with the angiotensin II receptor antagonist losartan: a preliminary report. Am J Hypertens 1992; 5: 2458–518

    Google Scholar 

  74. Crozier I, Ikram H, Awan N, et al. Losartan in heart failure: hemodynamic effects and tolerability. Circulation 1995; 91: 691–7

    Article  PubMed  CAS  Google Scholar 

  75. Nakashima M, Uematsu T, Kosuge K, et al. Pilot study of the uricosuric effect of DuP 753, a new angiotensin II receptor antagonist, in healthy subjects. Eur J Clin Pharmacol 1992; 42: 333–5

    Article  PubMed  CAS  Google Scholar 

  76. Hulthen UL, Bolli P, Amann FW, et al. Enhanced vasidilatation in essential hypertension by calcium channel blockade with verapamil. Hypertension 1982; 4 Suppl.II: 26–31

    PubMed  CAS  Google Scholar 

  77. Katy AM, Hager WD, Messineo FC, et al. Cellular actions and pharmacology of the calcium channel blocking drugs. Am J Med 1984; 77 Suppl.2B; 2–10

    Google Scholar 

  78. Leonetti G, Cuspidi Sampieri L, et al. Comparison of cardio-vascular, renal and humoral effects of acute administration of two calcium channel blockers in normotensive and hypertensive subjects. J Cardiovasc Pharmacol 1982; 4 Suppl.3: S319–24

    PubMed  Google Scholar 

  79. Thananoparvan C, Golub MS, Eggena P, et al. Renal effects of nitrendipine monotherapy in essential hypertension. J Cardiovasc Pharmacol 1985; 6 Suppl.7: S1040–4

    Google Scholar 

  80. Nicholson JP, Resnick LM, Laragh JH. The antihypertensive effect of verapamil at extremes of dietary sodium intake. Ann Intern Med 1987; 107: 329–34

    PubMed  CAS  Google Scholar 

  81. Cappuccio FP, Markandu ND, MacGregor GA. Calcium antagonists and sodium balance: effect of changes in sodium intake and of the addition of a thiazide diuretic on the blood pressure lowering effect of nifedine. J Cardiovasc Pharmacol 1987; 10 Suppl.10: S557–60

    Google Scholar 

  82. Buhler FR, Hulthen UL, Kiowski W, et al. Greater antihypertensive efficacy of the calcium channel inhibitor verapamil in older and low renin patients. Clin Sci 1982; 63: 439–42

    Google Scholar 

  83. Weinberger MH. The role of age, race and plasma renin activity in influencing the blood pressure response to nitrendipine or hydrochlorothiazide. J Cardiovasc Pharmacol 1987; 9 Suppl.4: 272–5

    Google Scholar 

  84. Brouwer RML, Bolli P, Erne P, et al. Antihypertensive treatment using calcium antagonists in combination with captopril rather than diuretics. J Cardiovasc Pharmacol 1985; 7 Suppl.4: S88–91

    Article  PubMed  Google Scholar 

  85. Davies J, Jensen H, Gardsal P. A double-blind comparison of amlodipine and placebo added to open enalapril in patients with moderate to severe essential hypertension. J Cardiovasc Pharmacol 1991; 17 Suppl.1: S16–18

    Article  PubMed  Google Scholar 

  86. Brouwer RM, Follath F, Buhler FR. Review of the cardiovascular adversity of the calcium antagonist beta blocker combination: implications for antihypertensive therapy. J Cardiovasc Pharmacol 1985; 7 Suppl.4: S38–44

    Article  PubMed  Google Scholar 

  87. Belg GG, Doering W, Mundes R, et al. Effect of various calcium antagonists on blood level and renal clearance of digoxin. Circulation 1981; 64 Suppl.IV: IV–24

    Google Scholar 

  88. Farringer JA, Green JA, O’Rourke RA, et al. Nifedipine-induced alterations in serum quinidine concentratons. Am Heart J 1985; 108: 1570–2

    Article  Google Scholar 

  89. Smith MS, Benyunes MC, Bjornsson TD, et al. Influence of cimetidine on verapamil kinetics and dynamics. J Clin Pharmacol Ther 1984; 36: 551–5

    Article  CAS  Google Scholar 

  90. Pochet JM, Pirson Y. Cyclosporin-diltiazem interaction. Lancet 1986; I: 979

    Article  Google Scholar 

  91. Lee TH, Friedman PL, Goldman L, et al. Sinus arrest and hypotension with combined amiodarone-diltiazem therapy. Am Heart J 1985; 109: 163–4

    Article  PubMed  CAS  Google Scholar 

  92. Henry PO. Comparative pharmacology of calcium antagonists: nifedipine, verapamil and diltiazem. Am J Cardiol 1980; 46: 1047–58

    Article  PubMed  CAS  Google Scholar 

  93. Krebs R. Adverse reactions with calcium-antagonists. Hypertension 1983; 5(4 Pt 2): II125–9

    PubMed  CAS  Google Scholar 

  94. Rojdmark S, Anderson DEH, Hed R, et al. Effect of verapamil on glucose response to intravenous injection of glucagon and insulin in healthy subjects. Horm Metab Res 1980; 12: 285–90

    Article  PubMed  CAS  Google Scholar 

  95. Held Ph, Yusuf S, Furberg CD. Calcium channel blockers in acute myocardial infarction and unstable angina: an overview. BMJ 1989; 299: 1187–92

    Article  PubMed  CAS  Google Scholar 

  96. Yusuf S, Held P. Furberg Update of effects of calcium antagonists in myocardial infarction or angina in light of the second Danish Verapamil Infarction Trial (DAVIT-II) and other recent studies. Am J Cardiol 1991; 67: 1295–97

    Article  PubMed  CAS  Google Scholar 

  97. Holland Interuniversity Nifedipine/Metropolol Trial (HINT) Research Group. Early treatment of unstable angina in the coronary care unit: a randomized, double-blind, placebo controlled comparison of recurrent ischemia in patients treated with nifedipine or metroprolol or both. Br Heart J 1986; 56: 400–13

    Article  Google Scholar 

  98. Elkayam U, Amin J, Mehra A, et al. A prospective, randomized, double-blind, crossover study to compare the efficacy and safety of chronic nifedipine therapy with that of isosorbide dinitrate and their combination in the treatment of chronic congestive heart failure. Circulation 1990; 82: 1954–61

    Article  PubMed  CAS  Google Scholar 

  99. Danish Study Group on Verapamil in Myocardial Infarction. Effect of varapamil on mortality and major events after acute myocardial infarction (The Danish Verapamil Infarction Trial (H-DAVIT II). Am J Cardiol 1990; 66: 77–85

    Google Scholar 

  100. Multicentre Diltiazem Postinfarction Trial Research Group. The effect of diltiazem on mortality and reinfarction after myocardial infarction. N Engl J Med 1988; 319: 385–92

    Article  Google Scholar 

  101. Psaty BM, Heckbert S, Koepsel T, et al. The risk of myocardial infarction associated with antihypertensive drug therapy. JAMA 1995; 274: 620–25

    Article  PubMed  CAS  Google Scholar 

  102. McClellan K. Unexpected results from MIDAS in atherosclerosis. Inpharma 1994; 932: 4

    Article  Google Scholar 

  103. Ferguson JJ, Monomura S. Highlights from the 58th Annual Scientific Meeting of the Japanese Circulation Society. Circulation 1994; 90: 2194–95

    Article  Google Scholar 

  104. Opie LH, Messerli FH. Nifedipine and mortality: grave defects in the dossier [editorial]. Circulation 1995; 92: 1068–73

    Article  PubMed  CAS  Google Scholar 

  105. Kloner RA. Nifedipine in ischemic heart disease. Circulation 1995; 92: 1074–8

    Article  PubMed  CAS  Google Scholar 

  106. Liebson PR, Savage DD. Echocardiography in hypertension: a review. II: echocardiographic studies of the effects of antihypertensive agents on left ventricular wall mass and function. Echocardiography 1987; 4: 215–49

    Article  Google Scholar 

  107. Levy D, Garrison RJ, Savage DD, et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990; 322: 1561–6

    Article  PubMed  CAS  Google Scholar 

  108. Koren MJ, Devereux RB, Casale PN, et al. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 1991; 114: 345–52

    PubMed  CAS  Google Scholar 

  109. Liebson PR. Clinical studies of drug reversal of hypertensive left ventricular hypertrophy. Am J Hypertens 1990; 3: 512–7

    PubMed  CAS  Google Scholar 

  110. Trimarco B, Wikstrand J. Regression of cardiovascular structural changes by antihypertensive treatment: functional consequences and time course of reversal as judged from clinical studies. Hypertension 1984; 6 Suppl.3: 150–7

    Google Scholar 

  111. Sen S. Regression of cardiac hypertrophy: experimental animal model. Am J Med 1983; 75 Suppl. 87–93

    Article  PubMed  CAS  Google Scholar 

  112. Fouad-Tarazi F, Liebson PR. Echocardiographic studies of regression of left ventricular hypertrophy in hypertension. Hypertension 1987; 4 Suppl.2: 65–8

    Google Scholar 

  113. Dahlof B, Pennert K, Hansson L. Reversal of left ventricular hypertrophy in hypertension patients: a meta-analysis of 109 treatment studies. Am J Hypertens 1992; 5: 95–110

    PubMed  CAS  Google Scholar 

  114. Gottdiener JS, Reda DJ, Materson BJ, et al. Importance of obesity, race and age to the cardiac structural and functional effects of hypertension. J Am Coll Cardiol 1994; 24: 1492–8

    Article  PubMed  CAS  Google Scholar 

  115. Pfeffer MA, Pfeffer JM. Pharmacologic regression of cardiac hypertrophy in experimental hypertension. J Cardiovasc Pharmacol 1984; 6 Suppl.6: 865–9

    Google Scholar 

  116. Drayer JIM, Gardin MJ, Weber MA, et al. Changes in ventricular septal thickness during diuretic therapy. Clin Pharmacol Ther 1982; 32: 283–88

    Article  PubMed  CAS  Google Scholar 

  117. Burnier M, Brunner HR. Neurohormonal consequences of diuretics in different cardiovascular syndromes. Eur Heart J 1992; 13 Suppl.G: 28–33

    Article  PubMed  Google Scholar 

  118. Moser M, Setaro JF. Antihypertensive drug therapy and regression of left ventricular hypertrophy: a review with a focus on diuretics. Eur Heart J 1991; 12: 1034–9

    PubMed  CAS  Google Scholar 

  119. Reichek N, Franklin BB, Chandler T, et al. Reversal of left ventricular hypertrophy by antihypertensive therapy. Eur Heart J 1982; 3: 165–9

    Article  PubMed  Google Scholar 

  120. Gottdiener J, Reda D, Notargiacomo A, et al. Comparison of monotherapy effects on LV mass regression in mild-to-moderate hypertension: differences between short and long term therapy [abstract]. J Am Coll Cardiol 1992; 19: 85A

    Google Scholar 

  121. Gottdiener JS, Papademetriou V, Meyer PS, et al. Isradipine vs hydrochlorothiazide for reduction of LV mass: results of a multi-center trial [abstract]. Circulation 1995; 92 Suppl.1: 1–803

    Google Scholar 

  122. Fagerberg B, Berglund A, Andersson OK, et al. Cardiovascular effects of weight reduction versus antihypertensive drug treatment: a comparative, randomized, 1-year study of obese men with mild hypertension. J Hypertens 1991; 5: 431–9

    Article  Google Scholar 

  123. MacMahon SW, Wilcken DEL, MacDonald GJ. The effect of weight reduction on left ventricular mass. N Engl J Med 1986; 6: 314–34

    Google Scholar 

  124. Ferrara L, DeSimone G, Pasanisi F, et al. Left ventricular mass reduction during salt depletion in arterial hypertension. Hypertension 1984; 6: 755–9

    Article  PubMed  CAS  Google Scholar 

  125. Jula A, Karanko H. Effects on left ventricular hypertrophy of long-term nonpharmacological treatment with sodium restriction in mild-to-moderate essential hypertension. Circulation 1994; 89: 1023–31

    Article  PubMed  CAS  Google Scholar 

  126. Schulman SP, Weiss JL, Becker LC. The effects of antihypertensive therapy on left ventricular mass in elderly patients. N Engl J Med 1990; 322: 1350–6

    Article  PubMed  CAS  Google Scholar 

  127. Khatri IM, Gottdiener JS, Notargiacomo AV, et al. The effect of therapy on left ventricular function in hypertension. Clin Sci 1980; 59: 435s–9s

    PubMed  CAS  Google Scholar 

  128. Oren S, Messerli FH, Grossman E, et al. Immediate and short-term cardiovascular effects of lisinopril, a new angiotensin-converting enzyme inhibitor, in patients with essential hypertension. J Am Coll Cardiol 1991; 17: 1183–7

    Article  PubMed  CAS  Google Scholar 

  129. Aurigemma G, Gottdiener J, Gaasch W, et al. Effect of 6 antihypertensive drugs on ECG left ventricular hypertrophy [abstract no. 933-100]. J Am Coll Cardiol 1995 Feb; Special Issue: 122A

  130. Muiesan ML, Agabiti-Rosei E, Romanelli G. Improved left ventricular systolic and diastolic function after regression of cardiac hypertrophy, treatment withdrawal, and redevelopment of hypertension. J Cardiovasc Pharmacol 1991; 17 Suppl.2: 179–81

    Article  Google Scholar 

  131. Koren MJ, Ulin RJ, Laragh JH, et al. Reduction of left ventricular mass during treatment of essential hypertension is associated with improved prognosis [abstract]. Am J Hypertens 1991; 4: 1A

    Google Scholar 

  132. Sagie A, Larson SD, Levy D. The natural history of borderline hypertension. N Engl J Med 1993; 329: 1912–7

    Article  PubMed  CAS  Google Scholar 

  133. Vakonas PS, Kannel WB, Cupples LA. The epidemiology and risk of hypertension in the elderly: the Framingham Study. J Hypertens 1988; 6 Suppl.: 53–9

    Google Scholar 

  134. Curb JD, Barbone NO, Entwistle G, et al. Isolated systolic hypertension in 14 communities. Am J Epidemiol 1985; 3: 362–70

    Google Scholar 

  135. Burt VL, Whelton P, Roccella EJ, et al. Prevalence of hypertension in the US adult populations: results from the Third National Health and Nutrition Examination Survey, 1988–1991. Hypertension 1995; 25: 305–13

    Article  PubMed  CAS  Google Scholar 

  136. Caldwell JR, Cobb S, Dowling MD, et al. The dropout problems in antihypertensive treatment. J Chron Dis 1970; 22: 579–92

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freis, E.D., Papademetriou, V. Current Drug Treatment and Treatment Patterns with Antihypertensive Drugs. Drugs 52, 1–16 (1996). https://doi.org/10.2165/00003495-199652010-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199652010-00001

Navigation