Drugs

, Volume 52, Supplement 5, pp 24–46 | Cite as

Preclinical and Clinical Development of Dexketoprofen

  • David Mauleón
  • Remei Artigas
  • M. Luisa García
  • Germano Carganico
Article

Summary

Dexketoprofen trometamol is a water-soluble salt of the dextrorotatory enantiomer of the nonsteroidal anti-inflammatory drug (NSAID) ketoprofen. Racemic ketoprofen is used as an analgesic and an anti-inflammatory agent, and is one of the most potent in vitro inhibitors of prostaglandin synthesis. This effect is due to the S(+)-enantiomer (dexketoprofen), while the R(−)-enantiomer is devoid of such activity.

The pharmacokinetic profile of ketoprofen and its enantiomers was assessed in several animal species and in human volunteers. In humans, the relative bioavailability of oral dexketoprofen trometamol (12.5 and 25mg, respectively) is similar to that of oral racemic ketoprofen (25 and 50mg, respectively), as measured in all cases by the area under the concentration-time curve values for S(+)-ketoprofen. Dexketoprofen trometamol, given as a tablet, is rapidly absorbed, with a time to maximum plasma concentration (tmax) of between 0.25 and 0.75 hours, whereas the tmax for the S-enantiomer after the racemic drug, administered as tablets or capsules prepared with the free acid, is between 0.5 and 3 hours. Peak plasma concentrations of 1.4 and 3.1 mg/L are reached after administration of dexketoprofen trometamol 12.5 and 25mg, respectively.

From 70 to 80% of the administered dose is recovered in the urine during the first 12 hours, mainly as the acyl-glucuronoconjugated parent drug. No R(−)-ketoprofen is found in the urine after administration of dexketoprofen [S(+)-ketoprofen], confirming the absence of bioinversion of the S(+)-enantiomer in humans.

In animal studies, the anti-inflammatory potency of dexketoprofen was always equivalent to that demonstrated by twice the dose of ketoprofen. Similarly, animal studies showed a high analgesic potency for dexketoprofen trometamol. The R(−)-enantiomer demonstrated a much lower potency, its analgesic action being apparent only in conditions where the metabolic bioinversion to the S(+)-enantiomer was significant.

The gastric ulcerogenic effects of dexketoprofen at various oral doses (1.5 to 6 mg/kg) in the rat do not differ from those of the corresponding double doses (3 to 12 mg/kg) of racemic ketoprofen. Repeated (5-day) oral administration of dexketoprofen as the trometamol salt causes less gastric ulceration than was observed after the acid form of both dexketoprofen and the racemate. In addition, single dose dexketoprofen as the free acid at 10 or 20 mg/kg does not show a significant intestinal ulcerogenic effect in rats, while racemic ketoprofen 20 or 40 mg/kg is clearly ulcerogenic to the small intestine.

The analgesic efficacy of oral dexketoprofen trometamol 10 and 20mg is superior to that of placebo and similar to that of ibuprofen 400mg in patients with moderate to severe pain after third molar extraction. The time to onset of pain relief appeared to be shorter in patients treated with dexketoprofen trometamol than in those treated with ibuprofen 400mg. Dexketoprofen trometamol was well tolerated, with a reported incidence of adverse events similar to that of placebo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Veys EM. 20 years’ experience with ketoprofen. Scand J Rheumatol Suppl. 1991; 90: 1–44PubMedCrossRefGoogle Scholar
  2. 2.
    Caldwell J, Hutt AJ, Fournel-Gigleux S. The metabolic chiral inversion and dispositional enantioselectivity of the 2-arylpropionic acids and their biological consequences. Biochem Pharmacol 1988; 37: 105–14PubMedCrossRefGoogle Scholar
  3. 3.
    Cooper SA. Ketoprofen in oral surgery pain: a review. J Clin Pharmacol 1988; 28: S40–6PubMedGoogle Scholar
  4. 4.
    Hayball PJ, Nation RL, Bochner F. Enantioselective pharmaco-dynamics of the nonsteroidal anti-inflammatory drug ketoprofen: in vitro inhibition of human platelet cyclo-oxygenase activity. Chirality 1992; 4: 484–7PubMedCrossRefGoogle Scholar
  5. 5.
    Avouac B, Teule M. Ketoprofen: the European experience. J Clin Pharmacol 1988; 28: S2–7PubMedGoogle Scholar
  6. 6.
    McCormack K, Urquhart E. Correlation between nonsteroidal anti-inflammatory drug efficacy in a clinical pain model and the dissociation of their anti-inflammatory and analgesic properties in animal models. Clin Drug Invest 1995; 9: 88–97CrossRefGoogle Scholar
  7. 7.
    Lotsch J, Geisslinger G, Mohammadian P, et al. Effects of flurbiprofen enantiomers on pain-related chemosomatosens-ory evoked potentials in human subjects. Br J Clin Pharmacol 1995; 40: 339–46PubMedCrossRefGoogle Scholar
  8. 8.
    Neugebauer V, Geisslinger G, Rumenapp P, et al. Antinociceptive effects of R(−) and S(+)-flurbiprofen on rat spinal dorsal horn neurons rendered hyperexcitable by an acute knee joint inflammation. J Pharmacol Exp Ther 1995; 275: 618–28PubMedGoogle Scholar
  9. 9.
    Williams RL, Upton RA. The clinical pharmacology of ketoprofen. J Clin Pharmacol 1988; 28: S13–22PubMedGoogle Scholar
  10. 10.
    Jamali F, Brocks DR. Clinical pharmacokinetics of ketoprofen and its enantiomers. Clin Pharmacokinet 1990; 19: 197–217PubMedCrossRefGoogle Scholar
  11. 11.
    Abas A, Meffin PJ. Enantioselective disposition of racemic ketoprofen in rabbits with normal and diminished renal function. Clin Exp Pharmacol Physiol 1985; Suppl. 9: 41–2Google Scholar
  12. 12.
    Abas A, Meffin PJ. Enantioselective disposition of 2-arylpropionic acid nonsteroidal anti-inflammatory drugs. IV. Ketoprofen disposition. J Pharmacol Exp Ther 1987; 240: 637–41PubMedGoogle Scholar
  13. 13.
    Foster RT, Jamali F. Stereoselective pharmacokinetics of ketoprofen in the rat. Influence of route of administration. Drug Metab Dispos 1988; 16: 623–6PubMedGoogle Scholar
  14. 14.
    Foster RT, Jamali F, Russell AS, et al. Pharmacokinetics of ketoprofen enantiomers in healthy subjects following single and multiple doses. J Pharm Sci 1988; 77: 70–3PubMedCrossRefGoogle Scholar
  15. 15.
    Foster RT, Jamali F, Russell AS, et al. Pharmacokinetics of ketoprofen enantiomers in young and elderly arthritic patients following single and multiple doses. J Pharm Sci 1988; 77: 191–5PubMedCrossRefGoogle Scholar
  16. 16.
    Foster RT, Jamali F, Russell AS. Ketoprofen enantiomers in synovial fluid. J Pharm Sci 1989; 78: 881–2PubMedCrossRefGoogle Scholar
  17. 17.
    Foster RT, Jamali F, Russell AS. Pharmacokinetics of ketoprofen enantiomers in cholecystectomy patients: influence of probenecid. Eur J Clin Pharmacol 1989; 37: 589–94PubMedGoogle Scholar
  18. 18.
    Stiegler S, Birkel M, Jost V, et al. Pharmacokinetics and relative bioavailability after single dose administration of 25 mg ketoprofen solution as compared to tablets. Methods Find Exp Clin Pharmacol 1995; 17: 129–34PubMedGoogle Scholar
  19. 19.
    Geisslinger G, Menzel S, Wissel K, et al. Pharmacokinetics of ketoprofen enantiomers after different doses of the racemate. Br J Clin Pharmacol 1995; 40: 73–5PubMedCrossRefGoogle Scholar
  20. 20.
    Iwakawa S, He X, Hashimoto S, et al. Stereoselective disposition of ketoprofen in rats. Drug Metab Dispos 1991; 19: 717–8PubMedGoogle Scholar
  21. 21.
    Menzel S, Beck WS, Brune K, et al. Stereoselectivity of biliary excretion of 2-arylpropionates in rats. Chirality 1993; 5: 422–7PubMedCrossRefGoogle Scholar
  22. 22.
    Menzel S, Sauernheimer C, Brune K, et al. Is the inversion from R- to S-ketoprofen concentration dependent? Investigations in rats in vivo and in vitro. Biochem Pharmacol 1994; 47: 1267–70PubMedCrossRefGoogle Scholar
  23. 23.
    Jamali F, Russell AS, Foster RT, et al. Ketoprofen pharmacokinetics in humans: evidence of enantiomeric inversion and lack of interaction. J Pharm Sci 1990; 79: 460–1PubMedCrossRefGoogle Scholar
  24. 24.
    Jamali F, Mehvar R, Pasutto FM. Enantioselective aspects of drug action and disposition: therapeutic pitfalls. J Pharm Sci 1989; 78: 695–715PubMedCrossRefGoogle Scholar
  25. 25.
    Mauleón D, Mis R, Ginesta J, et al. Pharmacokinetics of ketoprofen enantiomers in monkeys following single and multiple oral administration. Chirality 1994; 6: 537–42PubMedCrossRefGoogle Scholar
  26. 26.
    Mis R, Tost D, Ortega E, et al. Pharmacokinetics in plasma of oral 14C-LM-1158. TRIS and 14C-R-(−)-ketoprofen in several species. 1993. Report codes: PK6/LM-1158. TRIS/93; PK7/LM-1158. TRIS/93; PK11/LM-1158. TRIS/93.Google Scholar
  27. 27.
    Cochet P, Bromet-Petit M, Mis R, et al. Quantitative tissue distribution of LM-1158 in Long-Evans rats after a single (5 mg/kg) oral administration. 5th European International Society for the Study of Xenobiotics Meeting. 1993 Sep 26-29: Tours, FranceGoogle Scholar
  28. 28.
    Muller N, Payan E, Lapicque F, et al. Pharmacological aspects of chiral nonsteroidal anti-inflammatory drugs. Fundam Clin Pharmacol 1990; 4: 617–34PubMedCrossRefGoogle Scholar
  29. 29.
    Hayball PJ, Nation RL, Bochner F, et al. Plasma protein binding of ketoprofen enantiomers in man: method development and its application. Chirality 1991; 3: 460–6PubMedCrossRefGoogle Scholar
  30. 30.
    Dubois N, Lapicque F, Abiteboul M, et al. Stereoselective protein binding of ketoprofen: effect of albumin concentration and of the biological system. Chirality 1993; 5: 126–134PubMedCrossRefGoogle Scholar
  31. 31.
    Dubois N, Muller N, Lapicque F, et al. Stereoselective protein binding of nonsteroidal anti-inflammatory drugs: pharmacological consequences. Therapie 1993; 48: 335–9PubMedGoogle Scholar
  32. 32.
    Hayball PJ, Nation RL, Bochner F, et al. The influence of renal function on the enantioselective pharmacokinetics and phar-macodynamics of ketoprofen in patients with rheumatoid arthritis. Br J Clin Pharmacol 1993; 36: 185–93PubMedCrossRefGoogle Scholar
  33. 33.
    Hayball PJ, Nation RL, Bochner F. Stereoselective interactions of ketoprofen glucuronides with human plasma protein and serum albumin. Biochem Pharmacol 1992; 44: 291–9PubMedCrossRefGoogle Scholar
  34. 34.
    Dubois N, Lapicque F, Maurice MH, et al. In vitro irreversible binding of ketoprofen glucuronide to plasma proteins. Drug Metab Dispos 1993; 21: 617–23PubMedGoogle Scholar
  35. 35.
    Spahn-Langguth H, Benet LZ. Acyl glucuronides revisited: is the glucuronide process a toxification as well as a detoxification mechanism? Drug Metab Rev 1992; 24: 5–47PubMedCrossRefGoogle Scholar
  36. 36.
    Dubois-Presle N, Lapicque F, Maurice MH, et al. Stereoselective esterase activity of human serum albumin toward ketoprofen glucuronide. Mol Pharmacol 1995; 47: 647–53PubMedGoogle Scholar
  37. 37.
    Mis R, Ginesta J, Vidal M, et al. Pharmacokinetics of enantiomers R-(−)-ketoprofen and LM-1158 after single oral administration of racemic 14C-ketoprofen. TRIS to mice. 1993. Report code: PK13/LM-1158. TRIS/93Google Scholar
  38. 38.
    Yasui H, Yamaoka K, Dote N, et al. Moment analysis of stereoselective biliary excretion and chiral inversion of ketoprofen enantiomers in perfused rat liver. J Pharm Sci 1995; 84: 1327–31PubMedCrossRefGoogle Scholar
  39. 39.
    Populaire P, Terlain B, Pascal S, et al. Biological behaviour: plasmatic levels, excretion and biotransformation of 2-(3-benzoylphenyl)propionic acid (ketoprofen) in animals and man. Ann Pharm Fr 1973; 31: 735–49PubMedGoogle Scholar
  40. 40.
    Delbarre F, Roucayrol JC, Amor B, et al. Pharmacokinetic study of ketoprofen (19.583 RP) in man using the tritiated compound. Scand J Rheumatol Suppl. 1976; 14: 45–52Google Scholar
  41. 41.
    Artigas R, Barbanoj MJ, Gich I. Pharmacokinetic study of LM-1158. Comparison of the relative bioavailability of two different formulations of LM-1158 and ketoprofen after a single oral dose administration in healthy volunteers. 1993. Report code: FC8/LM-11588/92Google Scholar
  42. 42.
    Jamali F. Pharmacokinetics of enantiomers of chiral nonsteroidal anti-inflammatory drugs. Eur J Drug Metab Pharmacokinet 1988; 13: 1–9PubMedCrossRefGoogle Scholar
  43. 43.
    Mayer JM. Stereoselective metabolism of anti-inflammatory 2-arylpropionates. Acta Pharm Nord 1990; 2: 197–216PubMedGoogle Scholar
  44. 44.
    Wechter WJ. Drug chirality: on the mechanism of R-aryl propionic acid class NSAIDs. Epimerization in humans and the clinical implications for the use of racemates. J Clin Pharmacol 1994; 34: 1036–42PubMedGoogle Scholar
  45. 45.
    Nakamura Y, Yamaguchi T, Takahashi S, et al. Optical isomerization mechanism of R-(−)-hydratropic acid derivatives. J Pharmacobio Dyn 1980; 4: S–1Google Scholar
  46. 46.
    Caldwell J. Xenobiotic acyl-coenzymes A: critical intermediates in the biochemical pharmacology and toxicology of car-boxylic acids. Biochem Soc Trans 1984; 12: 9–11PubMedGoogle Scholar
  47. 47.
    Reichel C, Bang H, Brune K, et al. 2-arylpropionyl-CoA epimerase: partial peptide sequences and tissue localization. Biochem Pharmacol 1995; 50: 1803–6PubMedCrossRefGoogle Scholar
  48. 48.
    Benoit E, Delatour P, Olivier L, et al. (−)-R-fenoprofen: formation of fenoprofenyl-coenzyme A by rat liver microsomes. Biochem Pharmacol 1995; 49: 1717–20PubMedCrossRefGoogle Scholar
  49. 49.
    Soraci A, Benoit E. In vitro fenoprofenyl-coenzyme A thioester formation: interspecies variations. Chirality 1995; 7: 534–40PubMedCrossRefGoogle Scholar
  50. 50.
    Tanaka Y, Shimomura Y, Hirota T, et al. Formation of glycine conjugate and (−)-(R)-enantiomer from (+)-(S)-2-phenylpropionic acid suggesting the formation of the CoA thioester intermediate of (+)-(S)-enantiomer in dogs. Chirality 1992; 4: 342–8PubMedCrossRefGoogle Scholar
  51. 51.
    King J, Mauron C, LeGoff C, et al. Bidirectional chiral inversion of the enantiomers of the nonsteroidal anti-inflammatory drug oxindanac in dogs. Chirality 1994; 6: 460–6PubMedCrossRefGoogle Scholar
  52. 52.
    Mis R, Tost D, Ortega E, et al. Bioinversion of ketoprofen enantiomers in several species. Methods Find Exp Clin Pharmacol 1994; 16 Suppl. 1: 81Google Scholar
  53. 53.
    Carabaza A, Suesa N, Tost D, et al. Stereoselective metabolic pathways of ketoprofen in the rat: incorporation into triacylglycerols and enantiomeric inversion. Chirality 1996; 8: 163–72PubMedCrossRefGoogle Scholar
  54. 54.
    Menzel-Soglowek S, Geisslinger G, Mollenhauer J, et al. Metabolic chiral inversion of 2-arylpropionates in rat H4IIE and human Hep G2 hepatoma cells. Relationship to in vivo metabolism. Biochem Pharmacol 1992; 43: 1487–92PubMedCrossRefGoogle Scholar
  55. 55.
    Aberg G, Ciofalo VB, Pendleton R, et al. Inversion of (R)-to (S)-ketoprofen in eight animal species. Chirality 1995; 7: 383–7PubMedCrossRefGoogle Scholar
  56. 56.
    Gich I, Bayes M, Barbanoj MJ, et al. Bioinversion of R (−)-ketoprofen following oral administration in healthy volunteers. Clin Drug Invest 1996; 11: 347–53CrossRefGoogle Scholar
  57. 57.
    Williams KM. Enantiomers in arthritic disorders. Pharmacol Ther 1990; 46: 273–95PubMedCrossRefGoogle Scholar
  58. 58.
    Williams K, Day R, Knihinicki R, et al. The stereoselective uptake of ibuprofen enantiomers into adipose tissue. Biochem Pharmacol 1986; 35: 3403–5PubMedCrossRefGoogle Scholar
  59. 59.
    Sallustio BC, Meffin PJ, Knights KM. The stereospecific incorporation of fenoprofen into rat hepatocyte and adipocyte triacylglycerols. Biochem Pharmacol 1988; 37: 1919–23PubMedCrossRefGoogle Scholar
  60. 60.
    Zhao B, Geisslinger G, Hall I, et al. The effect of the enantiomers of ibuprofen and flurbiprofen on the beta-oxidation of palmitate in the rat. Chirality 1992; 4: 137–41PubMedCrossRefGoogle Scholar
  61. 61.
    Knights KM, Drew R. The effects of ibuprofen enantiomers on hepatocyte intermediary metabolism and mitochondrial respiration. Biochem Pharmacol 1992; 44: 1291–6PubMedCrossRefGoogle Scholar
  62. 62.
    Roberts BJ, Knights KM. Inhibition of rat peroxisomal palmitoyl-CoA ligase by xenobiotic carboxylic acids. Biochem Pharmacol 1992; 44: 261–7PubMedCrossRefGoogle Scholar
  63. 63.
    Mayer JM, Roydevis M, Audergon C, et al. Interactions of antiinflammatory 2-arylpropionates (profens) with the metabolism of fatty acids: in vitro studies. Int J Tissue React 1994; 16: 59–72PubMedGoogle Scholar
  64. 64.
    Sallustio BC, Knights KM, Meffin PJ. The stereospecific inhibition of endogenous triacylglycerol synthesis by fenoprofen in rat isolated adipocytes and hepatocytes. Biochem Pharmacol 1990; 40: 1414–7PubMedCrossRefGoogle Scholar
  65. 65.
    Gich I, Barbanoj MJ, Artigas R, et al. New fast-onset oral formulation of dexketoprofen. 6th INWIN′95 (Interscience World Conference on Inflammation, Antirheumatics, Analgesics and Immunomodulators). 1995 Mar 28-30: GenevaGoogle Scholar
  66. 66.
    Evans AM. Enantioselective pharmacodynamics and pharma-cokinetics of chiral non-steroidal anti-inflammatory drugs. Eur J Clin Pharmacol 1992; 42: 237–56PubMedCrossRefGoogle Scholar
  67. 67.
    Xie W, Robertson DL, Simmons DL. Mitogen-inducible pros-taglandin G/H synthase: a new target for nonsteroidal anti-inflammatory drugs. Drug Rev Res 1992; 25: 249CrossRefGoogle Scholar
  68. 68.
    Jones DA, Carlton DP, McIntyre TM, et al. Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines. J Biol Chem 1993; 268: 9049–54PubMedGoogle Scholar
  69. 69.
    Seibert K, Zhang Y, Leahy K, et al. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci USA 1994; 91: 12013–7PubMedCrossRefGoogle Scholar
  70. 70.
    Vane JR, Mitchell JA, Appleton I, et al. Inducible isoforms of cyclo-oxygenase and nitric oxide synthase in inflammation. Proc Natl Acad Sci USA 1994; 91: 2046–50PubMedCrossRefGoogle Scholar
  71. 71.
    Vane JR, Botting RM. New insights into the mode of action of anti-inflammatory drugs. Inflamm Res 1995; 44: 1–10PubMedCrossRefGoogle Scholar
  72. 72.
    Dray A. Inflammatory mediators of pain. Br J Anaesth 1995; 75: 125–31PubMedGoogle Scholar
  73. 73.
    Rang HP, Urban L. New molecules in analgesia. Br J Anaesth 1995; 75: 145–56PubMedGoogle Scholar
  74. 74.
    Mitchell JA, Akarasereenont P, Thiemermann C, et al. Selectivity of nonsteroidal anti-inflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci USA 1993; 90: 11693–7PubMedCrossRefGoogle Scholar
  75. 75.
    Meade EA, Smith WL, DeWitt DL. Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem 1993; 268: 6610–4PubMedGoogle Scholar
  76. 76.
    Tavares IA, Bishai PM, Bennett A. Activity of nimesulide on constitutive and inducible cyclooxygenases. Arzneimittel Forschung 1995; 45: 1093–5PubMedGoogle Scholar
  77. 77.
    Glaser K, Sung ML, O’Neill K, et al. Etodolac selectively inhibits human prostaglandin G/H synthase 2 (PGHS-2) versus human PGHS-1. Eur J Pharmacol 1995; 281: 107–11PubMedCrossRefGoogle Scholar
  78. 78.
    Cipollone F, Ganci A, Panara MR, et al. Effects of nabumetone on prostanoid biosynthesis in humans. Clin Pharmacol Ther 1995; 58: 335–41PubMedCrossRefGoogle Scholar
  79. 79.
    Vane JR, Botting RM. The mode of action of anti-inflammatory drugs. Postgrad Med 1990; 66 Suppl. 4: S2–17Google Scholar
  80. 80.
    Gaut ZN, Baruth H, Randall LO, et al. Stereoisomeric relationship among anti-inflammatory activity, inhibition of platelet aggregation, and inhibition of prostaglandin synthetase. Prostaglandins 1975; 10: 59–66PubMedGoogle Scholar
  81. 81.
    Ku EC, Wasvary JM. Inhibition of prostaglandin synthase by pirprofen. Studies with sheep seminal vesicle enzyme. Biochim Biophys Acta 1975; 384: 360–8PubMedCrossRefGoogle Scholar
  82. 82.
    Adams SS, Bresloff P, Mason CG. Pharmacological differences between the optical isomers of ibuprofen: evidence for metabolic inversion of (−)-R isomer. J Pharm Pharmacol 1976; 28: 256–7PubMedCrossRefGoogle Scholar
  83. 83.
    Buttinoni A, Ferrari M, Colombo M, et al. Biological activity of indoprofen and its optical isomers. J Pharm Pharmacol 1983; 35: 603–4PubMedCrossRefGoogle Scholar
  84. 84.
    Guzman A, Yuste F, Toscano RA, et al. Absolute configuration of (−)-5-benzoyl-1,2-dihydro-3H-pyrrolo[ 1,2α]pyrrole-1-carboxylic acid, the active enantiomer of ketorolac. J Med Chem 1986; 29: 589–91PubMedCrossRefGoogle Scholar
  85. 85.
    Yamaguchi T, Hirose K, Nakamura Y, et al. The inhibitory activities of 480156-S and its related compounds on prostaglandin synthetase. Folia Pharmacol Jpn 1987; 90: 295–302CrossRefGoogle Scholar
  86. 86.
    Patrignani P, Volpi D, Ferrario R, et al. Effects of racemic, S-and R-indobufen on cyclooxygenase and lipoxygenase activities in human whole blood. Eur J Pharmacol 1990; 191: 83–8PubMedCrossRefGoogle Scholar
  87. 87.
    Cerletti C, Manarini S, Colombo M, et al. The (+)enantiomer is responsible for the antiplatelet and anti-inflammatory activity of (±)-indobufen. J Pharm Pharmacol 1990; 42: 885–7PubMedCrossRefGoogle Scholar
  88. 88.
    Evans AM, Nation RL, Sansom LN, et al. Effect of racemic ibuprofen dose on the magnitude and duration of platelet cyclooxygenase inhibition: relationship between inhibition of thromboxane production and the plasma unbound concentration of S(+)-ibuprofen. Br J Clin Pharmacol 1991; 31: 131–8PubMedCrossRefGoogle Scholar
  89. 89.
    Moreno JJ, Calvo L, Fernandez F, et al. Biological activity of ketoprofen and its optical isomers. Eur J Pharmacol 1990; 183: 2263–4CrossRefGoogle Scholar
  90. 90.
    Brune K, Beck WS, Geisslinger G, et al. Aspirin-like drugs may block pain independently of prostaglandin synthesis inhibition. Experientia 1991; 47: 257–61PubMedCrossRefGoogle Scholar
  91. 91.
    Suesa N, Fernandez MF, Gutierrez M, et al. Stereoselective cyclooxygenase inhibition in cellular models by the enantiomers of ketoprofen. Chirality 1993; 5: 589–95PubMedCrossRefGoogle Scholar
  92. 92.
    Moreno JJ, Calvo L, Fernandez F, et al. Biological activity of ketoprofen and its optical isomers. XIth International Congress of Pharmacology. 1990 Jul 1: AmsterdamGoogle Scholar
  93. 93.
    Villanueva M, Heckenberger R, Strobach H, et al. Equipotent inhibition by R(−)-, S(+)- and racemic ibuprofen of human polymorphonuclear cell function in vitro. Br J Clin Pharmacol 1993; 35: 235–42PubMedCrossRefGoogle Scholar
  94. 94.
    Panara MR, Greco A, Santini G, et al. Effects of the novel anti-inflammatory compounds, N-[2-(cyclohexyloxy)-4-nitrophenyl]methanesulphonamide (NS-398) and 5-meth-ane- sulphonamido-6-(2,4-difluorothiophenyl)-1 -indanone (L745,337), on the cyclo-oxygenase activity of human blood prostaglandin endoperoxide synthases. Br J Pharmacol 1995; 116: 2429–34PubMedCrossRefGoogle Scholar
  95. 95.
    Carabaza A, Cabré F, Rotllán E, et al. Stereoselective inhibition of inducible cyclooxygenase by chiral non-steroidal anti-in-flammatory drugs. J Clin Pharmacol. In pressGoogle Scholar
  96. 96.
    Ferrer X, Fernández MF, Calvo L, et al. Anti-inflammatory activity of S-(+)-ketoprofen in the carrageenan-induced paw edema of the rat. Methods Find Exp Clin Pharmacol 1994; 16 Suppl. 1: 82Google Scholar
  97. 97.
    Woolf CJ. A new strategy for the treatment of inflammatory pain. Prevention or elimination of central sensitisation. Drugs 1994; 47: 1–9PubMedCrossRefGoogle Scholar
  98. 98.
    Brune K. Spinal cord effects of antipyretic analgesics. Drugs 1994; 47: 21–7PubMedCrossRefGoogle Scholar
  99. 99.
    McCormack K. The spinal actions of nonsteroidal anti-inflammatory drugs and the dissociation between their anti-inflammatory and analgesic effects. Drugs 1994; 47: 28–45PubMedCrossRefGoogle Scholar
  100. 100.
    McCormack K. Non-steroidal anti-inflammatory drugs and spinal nociceptive processing. Pain 1994; 59: 9–43PubMedCrossRefGoogle Scholar
  101. 101.
    Cashman J, McAnulty G. Nonsteroidal anti-inflammatory drugs in perisurgical pain management. Mechanisms of action and rationale for optimum use. Drugs 1995; 49: 51–70PubMedCrossRefGoogle Scholar
  102. 102.
    Jurna I. Acetylsalicylic acid and related compounds depress nociceptive activity in the thalamus by a central action: indications for the involvement of prostaglandins. Prog Pharmacol Clin Pharmacol 1993; 10: 51–68Google Scholar
  103. 103.
    Yaksh TL, Malmberg AB. Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the formalin test in the rat. J Pharmacol Exp Ther 1992; 263: 136–46PubMedGoogle Scholar
  104. 104.
    Yaksh TL, Malmberg AB. Spinal actions of NSAIDs in blocking spinally mediated hyperalgesia: the role of cyclooxygenase products. Agents Actions Suppl. 1993; 41: 89–100PubMedGoogle Scholar
  105. 105.
    Brune K, Menzel-Soglowek S, Zeilhofer HU. Differential analgesic effects of aspirin-like drugs. Drugs 1992; 44: 52–9PubMedCrossRefGoogle Scholar
  106. 106.
    Urquhart E. Central analgesic activity of nonsteroidal anti-inflammatory drugs in animal and human pain models. Semin Arthritis Rheum 1993; 23: 198–205PubMedCrossRefGoogle Scholar
  107. 107.
    Rice ASC, Lloyd J, Bullingham RES, et al. Ketorolac penetration into the cerebrospinal fluid of humans. J Clin Anesth 1993; 5: 459–62PubMedCrossRefGoogle Scholar
  108. 108.
    Bannwarth B, Lapicque F, Pehourcq F, et al. Stereoselective disposition of ibuprofen enantiomers in human cerebrospinal fluid. Br J Clin Pharmacol 1995; 40: 266–9PubMedCrossRefGoogle Scholar
  109. 109.
    Netter P, Lapicque F, Bannwarth B, et al. Diffusion of intramuscular ketoprofen into the cerebrospinal fluid. Eur J Clin Pharmacol 1985; 29: 319–21PubMedCrossRefGoogle Scholar
  110. 110.
    Malmberg A, Yaksh TL. Cyclooxygenase inhibition and the spinal release of prostaglandin E2 and amino acids evoked by paw formalin injection: a microdialysis study in unanesthe-tized rats. J Neurosci 1995; 15: 2768–76PubMedGoogle Scholar
  111. 111.
    Malmberg A, Yaksh TL. Antinociception produced by spinal delivery of the S and R enantiomers of flurbiprofen in the formalin test. Eur J Pharmacol 1994; 256: 205–9PubMedCrossRefGoogle Scholar
  112. 112.
    Knihinicki RD, Day RO, Graham GG, et al. Stereoselective disposition of ibuprofen and flurbiprofen in rats. Chirality 1990; 2: 134–40PubMedCrossRefGoogle Scholar
  113. 113.
    Peskar BM, Kluge S, Peskar BA, et al. Effects of pure enantiomers of flurbiprofen in comparison to racemic flurbiprofen on eicosanoid release from various rat organs ex vivo. Prostaglandins 1991; 42: 515–31PubMedCrossRefGoogle Scholar
  114. 114.
    Sunshine A, Zighelboim J, Olson N, et al. Flurbiprofen, flurbiprofen dextrorotatary component (BTS 24332), and placebo in post episiotomy pain. Clin Pharmacol Ther 1987; 42: 162CrossRefGoogle Scholar
  115. 115.
    Fernandez MF, Ferrer X, Calvo L, et al. Analgesic activity of S-(+)-ketoprofen in the abdominal pain induced by phenylbenzoquinone in the mouse. Methods Find Exp Clin Pharmacol 1994; 16 Suppl. 1: 83Google Scholar
  116. 116.
    Jaques R. Antagonism of non-steroidal anti-inflammatory drugs and narcotic analgesics against ethacrynic acid induced writhing. Arzneimittel Forschung 1977; 27: 1698–700PubMedGoogle Scholar
  117. 117.
    Calvo L, Fernandez MF, Ferrer X, et al. Analgesic activity of ketoprofen enantiomers in the abdominal pain induced by in-traperitoneal injection of etacrinic acid in the rat. Methods Find Exp Clin Pharmacol 1994; 16 Suppl. 1: 83Google Scholar
  118. 118.
    Speirs CJ. Comparison of the safety of several nonsteroidal anti-inflammatory drugs currently or formerly marketed in the United Kingdom. J Clin Pharmacol 1988; 28: S8–12PubMedGoogle Scholar
  119. 119.
    Meryn S. Nonsteroidal anti-inflammatory drugs and peptic ulcers — mechanisms, risk factors and treatment. Clin Exp Rheumatol 1994; 12: 119–21PubMedGoogle Scholar
  120. 120.
    Committee on Safety of Medicines update. Non steroidal anti-inflammatory drugs and serious gastrointestinal adverse reactions. BMJ 1986; 292: 614–9CrossRefGoogle Scholar
  121. 121.
    Wright V, Elshal WS, Hopkins R, et al. NSAID gastropathy in rheumatology: an audit and review of the literature. J Drug Develop Clin Practice 1995; 7: 21–9Google Scholar
  122. 122.
    Armstrong CP, Blower AL. Non-steroidal anti-inflammatory drugs and life threatening complications of peptic ulceration. Gut 1987; 28: 527–32PubMedCrossRefGoogle Scholar
  123. 123.
    Bateman DN. NSAIDs: time to re-evaluate gut toxicity. Lancet 1994; 343: 1051–2PubMedCrossRefGoogle Scholar
  124. 124.
    Rainsford KD. Mechanisms of gastrointestinal toxicity of nonsteroidal anti-inflammatory drugs. Scand J Gastroenterol 1989; 24 Suppl. 163: 9–16CrossRefGoogle Scholar
  125. 125.
    Ligumsky M, Sestieri M, Zimmerman J, et al. Rectal administration of nonsteroidal anti-inflammatory drugs. Effect on rat gastric ulcerogenicity and prostaglandin E2 synthesis. Gastroenterology 1990; 98: 1245–9PubMedGoogle Scholar
  126. 126.
    Beck WS, Schneider HT, Dietzel K, et al. Gastrointestinal ulceration induced by anti-inflammatory drugs in rats. Arch Toxicol 1990; 64: 210–7PubMedCrossRefGoogle Scholar
  127. 127.
    Brune K. Is there a rational basis for the different spectra of adverse effects of nonsteroidal anti-inflammatory drugs (NSAIDs)?. Drugs 1990; 40 Suppl. 5: 12–5PubMedCrossRefGoogle Scholar
  128. 128.
    Wallace JL, Keenan CM, Granger N. Gastric ulceration induced by nonsteroidal anti-inflammatory drugs is a neutrophil dependent process. Am J Physiol 1990; 359: G462–7Google Scholar
  129. 129.
    Taha AS, Sturrock RD, Russell RI. Mucosal erosions in longterm non-steroidal anti-inflammatory drug users: predisposition to ulceration and relation to Helicobacter pylori. Gut 1995; 36: 334–6PubMedCrossRefGoogle Scholar
  130. 130.
    Mizokami Y, Tamura K, Fukuda Y, et al. Non-steroidal anti-inflammatory drugs associated with gastroduodenal injury and Helicobacter pylori. Eur J Gastroenterol Hepatol 1994; 6: S109–12PubMedCrossRefGoogle Scholar
  131. 131.
    Rainsford K. The comparative gastric ulcerogenic activities of non-steroid anti-inflammatory drugs. Agents Actions 1977; 7: 573–7PubMedCrossRefGoogle Scholar
  132. 132.
    Dearden JC, Nicholson RM. Correlation between gastric irritancy and anti-inflammatory activity of non-steroidal anti-inflammatory drugs. J Pharm Pharmacol 1984; 36: 713–5PubMedCrossRefGoogle Scholar
  133. 133.
    Bergmann JF, Chassany O, Geneve J, et al. Endoscopic evaluation of the effect of ketoprofen, ibuprofen and aspirin on the gastroduodenal mucosa. Eur J Clin Pharmacol 1992; 42: 685–8PubMedCrossRefGoogle Scholar
  134. 134.
    Savage RL, Moller PW, Ballantyne CL, et al. Variation in the risk of peptic ulcer complications with nonsteroidal anti-inflammatory drug therapy. Arthritis Rheum 1993; 36: 84–90PubMedCrossRefGoogle Scholar
  135. 135.
    Lanza LL, Walker AM, Bortnichak EA, et al. Peptic ulcer and gastrointestinal haemorrhage associated with nonsteroidal anti-inflammatory drug use in patients younger than 65 years: a large health maintenance organization cohort study. Arch Intern Med 1995; 155: 1371–7PubMedCrossRefGoogle Scholar
  136. 136.
    Langman MJ, Weil J, Lawson DH, et al. Risks of bleeding peptic ulcer associated with individual non-steroidal anti-inflammatory drugs. Lancet 1994; 343: 1075–8PubMedCrossRefGoogle Scholar
  137. 137.
    Garcia Rodriguez LA, Jick H. Risk of upper gastrointestinal bleeding and perforation associated with individual nonsteroidal anti-inflammatory drugs. Lancet 1994; 343: 769–72PubMedCrossRefGoogle Scholar
  138. 138.
    Wechter WJ, Bigornia A, Murray ED, et al. Rac-flurbiprofen is more ulcerogenic than its S-enantiomer. Chirality 1993; 5: 492–4PubMedCrossRefGoogle Scholar
  139. 139.
    Fernández MF, Calvo L, Ferrer X, et al. Study of gastric damage caused by single oral administration of LM-1158. TRIS and LM-1158 suspension in rats. 1993. Report codes: PHAR5/-LM-1158/92;PHAR17/LM-1158.TRIS/93Google Scholar
  140. 140.
    Fernández MF, Calvo L, Ferrer X, et al. Study of gastric damage caused by repeated oral administration of LM-1158.TRIS and LM-1158 suspension in rats. 1993. Report code: PHAR6/LM-1158/92; PHAR18/LM-1158.TRIS/93Google Scholar
  141. 141.
    Sjarnason I, MacPherson AJS. Intestinal toxicity of nonsteroidal anti-inflammatory drugs. Pharmacol Ther 1994; 62: 145–7CrossRefGoogle Scholar
  142. 142.
    Levi S, Shaw-Smith C. Non-steroidal anti-inflammatory drugs: how do they damage the gut? Br J Rheumatol 1994; 33: 605–12PubMedCrossRefGoogle Scholar
  143. 143.
    Hochain P, Colin R. Side effects of non-steroidal anti-inflammatory drugs on the small and large intestine. Gastroenterol Clin Biol 1995; 19: B79–83PubMedGoogle Scholar
  144. 144.
    Bidlingmaier A, Hammermaier A, Nagyivanyi P, et al. Gastrointestinal blood loss induced by three different nonsteroidal anti-inflammatory drugs. Arzneimittel Forschung 1995; 45: 491–3PubMedGoogle Scholar
  145. 145.
    Myllykangas-Luosujarvi R, Aho K, Isomaki H. Death attributed to antirheumatic medication in a nationwide series of 1666 patients with rheumatoid arthritis who have died. J Rheumatol 1995; 22: 2214–7PubMedGoogle Scholar
  146. 146.
    Wright MR, Davies NM, Jamali F. Rationale for the development of stereochemically pure enantiomers: are the R enantiomers of NSAIDs inactive? J Pharm Sci 1994; 83: 911–2PubMedCrossRefGoogle Scholar
  147. 147.
    Zapatero MI, Fernandez MF, Cabre F, et al. Gastrointestinal ulcerogenic effect of racemic ketoprofen and its enantiomers in the rat. V Congreso de Ciencias Farmaceuticas. Alcala de Henares, 15-18 November, 1995Google Scholar
  148. 148.
    Hersh EV. The efficacy and safety of ketoprofen in postsurgical dental pain. Compend Contin Educ Dent 1991; 12: 234–6Google Scholar
  149. 149.
    Lobo R, Gallardo F, Henríquez E, et al. Analgesic activity of ketoprofen in post-operative oral surgery pain. IRCS Med Sci 1983; 11: 639–40Google Scholar
  150. 150.
    Cooper SA, Gelb SB, Cavaliere MBM, et al. An analgesic relative potency assay comparing ketoprofen and aspirin in postoperative dental pain. Adv Ther 1984; 1: 410–8Google Scholar
  151. 151.
    Mehlisch D, Frakes L, Cavaliere MB, et al. Double-blind parallel comparison of single oral doses of ketoprofen, codeine, and placebo in patients with moderate to severe dental pain. J Clin Pharmacol 1984; 24: 486–92PubMedGoogle Scholar
  152. 152.
    Cooper SA, Berrie R, Cohn P. Comparison of ketoprofen, ibuprofen, and placebo in a dental surgery pain model. Adv Ther 1988; 5: 43–53Google Scholar
  153. 153.
    Niemi L, Tuominen M, Pitkanen M, et al. Comparison of parenteral diclofenac and ketoprofen for postoperative pain relief after maxillofacial surgery. Acta Anaesthesiol Scand 1995; 39: 96–9PubMedCrossRefGoogle Scholar
  154. 154.
    Fernández MF, Calvo L, Ferrer X, et al. Study of oral analgesia in mice in the test of phenylbenzoquinone-induced abdominal pain. 1993. Report code: PHAR12/LM-1158.TRIS/93Google Scholar
  155. 155.
    Gay C, Planas E, Donado M, et al. Analgesic effect of low doses of dexketoprofen in the dental pain model: a randomised, double-blind, placebo-controlled study. Clin Drug Invest 1996; 11: 320–30CrossRefGoogle Scholar
  156. 156.
    Li G, Treiber G, Maier K, et al. Disposition of ibuprofen in patients with liver cirrhosis. Stereochemical considerations. Clin Pharmacokinet 1993; 25: 154–63PubMedCrossRefGoogle Scholar
  157. 157.
    Castillo M, Smith PC. Disposition and reactivity of ibuprofen and ibufenac acyl glucuronides in vivo in the Rhesus monkey and in vitro with human serum albumin. Drug Metab Dispos 1995; 23: 566–72PubMedGoogle Scholar
  158. 158.
    Castillo M, Lam YWF, Dooley MA, et al. Disposition and covalent binding of ibuprofen and its acyl glucuronide in the elderly. Clin Pharmacol Ther 1995; 57: 636–44PubMedCrossRefGoogle Scholar
  159. 159.
    Smith PC, Liu JH. Covalent binding of suprofen to renal tissue of rat correlates with excretion of its acyl glucuronide. Xenobiotica 1995; 25: 531–40PubMedCrossRefGoogle Scholar
  160. 160.
    Rudy AC, Knight PM, Brater DC, et al. Enantioselective disposition of ibuprofen in elderly persons with and without renal impairment. J Pharm Exp Ther 1995; 273: 88–93Google Scholar
  161. 161.
    Chen CY, Chen CS. Stereoselective disposition of ibuprofen in patients with compromised renal haemodynamics. Br J Clin Pharmacol 1995; 40: 67–72PubMedCrossRefGoogle Scholar
  162. 162.
    Xiaotao Q, Hall SD. Enantioselective effects of experimental diabetes mellitus on the metabolism of ibuprofen. J Pharm Exp Ther 1995; 274: 1192–8Google Scholar
  163. 163.
    Rey E, Pariente-Khayat A, Gouyet L, et al. Stereoselective disposition of ibuprofen enantiomers in infants. Br J Clin Pharmacol 1994; 38: 373–5PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 1996

Authors and Affiliations

  • David Mauleón
    • 1
  • Remei Artigas
    • 1
  • M. Luisa García
    • 1
  • Germano Carganico
    • 2
  1. 1.Research and Development DepartmentLaboratorios Menarini SABarcelonaSpain
  2. 2.Menarini Ricerche SudFlorenceItaly

Personalised recommendations