Skip to main content

Drug Chirality and its Clinical Significance

Summary

Approximately 1 in 4 therapeutic agents are marketed as racemic mixtures, the individual enantiomers of which frequently differ in both their pharmacodynamic and pharmacokinetic profiles. The use of racemates has become the subject of considerable discussion in recent years, and an area of concern for both the pharmaceutical industry and regulatory authorities. The use of single enantiomers has a number of potential clinical advantages, including an improved therapeutic/pharmacological profile, a reduction in complex drug interactions, and simplified pharmacokinetics. In a number of instances stereochemical considerations have contributed to an understanding of the observed pharmacological effects of a drug administered as a racemate. However, relatively little is known of the influence of patient factors (e.g. disease state, age, gender and genetics) on drug enantiomer disposition and action in man. Examples may also be cited where the use of single enantiomers, nonracemic mixtures and racemates of currently used agents may offer clinical advantages. The issues associated with drug chirality are complex and depend upon the relative merits of the individual agent. In the future it is likely that a number of existing racemates will be re-marketed as single enantiomer products with potentially improved clinical profiles and possible novel therapeutic indications.

This is a preview of subscription content, access via your institution.

References

  1. Ariens EJ, Wuis EW, Veringa EJ. Stereoselectivity of bioactive xenobiotics. A pre-Pasteur attitude in medicinal chemistry, pharmacokinetics and clinical pharmacology. Biochem Pharmacol 1988; 37: 9–18

    PubMed  Article  CAS  Google Scholar 

  2. Cushny AR. Biological relations of optically isomeric substances. London: Bailliere, Tindall and Cox, 1926

    Google Scholar 

  3. Mason S. The left hand of nature. New Scientist 1984; 101: 10–4

    CAS  Google Scholar 

  4. Matteson D. Through the chemical looking glass. New Scientist 1991; 132: 35–9

    Google Scholar 

  5. Hawkes N. Lateral thinking. Times Magazine: 5 Jun 1993: 30-1

  6. Moran N. Drug firms sort their lefts from their rights. Independent on Sunday: 7 Nov 1993

  7. Controulis J, Rebstock MC, Crooks HM. Chloramphenicol (chloromycetin) V. Synthesis. J Am Chem Soc 1949; 71: 2463–8

    Article  CAS  Google Scholar 

  8. Rebstock MC, Crooks HM, Controulis J, et al. Chloramphenicol (chloromycetin) IV. Chemical studies. J Am Chem Soc 1949; 71: 2458–62

    Article  CAS  Google Scholar 

  9. Ceccarini G, Maione AM. Variations of optical rotation of naproxen: polarimetric determination in the presence of non-chiral basic compounds. J Pharm Sci 1989; 78: 1053–4

    PubMed  Article  CAS  Google Scholar 

  10. Williams K, Lee E. Importance of drug enantiomers in clinical pharmacology. Drugs 1985; 30: 333–54

    PubMed  Article  CAS  Google Scholar 

  11. Cahn RS, Ingold CK, Prelog V. The specification of asymmetric configuration in organic chemistry. Experientia 1956; 12: 81–94

    Article  CAS  Google Scholar 

  12. Easson LH, Stedman E. Studies on the relationship between chemical constitution and physiological action. V. Molecular dissymmetry and physiological activity. Biochem J 1933; 27: 1257–66

    PubMed  CAS  Google Scholar 

  13. Lehmann PAF, De Miranda JFR, Ariens EJ. Stereoselectivity and affinity in molecular pharmacology. In: Jucker E, editor. Progress in drug research. Vol. 20. Basel: Birkhauser Verlag, 1976: 101–42

    Google Scholar 

  14. Lehmann PAF. Quantifying stereoselectivity or how to choose a pair of shoes when you have two left feet. Trend Pharmacol Sci 1982; 3: 103–6

    Article  Google Scholar 

  15. Powell JR, Ambre JJ, Ruo TI. The efficacy and toxicity of drug stereoisomers. In: Wainer IW, Drayer DE, editors. Drug stereochemistry. Analytical methods and pharmacology. New York: Marcel Dekker, 1988: 245–70

    Google Scholar 

  16. Triggle DJ. On the other hand: the stereoselectivity of drug action at ion channels. Chirality 1994; 6: 58–62

    PubMed  Article  CAS  Google Scholar 

  17. Caldwell J, Winter SM, Hutt AJ. The pharmacological and toxicological significance of the stereochemistry of drug disposition. Xenobiotica 1988; 18 Suppl. 1: 59–70

    PubMed  CAS  Google Scholar 

  18. Tucker GT, Lennard MS. Enantiomer specific pharmacokinetics. Pharmacol Ther 1990; 45: 309–29

    PubMed  Article  CAS  Google Scholar 

  19. Levy RH, Boddy AV. Stereoselectivity in pharmacokinetics: a general theory. Pharm Res 1991; 8: 551–6

    PubMed  Article  CAS  Google Scholar 

  20. Ariens EJ. Stereochemistry, a basis for sophisticated nonsense in pharmacokinetics and clinical pharmacology. Eur J Clin Pharmacol 1984; 26: 663–8

    PubMed  Article  CAS  Google Scholar 

  21. Eichelbaum M. Pharmacokinetic and pharmacodynamic consequences of stereoselective drug metabolism in man. Biochem Pharmacol 1988; 37: 93–6

    PubMed  Article  CAS  Google Scholar 

  22. Longstreth JA. Verapamil. A chiral challenge to the pharmacokinetic and pharmacodynamic assessment of bioavailability and bioequivalence. In: Wainer IW, editor. Drug stereochemistry. Analytical methods and pharmacology. 2nd ed. New York: Marcel Dekker, 1993: 315–36

    Google Scholar 

  23. Vogelgesang B, Echizen H, Schmidt E, et al. Stereoselective first-pass metabolism of highly cleared drugs: studies of the bioavailability of L- and D-verapamil examined with a stable isotope technique. Br J Clin Pharmacol 1984; 18: 733–40

    PubMed  Article  CAS  Google Scholar 

  24. Echizen H, Vogelgesang B, Eichelbaum M. Effects of d, 1-verapamil on atrioventricular conduction in relation to its stereoselective first-pass metabolism. Clin Pharmacol Ther 1985; 38: 71–6

    PubMed  Article  CAS  Google Scholar 

  25. Coltart DJ, Shand DG. Plasma propranolol levels in the quantitative measurement of β-adrenergic blockade in man. BMJ 1970; 3: 731–4

    PubMed  Article  CAS  Google Scholar 

  26. Walle T, Webb JG, Bagwell EE, et al. Stereoselective delivery and actions of beta receptor antagonists. Biochem Pharmacol 1988; 37: 115–24

    PubMed  Article  CAS  Google Scholar 

  27. Walle T, Conradi EC, Walle UK, et al. 4-Hydroxypropranolol and its glucuronide after single and long-term doses of propranolol. Clin Pharmacol Ther 1980; 27: 22–31

    PubMed  Article  CAS  Google Scholar 

  28. Li G, Treiber G, Maier K, et al. Disposition of ibuprofen in patients with liver cirrhosis. Stereochemical considerations. Clin Pharmacokinet 1993; 25: 154–63

    PubMed  Article  CAS  Google Scholar 

  29. Avgerinos A, Hutt AJ. Interindividual variability in the enantiomeric disposition of ibuprofen following the oral administration of the racemic drug to healthy volunteers. Chirality 1990; 2: 249–56

    PubMed  Article  CAS  Google Scholar 

  30. Hutt AJ, Caldwell J. The metabolic chiral inversion of 2-arylpropionic acids — a novel route with pharmacological consequences. J Pharm Pharmacol 1983; 35: 693–704

    PubMed  Article  CAS  Google Scholar 

  31. Caldwell J, Hutt AJ, Fournel-Gigleux S. The metabolic chiral inversion and dispositional enantioselectivity of the 2-arylpropionic acids and their biological consequences. Biochem Pharmacol 1988; 37: 105–14

    PubMed  Article  CAS  Google Scholar 

  32. Williams KM. Enantiomers in arthritic disorders. Pharmacol Ther 1990; 46: 273–95

    PubMed  Article  CAS  Google Scholar 

  33. Evans AM. Enantioselective pharmacodynamics and pharmacokinetics of chiral non-steroidal antiinflammatory drugs. Eur J Clin Pharmacol 1992; 42: 237–56

    PubMed  Article  CAS  Google Scholar 

  34. Chen C-Y, Chen C-S. Stereoselective disposition of ibuprofen in patients with compromised renal haemodynamics. Br J Clin Pharmacol 1995; 40: 67–72

    PubMed  Article  CAS  Google Scholar 

  35. Chandler MHH, Scott SR, Blouin RA. Age associated stereoselective alterations in hexobarbital metabolism. Clin Pharmacol Ther 1988; 43: 436–41

    PubMed  Article  CAS  Google Scholar 

  36. Zhou H-H, Whelan E, Wood AJJ. Lack of effect of ageing on the stereochemical disposition of propranolol. Br J Clin Pharmacol 1992; 33: 121–3

    PubMed  Article  CAS  Google Scholar 

  37. Hooper WD, Qing MS. The influence of age and gender on the stereoselective metabolism and pharmacokinetics of mephobarbital in humans. Clin Pharmacol Ther 1990; 48: 633–40

    PubMed  Article  CAS  Google Scholar 

  38. Lennard MS, Tucker GT, Woods HF. Stereoselectivity in pharmacokinetics and drug metabolism. In: Taylor JB, editor. Comprehensive medicinal chemistry. Vol. 5. Biopharmaceutics. Oxford: Pergamon Press, 1990: 187–204

    Google Scholar 

  39. Lennard MS, Tucker GT, Silas JH, et al. Differential stereoselective metabolism of metoprolol in extensive and poor debrisoquin metabolisers. Clin Pharmacol Ther 1983; 34: 732–7

    PubMed  Article  CAS  Google Scholar 

  40. Walshe JM. Penicillamine, a new oral therapy for Wilson’s Disease. Am J Med 1956; 21: 487–95

    PubMed  Article  CAS  Google Scholar 

  41. Glatt H, Oesch F. Mutagenicity of cysteine and penicillamine and its enantiomeric selectivity. Biochem Pharmacol 1985; 34: 3725–8

    PubMed  Article  CAS  Google Scholar 

  42. Tu J-B, Blackwell RQ, Lee PF. D,L-Penicillamine as a cause of optic axial neuritis. J Am Med Ass 1963; 185: 83–6

    Article  CAS  Google Scholar 

  43. Walshe JM. Chirality of penicillamine [letter]. Lancet 1992; 339: 254

    PubMed  Article  CAS  Google Scholar 

  44. Lee A, Lawton NF. Penicillamine treatment of Wilson’s disease and optic neuropathy. J Neurol Neurosurg Psych 1991; 58: 746

    Article  Google Scholar 

  45. Blaschke G, Kraft HP, Fickentscher K et al. Chromatographische racemattrennung von thalidomid und teratogene Wirkung der enantiomere. Arzneimittelforschung 1979; 29: 1640–2

    PubMed  CAS  Google Scholar 

  46. Scott WJ, Fradkin R, Wilson JG. Non-confirmation of thalido-mide-induced teratogenesis in rats and mice. Teratology 1977; 16: 333–6

    PubMed  Article  CAS  Google Scholar 

  47. Fabro S, Smith RL, Williams RT. Toxicity and teratogenicity of optical isomers of thalidomide. Nature 1967; 215: 269

    Article  Google Scholar 

  48. Eriksson T, Bjorkman S, Roth B, et al. Stereospecific determination, chiral inversion in vitro and pharmacokinetics in humans of the enantiomers of thalidomide. Chirality 1995; 7: 44–52

    PubMed  Article  CAS  Google Scholar 

  49. Testa B, Carrupt P-A, Gal J. The so-called ‘interconversion’ of stereoisomeric drugs: an attempt at clarification. Chirality 1993; 5: 105–11

    PubMed  Article  CAS  Google Scholar 

  50. Banitt EH, Schmid JR, Newmark RA. Resolution of flecainide acetate, N-(2-piperidylmethyl)-2,5-bis (2,2,2-trifluoro-ethoxy) benzamide acetate and antiarrhythmic properties of the enantiomers. J Med Chem 1986; 29: 299–302

    PubMed  Article  CAS  Google Scholar 

  51. Hill RJ, Duff HJ, Sheldon RS. Determinants of stereospecific binding of type I antiarrhythmic drugs to cardiac sodium channels. Mol Pharmacol 1988; 34: 659–63

    PubMed  CAS  Google Scholar 

  52. Gross AS, Mikus G, Fischer C, et al. Stereoselective disposition of flecainide in relation to the sparteine/debrisoquine meta-boliser phenotype. Br J Clin Pharmacol 1989; 28: 555–6

    PubMed  Article  CAS  Google Scholar 

  53. Richards R, Tattersfield AE. Bronchial β-adrenoceptor blockade following eyedrops of timolol and its isomer L-714, 465 in normal subjects. Br J Clin Pharmacol 1985; 20: 459–62

    PubMed  Article  CAS  Google Scholar 

  54. Fraunfelder FT, Barker AF. Respiratory effects of timolol. N Engl J Med 1985; 311: 1441

    Google Scholar 

  55. Baldwin JJ, Abrams WB. Stereochemically pure drugs, an industrial perspective. In: Wainer IW, Drayer DE, editors. Drug stereochemistry. Analytical methods and pharmacology. New York: Marcel Dekker, 1988: 311–56

    Google Scholar 

  56. Chiou GCW, Zhao F, Shen Z-H et al. Effects of D-timolol and L-timolol on ocular blood flow and ocular blood pressure. J Ocular Pharmacol 1990; 6: 23–9

    Article  CAS  Google Scholar 

  57. Lanning CF, Harmel MH. Ketamine anesthesia. Ann Rev Med 1975; 26: 137–41

    PubMed  Article  CAS  Google Scholar 

  58. Eastman D, Hickey M, Hickey F. Ketamine misuse identified. Pharm J 1992; 248: 444

    Google Scholar 

  59. White PF, Schutter J, Shafer A, et al. Comparative pharmacology of the ketamine isomers. Br J Anaesth 1985; 57: 197–203

    PubMed  Article  CAS  Google Scholar 

  60. White PF, Ham J, Way WL, et al. Pharmacology of ketamine isomers in surgical patients. Anaesthesiology 1980; 52: 231–9

    Article  CAS  Google Scholar 

  61. Vlasses PH, Irvin JD, Huber PB, et al. Pharmacology of the enantiomers and (−)-p-OH metabolite of indacrinone. Clin Pharmacol Ther 1981; 29: 798–807

    PubMed  Article  CAS  Google Scholar 

  62. Tobert JA, Cirillo VJ, Hitzenberger G, et al. Enhancement of uricosuric properties of indacrinone by manipulation of the enantiomer ratio. Clin Pharmacol Ther 1981: 29: 344–50

    PubMed  Article  CAS  Google Scholar 

  63. Gottesman MM, Paston I. Resistance to multiple chemotherapeutic agents in human cancer cells. Trend Pharmacol Sci 1988; 9: 54–8

    Article  CAS  Google Scholar 

  64. Plumb JA, Milroy R, Kaye SB. The activity of verapamil as a resistance modifier in vitro in drug resistant human tumour cell lines is not stereospecific. Biochem Pharmacol 1990; 39: 787–92

    PubMed  Article  CAS  Google Scholar 

  65. Advani SV, Singh BN. Pharmacodynamic, pharmacokinetic and antiarrhythmic properties of d-sotalol, the dextro-isomer of sotalol. Drugs 1995: 49: 664–79

    PubMed  Article  CAS  Google Scholar 

  66. Colatsky TJ. Antiarrhythmic drugs: where are we going? Pharmaceutical News 1995; 2: 17–23

    CAS  Google Scholar 

  67. De Camp WH. The FDA perspective on the development of stereoisomers. Chirality 1989; 1: 2–6

    PubMed  Article  Google Scholar 

  68. Cayen MN. Racemic mixtures and single stereoisomers: industrial concerns and issues in drug development. Chirality 1991; 3: 94–8

    Article  Google Scholar 

  69. Rauws AG, Groen K. Current regulatory (draft) guidance on chiral medicinal products: Canada, EEC, Japan, United States. Chirality 1994; 6: 72–5

    PubMed  Article  CAS  Google Scholar 

  70. Brown JR. Stereochemical principles. Drug Info J 1990; 24: 117–20

    Article  Google Scholar 

  71. Ariens EJ. Stereochemistry: a source of problems in medicinal chemistry. Med Res Rev 1986; 6: 451–66

    PubMed  Article  CAS  Google Scholar 

  72. Millership JS, Fitzpatrick A. Commonly used chiral drugs: a survey. Chirality 1993; 5: 573–6

    PubMed  Article  CAS  Google Scholar 

  73. Shindo H, Caldwell J. Development of chiral drugs in Japan: an update on regulatory and industrial opinion. Chirality 1995; 7: 349–52

    Article  CAS  Google Scholar 

  74. Shindo H, Caldwell J. Regulatory aspects of the development of chiral drugs in Japan: a status report. Chirality 1991; 3: 91–3

    Article  Google Scholar 

  75. Baba T, Murabayashi S, Aoyagi K, et al. Effects of dilevalol, an R, R-isomer of labetalol, on blood pressure and renal function in patients with mild-to-moderate essential hypertension. Eur J Clin Pharmacol 1988; 35: 9–15

    PubMed  Article  CAS  Google Scholar 

  76. Brittain RT, Drew GM, Levy GP. The α and β-adrenoceptor blocking potencies of labetalol and its individual stereoisomers in anaesthetized dogs and in isolated tissues. Br J Pharmacol 1982; 77: 105–14

    PubMed  Article  CAS  Google Scholar 

  77. Anon. Neuromuscular blocking agent from Glaxo. Pharm J 1996; 256: 152

    Google Scholar 

  78. Sun Wai WYS, Flynn PJ. 51W89, the IR cis I’R cis isomer of atracurium. Anaesth Pharmacol Rev 1995; 3: 218–21

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hutt, A.J., Tan, S.C. Drug Chirality and its Clinical Significance. Drugs 52, 1–12 (1996). https://doi.org/10.2165/00003495-199600525-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199600525-00003

Keywords

  • Timolol
  • Racemate
  • Racemic Mixture
  • Drug Chirality
  • Dilevalol