Skip to main content
Log in

Novel Antithrombotic Drugs in Development

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Platelet activation plays a critical role in thromboembolic disorders, and aspirin remains a keystone in preventive strategies. This remarkable efficacy is rather unexpected, as aspirin selectively inhibits platelet aggregation mediated through activation of the arachidonic-thromboxane pathway, but not platelet aggregation induced by adenosine diphosphate (ADP), collagen and low levels of thrombin. This apparent paradox has stimulated investigations on the effect of aspirin on eicosanoid-independent effects of aspirin on cellular signalling. It has also fostered the search for antiplatelet drugs inhibiting platelet aggregation at other levels than the acetylation of platelet cyclo-oxygenase, such as thromboxane synthase inhibitors and thromboxane receptor antagonists.

The final step of all platelet agonists is the functional expression of glycoprotein (GP) IIb/IIIa on the platelet surface, which ligates fibrinogen to link platelets together as part of the aggregation process. Agents that interact between GPIIb/IIIa and fibrinogen have been developed, which block GPIIb/IIIa, such as monoclonal antibodies to GPIIb/IIIa, and natural and synthetic peptides (disintegrins) containing the Arg-Gly-Asp (RGD) recognition sequence in fibrinogen and other adhesion macromolecules. Also, some non-peptide RGD mimetics have been developed which are orally active prodrugs. Stable analogues of prostacyclin, some of which are orally active, are also available.

Thrombin has a pivotal role in both platelet activation and fibrin generation. In addition to natural and recombinant human antithrombin III, direct anti-thrombin III-independent thrombin inhibitors have been developed as recombinant hirudin, hirulog, argatroban, boroarginine derivatives and single stranded DNA oligonucleotides (aptanes). Direct thrombin inhibitors do not affect thrombin generation and may leave some ‘escaping’ thrombin molecules unaffected. Inhibition of factor Xa can prevent thrombin generation and disrupt the thrombin feedback loop that amplifies thrombin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McElroy FA, Philp RB. Relative potencies of dipyridamole and related agents as inhibitors of cyclic nucleotide phosphodiesterases: possible explanation of mechanism of inhibition of platelet function. Life Sci 1975; 17: 1479–93.

    PubMed  CAS  Google Scholar 

  2. Moncada S, Korbat R. Dipyridamole and other phosphodiesterase inhibitors act as antithrombotic agents by potentiating endogenous prostacyclin. Lancet 1979; 1: 1286–9.

    Google Scholar 

  3. FitzGerald GA. Dipyridamole. N Engl J Med 1987; 316: 1247–57.

    PubMed  CAS  Google Scholar 

  4. Verstraete M. Pharmacotherapeutic aspects of unfractionated and low molecular weight heparins. Drugs 1990; 40: 498–530.

    PubMed  CAS  Google Scholar 

  5. Hirsh J. Heparin. N Engl J Med 1991; 324: 1565–74.

    PubMed  CAS  Google Scholar 

  6. Hirsh J, Levine MN. Low molecular weight heparin. Blood 1992; 79: 1–17.

    PubMed  CAS  Google Scholar 

  7. Hirsh J. Low molecular weight heparin. Thromb Haemost 1993; 70: 204–7.

    PubMed  CAS  Google Scholar 

  8. Hirsh J. Oral anticoagulant drugs. N Engl J Med 1991; 324: 1865–75.

    PubMed  CAS  Google Scholar 

  9. Ljungström KG. The antithrombotic efficacy of dextran. Acta Chir Scand 1988; 154 Suppl. 543: 26–30.

    Google Scholar 

  10. Saltiel E, Ward A. Ticlopidine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in platelet-dependent disease states. Drugs 1987; 34: 222–62.

    PubMed  CAS  Google Scholar 

  11. Defreyn G, Bernat A, Delebassée D, et al. Pharmacology of ticlopidine: a review. Thromb Haemost 1989; 15: 159–66.

    CAS  Google Scholar 

  12. Mills DCB, Puri R, Hu CJ, et al. Clopidogrel inhibits the binding of ADP analogues to the receptor mediating inhibiton of platelet adenylate cyclase. Arterioscler Thromb 1992; 12: 430–6.

    PubMed  CAS  Google Scholar 

  13. Féliste R, Delebassée D, Simon MF, et al. Broad spectrum anti-platelet activity of ticlopidine and PCR 4099 involves the suppression of the effects of released ADP. Thromb Res 1987; 48: 403–15.

    PubMed  Google Scholar 

  14. Schrör K. The basic pharmacology of ticlopidine and clopidogrel. Platelets 1993; 4: 252–61.

    PubMed  Google Scholar 

  15. Gachet C, Stierlé A, Cazenave JP, et al. The thienopyridine PCR 4099 selectively inhibits ADP-induced platelet aggregation and fibrinogen binding without modifying the membrane glycoprotein IIb-IIIa complex in rat and in man. Biochem Pharmacol 1990; 40: 229–38.

    PubMed  CAS  Google Scholar 

  16. Hochfeld T, Scharnowski F, Braun M, et al. Antiplatelet effects of ticlopidine are reduced in experimental hypercholesterolemia. Thromb Haemost 1994; 71: 112–8.

    Google Scholar 

  17. Cattaneo M, Akkawat B, Kinlough-Rathbone RL, et al. Ticlopidine facilitates the deaggregation of human platelets aggregated by thrombin. Thromb Haemost 1994; 71: 91–4.

    PubMed  CAS  Google Scholar 

  18. Roald HE, Barstad RM, Kierulf P, et al. Clopidogrel — a platelet inhibitor which inhibits thrombogenesis in non-anti-coagulated human blood independently of the blood flow conditions. Thromb Haemost 1994; 71: 655–62.

    PubMed  CAS  Google Scholar 

  19. Ellis DJ, Roe RL, Bruno JJ, et al. The effects of ticlopidine hydrochloride on bleeding time and platelet function in man [abstract]. Thromb Haemost 1987; 46: 176.

    Google Scholar 

  20. Panak E, Maffrand JP, Picard-Fraire C, et al. Ticlopidine: a promise for the prevention and treatment of thrombosis and its complications. Haemostasis 1983; 13 Suppl. 1: 1–54.

    PubMed  Google Scholar 

  21. McTavish D, Faulds D, Goa KL. Ticlopidine: an updated review of its pharmacology and therapeutic use in platelet-dependent disorders. Drugs 1990; 40: 238–59.

    PubMed  CAS  Google Scholar 

  22. Easton JD, Verstraete M, editors. Ticlopidine: new perspectives in antiplatelet therapy. Drugs 1992; 42 Suppl. 5: 1–57.

    Google Scholar 

  23. Hass WK, Easton JD, Harold P, et al. A randomized trial comparing ticlopidine hydrochloride with aspirin for the prevention of stroke in high-risk patients. N Engl J Med 1989; 321: 501–7.

    PubMed  CAS  Google Scholar 

  24. Easton JD. Antiplatelet therapy in the prevention of stroke. Drugs 1991; 42 Suppl. 5: 39–50.

    PubMed  Google Scholar 

  25. Weiss HJ, Hawiger J, Ruggeri ZM, et al. Fibrinogen-independent platelet adhesion and thrombus formation on subendothelium mediated by glycoprotein IIb-IIIa complex at high shear rate. J Clin Invest 1989; 83: 288–97.

    PubMed  CAS  Google Scholar 

  26. Kloczewiak M, Timmons S, Lukas TJ, et al. Platelet receptor recognition site on human fibrinogen: synthesis and structure-function relationship of peptides corresponding to the carboxy-terminal segment of the gamma chain. Biochemistry 1984; 23: 1757–74.

    Google Scholar 

  27. Plow EF, Pierschbacher MD, Ruoslahti E, et al. Arginyl-glycylaspartic acid sequences and fibrinogen binding to platelets. Blood 1987; 70: 110–5.

    PubMed  CAS  Google Scholar 

  28. Coller BS. A new murine monoclonal antibody reports inactivation-dependent change in the conformation and/or micro-environment of the platelet glycoprotein IIb/IIIa complex. J Clin Invest 1985; 76: 101–8.

    PubMed  CAS  Google Scholar 

  29. Coller BS, Scudder LE. Inhibition of dog platelet function by in vivo infusion of F(ab′)2 fragments of a monoclonal antibody. Blood 1985; 66: 1456–0.

    PubMed  CAS  Google Scholar 

  30. Hanson SR, Pareti FI, Fuggeri ZM, et al. Effects of monoclonal antibodies against the platelet glycoprotein IIb/IIIa complex on thrombosis and hemostasis in the baboons. J Clin Invest 1988; 81: 149–58.

    PubMed  CAS  Google Scholar 

  31. Gold HK, Coller BS, Yasuda T, et al. Rapid and sustained coronary artery recanalization with combined bolus injection of recombinant tissue-type plasminogen activator and monoclonal anti-platelet GPIIb/IIIa antibody in a dog model. Circulation 1988; 77: 670–7.

    PubMed  CAS  Google Scholar 

  32. Tcheng JE, Ellis SG, George BS, et al. Pharmacodynamics of chimeric glycoprotein IIb/IIIa integrin antiplatelet antibody Fab 7E3 in high-risk coronary angioplasty. Circulation 1994; 90: 1757–64.

    PubMed  CAS  Google Scholar 

  33. Kleiman NS, Ohman E, Califf RM, et al. Profound inhibition of platelet aggregation with monoclonal antibody 73E Fab after thrombolytic therapy: results of the Thrombolysis and Angioplasty in Myocardial Infarction (TAMI) 8 Pilot Study. J Am Coll Cardiol 1993; 22: 381–9.

    PubMed  CAS  Google Scholar 

  34. EPIC Investigators. Use of a monoclonal antibody directed against the platelet glycoprotein IIb/IIIa receptor in high-risk coronary angioplasty. N Engl J Med 1994; 330: 956–61.

    Google Scholar 

  35. Topol EJ, Califf RM, Weisman HF, et al. Randomised trial of coronary intervention with antibody against platelet GPIIb/IIIa integrin for reduction of clinical restenosis: results at 6 months. Lancet 1994; 343: 881–6.

    PubMed  CAS  Google Scholar 

  36. Simoons ML, de Boer MJ, Van den Brand M, et al. Randomized trial of IIb/IIIa platelet receptor blocker in refractory unstable angina. Circulation 1994; 89: 596–603.

    PubMed  CAS  Google Scholar 

  37. Yasuda T, Gold HK, Yaoita H, et al. Comparative effects of aspirin, a synthetic thrombin inhibitor and a monoclonal antiplatelet glycoprotein IIb/IIIa antibody on coronary artery reperfusion, reocclusion and bleeding with recombinant tissue-type plasminogen activator in a canine preparation. J Am Coll Cardiol 1990; 16: 714–22.

    PubMed  CAS  Google Scholar 

  38. Shebuski RJ, Stabilito IJ, Sitko GR, et al. Acceleration of recombinant tissue-type plasminogen activator-induced thrombolysis and prevention of reocclusion by the combination of heparin and the Arg-Gly-Asp-containing peptide Bitistatin in a canine model of coronary thrombosis. Circulation 1990; 82: 169–77.

    PubMed  CAS  Google Scholar 

  39. Chao BH, Jakubowski JA, Savage B, et al. Agkistrodon piscivorus piscivorus platelet aggregation inhibitor: a potent inhibitor of platelet activation. Proc Natl Acad Sci USA 1989; 86: 8050–4.

    PubMed  CAS  Google Scholar 

  40. Bush LR, Halahan MA, Kanovsky SM, et al. Antithrombotic profile of Echistatin, a snake venom peptide and platelet receptor antagonist. Circulation 1989; 80 Suppl. 2: 11–23.

    Google Scholar 

  41. Cook JJ, Huang T-F, Rucinski B, et al. Inhibition of platelet hemostatic plug formation by trigramin, a novel RGD-peptide. Am J Physiol 1989; 256: 1038–43.

    Google Scholar 

  42. Huang TF, Holt JC, Lukasiewics H, et al. Trigamin: a low molecular weight peptide inhibits fibrinogen interaction with platelet receptors expressed on glycoprotein IIb/IIIa complex. J Biol Chem 1987; 262: 16157–63.

    PubMed  CAS  Google Scholar 

  43. Sheu J-R, Chao S-H, Yen M-H, et al. In vivo antithrombotic effect of triflavin, an Arg-Gly-Asp containing peptide on platelet plug formation in mesenteric microvessels of mice. Thromb Haemost 1994; 72: 617–21.

    PubMed  CAS  Google Scholar 

  44. Scarborough RM, Rose JW, Hsu MA, et al. Barbourin: a GPIIb-IIIa-specific integrin antagonist from the venom of Sistrurus M. barbouri. J Biol Chem 1991; 266: 9359–62.

    PubMed  CAS  Google Scholar 

  45. Charo IF, Nannizzi L, Phillips DR, et al. Inhibition of fibrinogen binding to GPIIb/IIIa by a GPIIa peptide. J Biol Chem 1991; 266: 1415–21.

    PubMed  CAS  Google Scholar 

  46. Haverstick DM, Cowan JF, Yamada KM, et al. Inhibition of platelet adhesion to fibronectin, fibrinogen, and von Willebrand factor substrates by a synthetic tetrapeptide derived from the cell-binding domain of fibronectin. Blood 1985; 66: 946–52.

    PubMed  CAS  Google Scholar 

  47. o’Haskel EJ, Adams SP, Feigen LB., et al. Prevention of reoccluding platelet-rich thrombi in canine femoral arteries with a novel peptide antagonist of platelet glycoprotein IIIb/IIIa receptors. Circulation 1989; 80: 1775–82.

    Google Scholar 

  48. Kouns WC, Kirchofer D, Hadváry P, et al. Reversible conformational changes in glycoprotein IIb-IIIa by a potent and selective peptidomimetic inhibitor. Blood 1992; 80: 2539–47.

    PubMed  CAS  Google Scholar 

  49. Roux SP, Tschopp TB, Kuhn H, et al. Effects of heparin, aspirin and a synthetic platelet glycoprotein IIb-IIIa receptor antagonist (Ro 43-5054) on coronary artery reperfusion and reocclusion after thrombolysis with tissue-type plasminogen activator in the dog. J Pharmacol Exp Ther 1992; 264: 501–8.

    Google Scholar 

  50. Hartman GD, Egbertson MS, Halczenko W, et al. Non-peptide fibrinogen receptor antagonists; I. Discovery and design of exosite inhibitors. J Med Chem 1992; 36: 4640–42.

    Google Scholar 

  51. Lu HR, Gold HK, Wu Z, et al. G4120, an Arg-Gly-Asp containing pentapeptide, enhances arterial eversion graft recanalization with recombinant tissue-type plasminogen activator in dogs. Thromb Haemost 1992; 67: 686–91.

    PubMed  CAS  Google Scholar 

  52. Collen D, Lu HR, Stassen J-M, et al. Antithrombotic effects and bleeding time prolongation with synthetic platelet GPIIb/IIIa inhibitors in animal models of platelet-mediated thrombosis. Thromb Haemost 1994; 71: 95–102.

    PubMed  CAS  Google Scholar 

  53. Peerlinck K, De Lepeleire I, Goldberg M, et al. MK-383 (L-700,462), a selective nonpeptide platelet glycoprotein IIb/IIIa antagonist, is active in man. Circulation 1993; 88: 1512–7.

    PubMed  CAS  Google Scholar 

  54. Nicholson NS, Panzer-Knodle SG, Salyers AK, et al. SC-54684: an orally active inhibitor of platelet aggregation. Circulation 1995; 91: 403–10.

    PubMed  CAS  Google Scholar 

  55. Szalony J, Haas N, Salyers A, et al. Extended inhibition of platelet aggregation with the orally active platelet inhibitor SC-54684A. Circulation 1995; 91: 411–6.

    PubMed  CAS  Google Scholar 

  56. Sakariassen KS, Fressinaud E, Girma J-P, et al. Role of platelet membrane glycoproteins and von Willebrand factor in adhesion of platelets to subendothelium and collagen. Ann NY Acad Sci 1987; 516: 52–65.

    PubMed  CAS  Google Scholar 

  57. Miller JL, Thiam-Cisse M, Drouet LO. Reduction in thrombus formation by PG-1 (Fab′), and anti-guinea pig platelet glycoprotein Ib monoclonal antibody. Arterioscler Thromb 1991; 11: 1231–6.

    PubMed  CAS  Google Scholar 

  58. Bellinger DA, Nichols TC, Read MS, et al. Prevention of occlusive coronary artery thrombosis by a murine monoclonal antibody to porcine von Willebrand factor. Proc Natl Acad Sci USA 1987; 84: 8100–4.

    PubMed  CAS  Google Scholar 

  59. Krupski WC, Bass A, Cadroy Y, et al. Antihemostatic and anti-thrombotic effects of monoclonal antibodies against von Willebrand factor in nonhuman primates. Surgery 1992; 112: 433–9.

    PubMed  CAS  Google Scholar 

  60. Mandle R, Kenney D, Bing D. Monitoring functional activity of RG 12986, a novel GPIb receptor antagonist by inhibition of ristocetin-dependent platelet agglutination. In: Progress in vascular biology: hemostasis and thrombosis. Zimmerman Conference; 1992 February 27–29, La Jolla (CA).

  61. Strony J, Phillips M, Moake J, et al. In vivo inhibition of coronary artery thrombosis by aurin tricarboxylic acid [abstract]. Circulation 1989; 80 Suppl. II: 11–23.

    Google Scholar 

  62. Bertele V, Schieppati A, di Minno G, et al. Inhibition of thromboxane synthetase does not necessarily prevent platelet aggrregation. Lancet 1981; 1: 1057–8.

    CAS  Google Scholar 

  63. FitzGerald GA, Brash AR, Oates JA, et al. Endogenous prostacyclin biosynthesis and platelet function during selective inhibition of thromboxane synthase in man. J Clin Invest 1983; 71: 1336–43.

    Google Scholar 

  64. FitzGerald GA, Reilly IA, Pedersen AK. The biochemical pharmacology of thromboxane synthase inhibition in man. Circulation 1985; 72: 1194–1.

    PubMed  CAS  Google Scholar 

  65. Gresele P, Deckmyn H, Arnout J, et al. BM 13.177, a selective blocker of platelet and vessel wall thromboxane receptors, is active in man. Lancet 1984; 1: 991–4.

    PubMed  CAS  Google Scholar 

  66. Verstraete M. Thromboxane synthase inhibition, thromboxane/endoperoxide receptor blockade and molecules with the dual property. Drugs Today 1993; 29: 221–32.

    CAS  Google Scholar 

  67. Gresele P, Arnout J, Deckmyn H, et al. Role of proaggregatory and antiaggregatory prostaglandins in hemostasis: studies with combined thromboxane synthase inhibition and thromboxane receptor antagonism. J Clin Invest 1987; 80: 1435–45.

    PubMed  CAS  Google Scholar 

  68. Brittain RT, Boutai L, Carter MC, et al. AH2348: a thromboxane receptor-blocking drug that can clarify the pathophysiological role of thromboxane A2. Circulation 1985; 72: 1208–18.

    PubMed  CAS  Google Scholar 

  69. Ritter JM, Doktor HS, Benjamin N, et al. On the mechanism of the prolonged action in man of GR32191, a thromboxane receptor antagonist. Adv Prostagland Thromb Leuk Res 1991; 21: 351–4.

    Google Scholar 

  70. Misra RN, Brown BR, Sher PM, et al. Thromboxane receptor antagonist BMS-180291: a new pre-clinical lead. Bioorg Med Chem Lett 1992; 2: 73–6.

    CAS  Google Scholar 

  71. De Clerck F, Beertens J, De Chaffoy de Courcelles D, et al. R68070: thromboxane A2 synthetase inhibition and thromboxane A2/prostaglandin endoperoxide receptor blockade combined in one molecule. I: biochemical profile in vitro. Thromb Haemost 1989; 61: 35–42.

    PubMed  Google Scholar 

  72. Golino P, Buja M, Ashton JH, et al. Effect of thromboxane and serotonin receptor antagonists on intracoronary platelet deposition in dogs with experimental stenosed coronary arteries. Circulation 1988; 78: 701–11.

    PubMed  CAS  Google Scholar 

  73. Yao SK, Ober JC, Ferguson JJ, et al. Combination of inhibition of thrombin and blockade of thromboxane A2 synthetase and receptors enhances thrombolysis and delays reocclusion in canine coronary arteries. Circulation 1992; 86: 1993–9.

    PubMed  CAS  Google Scholar 

  74. Yasuda T, Gold HK, Yaotia H, et al. Antithrombotic effects of ridogrel, a combined thromboxane A2 synthase inhibitor and prostaglandin endoperoxide-receptor antagonist, in a platelet-mediated coronary artery occlusion preparation in the dog. Coronary Art Dis 1991; 2: 1103–10.

    Google Scholar 

  75. Berrettini M, De Cunto M, Parisi F, et al. In vitro and ex vivo effects of picotamide, a combined thromboxane A2-synthase inhibitor and -receptor antagonist, on human platelets. Eur J Cin Pharmacol 1990; 39: 495–500.

    CAS  Google Scholar 

  76. Herman F, Hadházy P, Magyar K. Critical evaluation of the in vivo selectivity between hypotensive and platelet anti-aggregating actions of iloprost and prostacyclin in beagle dogs. Arch Int Pharmacodyn Ther 1989; 300: 281–91.

    PubMed  CAS  Google Scholar 

  77. Stürzebecher C-S, Losert W. Effects of iloprost on platelet activation in vitro. In Gryglewski RJ, Stock G, editors. Prostacyclin and its stable analogue iloprost. Berlin: Springer-Verlag, 1987: 39–45.

    Google Scholar 

  78. Müller B, Witt W, McDonald FM. Iloprost: stable prostacyclin analogue. In: Rubanyl GM, editor. Cardiovascular significance of endothelium-derived vasoactive factors. Mount Kisco (NY): Futura Publishing Co, 1991: 309–33.

    Google Scholar 

  79. Grant SM, Goa KL. Iloprost: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in peripheral vascular disease, myocardial ischemia and extra-corporeal circulation. Drugs 1992; 43: 889–924.

    PubMed  CAS  Google Scholar 

  80. Esmon NL, Owen WG, Esmon CT. Isolation of a membrane bound cofactor for thrombin-catalyzed activation of protein C. J Biol Chem 1982; 257: 859–64.

    PubMed  CAS  Google Scholar 

  81. Esmon NL, Carroll RC, Esmon CT. Thrombomodulin blocks the ability of thrombin to activate platelets. J Biol Chem 1983; 258: 12238–42.

    PubMed  CAS  Google Scholar 

  82. Esmon CT. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem 1989; 264: 4743–6.

    PubMed  CAS  Google Scholar 

  83. Marlar RA, Kleiss AJ, Griffin JH. Mechanism of action of human activated protein C, a thrombin-dependent anticoagulant enzyme. Blood 1982; 59: 1067–72.

    PubMed  CAS  Google Scholar 

  84. Suzuki K, Kusumoto H, Deyashiki Y, et al. Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation. EMBOJ 1987; 6: 1891–7.

    CAS  Google Scholar 

  85. Gomi K, Zushi M, Honda G, et al. Antithrombotic effect of recombinant human thrombomodulin on thrombin-induced thromboembolism in mice. Blood 1990; 75: 1396–9.

    PubMed  CAS  Google Scholar 

  86. Ono M, Nawa K, Marumoto Y. Antithrombotic effects of recombinant human soluble thrombomodulin in a rat model of vascular shunt thrombosis. Thromb Haemost 1994; 72: 421–5.

    PubMed  CAS  Google Scholar 

  87. Nawa K, Sakano K, Fujiwara H, et al. Presence and function of chondroitin-4-sulfate on recombinant human soluble thrombomodulin. Biochem Biophys Res Commun 1990; 171: 729–37.

    PubMed  CAS  Google Scholar 

  88. Nawa K, Ono M, Uchiyama T, et al. Recombinant human thrombomodulin as a proteoglycan. Trends Glycosci Glycotechnol 1994; 6: 111–20.

    CAS  Google Scholar 

  89. Dahlbäck B, Stenflo J. A natural anticoagulant pathway: biochemistry and physiology of proteins C, S, C4b-binding protein and thrombomodulin. In: Bloom AL, Forbes CD, Thomas DP, editors. Haemostasis and thrombosis. 3rd ed. London: Churchill Livingstone, 1993: 671–98.

    Google Scholar 

  90. Dahlbäck B. Protein S and C4b-binding protein: components involved in the regulation of the protein C anticoagulant system. Thromb Haemost 1991; 66: 49–61.

    PubMed  Google Scholar 

  91. Grinnell BW, Berg DT, Walls J, et al. Trans-activated expression of fully gamma-carboxylated recombinant human protein C, an antithrombotic factor. Biotechnology 1987; 5: 1189–92.

    CAS  Google Scholar 

  92. Emekli NB, Ulutin ON. The protective effect of autoprothrombin II-anticoagulant on experimental DIC formed animals. Haematologica 1980; 65: 644–51.

    PubMed  CAS  Google Scholar 

  93. Taylor FB, Chang A, Esmon CT, et al. Protein C prevents the coagulopathic and lethal effects of escherichia coli infusion in the baboon. J Clin Invest 1987; 79: 918–25.

    PubMed  CAS  Google Scholar 

  94. Emerick SC, Bang NU, Yan SB, et al. Antithrombotic properties of activated human protein C [abstract]. Blood 1985; 66 Suppl. 1: 349.

    Google Scholar 

  95. Smirnov MD, Pyzh MV, Borovikov DV, et al. Low doses of activated protein C delay arterial thrombosis in rats. Thromb Res 1990; 57: 645–50.

    PubMed  CAS  Google Scholar 

  96. Araki H, Nishi K, Ishihara N, et al. Inhibitory effects of activated protein C and heparin on thrombotic arterial occlusion in rat mesenteric arteries. Thromb Res 1991; 652: 209–16.

    Google Scholar 

  97. Gruber A, Hanson SR, Kelly AB, et al. Inhibition of thrombus formation by activated protein C in a primate model of arterial thrombosis. Circulation 1990; 82: 578–85.

    PubMed  CAS  Google Scholar 

  98. Arljots B, Bergqvist D, Dahlbäck B. Inhibition of microarterial thrombosis by activated protein C in a rabbit model. Thromb Haemost 1994; 72: 415–20.

    Google Scholar 

  99. Biagi G, Legnani C, Rodorigo G, et al. Modulation of arachidonic metabolite generation in human blood by oral defibrotide. Arzneim Forsch/Drug Res 1991; 41: 511–4.

    CAS  Google Scholar 

  100. Coccheri S, De Rosa V, Dettori AG, et al. Effect on fibrinolysis of a new antithrombotic agent: fraction P (defibrotide): a multicentre trial. Int J Clin Pharmacol Res 1982; 3: 227–45.

    Google Scholar 

  101. Coccheri S, Biagi G, Legnani C, et al. Acute effects of defibrotide, an experimental antithrombotic agent on fibrinolysis and blood prostanoids in man. Eur J Clin Pharmacol 1988; 35: 151–6.

    PubMed  CAS  Google Scholar 

  102. Palmer KJ, Goa KL. Defibrotide: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in vascular disorders. Drugs 1993; 45: 259–94.

    PubMed  CAS  Google Scholar 

  103. Zhou Q, Chu X, Ruan C. Defibrotide stimulates expression of thrombomodulin in human endothelial cells. Thromb Haemost 1994; 71: 507–10.

    PubMed  CAS  Google Scholar 

  104. Fareed J, Walenga JM, Hoppensteadt DA, et al. Pharmacological profiling of defibrotide in experimental models. Semin Thromb Hemost 1988; 14: 27–37.

    PubMed  Google Scholar 

  105. Fareed J, Walenga JM, Cornelli U. Antithrombotic drugs in pelvic surgery. Semin Thromb Hemost 1989; 15: 230–2.

    PubMed  CAS  Google Scholar 

  106. Coccheri S, Biagi G. Defibrotide. Cardiovasc Drug Dev 1991; 9: 172–96.

    CAS  Google Scholar 

  107. Silverberg SA, Nemerson Y, Zur M. Kinetics of the activation of bovine coagulation factor X by components of the extrinsic pathway. J Biol Chem 1977; 252: 8481–8.

    PubMed  CAS  Google Scholar 

  108. Zur M, Nemerson Y. Kinetics of factor IX activation via the extrinsic pathway. J Biol Chem 1980; 255: 5703–7.

    PubMed  CAS  Google Scholar 

  109. Hjort PF. Intermediate reactions in the coagulation inhibitor of blood with tissue thromboplastin. Scand J Clin Lab Invest 1957; 9: 1–173.

    CAS  Google Scholar 

  110. Rao LVM, Rapaport SI. Studies on the mechanism inhibiting the initiation of the extrinsic pathway of coagulation. Blood 1987; 69: 645–51.

    PubMed  CAS  Google Scholar 

  111. Broze Jr GJ, Warren LA, Novotny WF, et al. The lipoprotein-associated coagulation inhibitor that inhibits factor VII-tissue factor complex also inhibits Xa: insight into its possible mechanism of action. Blood 1988; 71: 335–43.

    PubMed  CAS  Google Scholar 

  112. Wilcox JN, Smith KM, Schwartz SM, et al. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA 1989; 86: 2839–43.

    PubMed  CAS  Google Scholar 

  113. Sandset PM, Sirnes PA, Abildgaard U. Factor VII and extrinsic pathway inhibitor in acute coronary disease. Br J Haemat 1989; 72: 391–6.

    CAS  Google Scholar 

  114. Moor E, Hamsten A, Karpe F, et al. Relationship of tissue factor pathway inhibitor activity to plasma lipoproteins and myocardial infarction at a young age. Thromb Haemost 1994; 71: 707–12.

    PubMed  CAS  Google Scholar 

  115. Petersen JGL, Meyn G, Rasmussen JS, et al. Characterization of human tissue factor pathway inhibitor variants expressed in Saccharomyces cerevisae. J Biol Chem 1993; 268: 13344–51.

    PubMed  CAS  Google Scholar 

  116. Holst J, Lindblad B, Bergqvist D, et al. Antithrombotic effect of recombinant truncated tissue factor pathway inhibitor (TFPI1–161) in experimental venous thrombosis — a comparison with low molecular weight heparin. Thromb Haemost 1994; 71: 214–9.

    PubMed  CAS  Google Scholar 

  117. Wun TC, Kretzmar KK, Girard TJ, et al. Cloning and characterization of a cDNA coding for the lipoprotein associated coagulation inhibitor shows that it consists of three tandem Kunitz-type inhibitory domains. J Biol Chem 1988; 263: 6001–4.

    PubMed  CAS  Google Scholar 

  118. Diaz-Collier JA, Palmier MO, Kretzmer KK, et al. Refold and characterization of recombinant tissue factor pathway inhibitor expressed in Escherichia coli. Thromb Haemost 1994; 71: 339–46.

    PubMed  CAS  Google Scholar 

  119. Haskel EJ, Torr SR, Day KC, et al. Prevention of arterial reocclusion after thrombolysis with recombinant lipoprotein-associated coagulation inhibitor. Circulation 1991; 84: 821–7.

    PubMed  CAS  Google Scholar 

  120. Van Dedem G, de Leeuw den Bouter H. The nature of the glucosaminoglycan in Orgaran (Org 10172) [abstract]. Thromb Haemost 1993; 69: 652.

    Google Scholar 

  121. Meuleman DG. Orgaran (Org 10172): its pharmacological profile in experimental models. Haemostasis 1992; 22: 58–65.

    PubMed  CAS  Google Scholar 

  122. Zammit A, Dawes J. Low-affinity material does not contribute to the antithrombotic activity or Orgaran (Org 10172) in human plasma. Thromb Haemost 1994; 71: 759–67.

    PubMed  CAS  Google Scholar 

  123. Stiekema JC, Wynand HP, Van Dinther TG, et al. Safety and pharmacokinetics of the low molecular weight heparinoid ORG 10172 administered to healthy elderly volunteers. Br J Clin Pharmacol 1989; 27: 39–48.

    PubMed  CAS  Google Scholar 

  124. Turpie AGG, Levine MN, Hirsh J, et al. A double blind randomized trial of Org 10172 low molecular weight heparinoid in the prevention of deep vein thrombosis in patients with thrombotic stroke. Lancet 1987; 8532: 523–6.

    Google Scholar 

  125. Walker ID, Davidson JF, Cowley F, et al. The heparanoid Org 10172 in DVT prophylaxis post hip replacement [abstract]. Br J Haematol 1986; 63: 200.

    Google Scholar 

  126. Leyvraz P, Bachmann F, Bohnet I, et al. Subcutaneous thromboembolic prophylaxis in total hip replacement: a comparison between the low molecular weight heparinoid lomoparan and heparin-dihydroergotamine. Br J Surg 1992; 79: 911–4.

    PubMed  CAS  Google Scholar 

  127. Hoek JA, Nurmohamed MT, Hamelynck KJ, et al. Prevention of deep-vein thrombosis following total hip replacement by a low molecular weight heparinoid. Thromb Haemost 1992; 67: 28–32.

    PubMed  CAS  Google Scholar 

  128. Bergqvist D, Kettunen K, Fredin H, et al. Thromboprophylaxis in hip fracture patients — a prospective randomized comparative study between Org 10172 and Dextran 70. Surgery 1991; 103: 617–22.

    Google Scholar 

  129. Gerhart TN, Yett HS, Robertson LK, et al. Low molecular weight heparinoid (Org 10172) for prophylaxis of deep vein thrombosis in patients with fractures of the hip. J Bone Joint Surg 1991; 73: 494–502.

    PubMed  CAS  Google Scholar 

  130. Nurmohamed MT, Fareed J, Hoppensteadt D, et al. Pharmacological and clinical studies with lomoparan, a low molecular weight glycosaminoglycan. Semin Thromb Hemost 1991; 17: 205–13.

    PubMed  Google Scholar 

  131. Radakrishnamurthy B, Sharma C, Bandaru RR, et al. Studies of chemical and biological properties of a fraction of sulodexide, a heparin-like glycosaminoglycan. Atherosclerosis 1986; 60: 141–9.

    Google Scholar 

  132. Andriuli G, Mastacchi R, Barbanti M. Antithrombotic activity of a glycosaminoglycan (sulodexide) in rats. Thromb Res 1984; 34: 81–6.

    Google Scholar 

  133. Barbanti M, Guizzardi S, Calanni F, et al. Antithrombotic and thrombolytic activity of sulodexide in rats. Int J Clin Lab Res 1992; 22: 179–84.

    PubMed  CAS  Google Scholar 

  134. Callas D, Hoppensteadt D, Jeske W, et al. Comparative pharmacologic profile of a glycosamino-glycan mixture, and a chemically modified heparin derivative, suleparoid. Semin Thromb Hemost 1993; 19: 49–57.

    PubMed  Google Scholar 

  135. Tarugi P, Tiozzo-Costa R, Barbanti M, et al. Effect of sulodexide, a heparin-like compound, on experimental atherosclerosis in the rabbit. Med Sci Res 1987; 15: 1071–2.

    CAS  Google Scholar 

  136. Palmieri GC, Ambrosi G, Nazzari M, et al. The influence of sulodexide on some coagulation parameters: a pharmacokinetic study. Clot Hematol Malign 1984; 2: 7–13.

    Google Scholar 

  137. Palazzini E, Procida C. Effect of some mucopolysaccharides on activated factor X. Biochem Pharmacol 1975; 27: 608–10.

    Google Scholar 

  138. Fiore G, Baraldi A, Gambarotta GC, et al. Inhibition of plasminogen activator inhibitor (PAI-1) by sulodexide in post-trombophlebitic patients. Drug Devel 1991; 3: 173–8.

    Google Scholar 

  139. Mauro M, Ferraro G, Palmieri G. Profibrinolytic and antithrombotic effects of sulodexide oral administration: a double-blind, crossover, placebo-controlled study. Curr Ther Res 1992; 51: 342–50.

    Google Scholar 

  140. Agrati AM, Mauro M, Savasta C, et al. A double-blind, crossover, placebo-controlled study of the profibrinolytic and antithrombotic effects of oral sulodexide. Adv Ther 1992; 9: 147–55.

    Google Scholar 

  141. Mannarino E, Pasqualini L, Ciuffetti G, et al. Effects of oral administration of sulodexide on fibrinolysis and plasma viscosity: a pilot study. Drug Invest 1992; 4: 346–50.

    CAS  Google Scholar 

  142. Crepaldi G, Rossi A, Coscetti G, et al. Sulodexide oral administration influences blood viscosity and fibrinolysis. Drugs Exp Clin Res 1992; 28: 189–95.

    Google Scholar 

  143. Condorelli M, Chiariello M, Dagianti A, et al. IPO-V2: a prospective, multicenter, randomized, comparative clinical investigation of the effects of sulodexide in preventing cardiovascular accidents in the first year after acute myocardial infarction. J Am Coll Cardiol 1994; 23: 27–34.

    PubMed  CAS  Google Scholar 

  144. Choay J, Petitou M, Lormeau JC, et al. Structure-activity relationships in heparin: a synthetic pentasaccharide with high affinity for antithrombin III and eliciting high anti-factor Xa activity. Biochem Biophys Res Commun 1983; 116: 492–9.

    PubMed  CAS  Google Scholar 

  145. Gettins PGW, Fan B, Crews BC, et al. Transmission of conformational change from the heparin binding site to the reactive center of antithrombin. Biochemistry 1993; 32: 8385–9.

    PubMed  CAS  Google Scholar 

  146. Olson ST, Björk I, Sheffer R, et al. Role of the antithrombin-binding pentasaccharide in heparin acceleration of anti-thrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement. J Biol Chem 1992; 267: 12528–38.

    PubMed  CAS  Google Scholar 

  147. Mannucci PM, Boyer C, Wolf M, et al. Treatment of congential antithrombin III deficiency with concentrates. Br J Haematol 1982; 50: 531–5.

    PubMed  CAS  Google Scholar 

  148. Menache D, o’Malley P, Schorr JB, et al. Evaluation of the safety, recovery, half-life, and clinical efficacy of antithrombin III (human) in patients with hereditary antithrombin III deficiency. Blood 1990; 75: 33–9.

    PubMed  CAS  Google Scholar 

  149. Schwartz RS, Bauer KA, Rosenberg RD, et al. Clinical experience with antithrombin III concentrate in treatment of congential and acquired deficiency of antithrombin: the Antithrombin III Study Group. Am J Med 1989; 87 Suppl. 3B: 53S–60S.

    PubMed  CAS  Google Scholar 

  150. Knot EA, de Jong E, ten Cate JW, et al. Antithrombin III biodistribution in healthy volunteers. Thromb Haemost 1987; 58: 1008–11.

    PubMed  CAS  Google Scholar 

  151. Biiller HR, ten Cate JW. Acquired antithrombin III deficiency: laboratory diagnosis, incidence, clinical implications, and treatment with antithrombin III concentrate. Am J Med 1989; 87 Suppl. 3B: 44S–48S.

    Google Scholar 

  152. Vinazzer HA. Antithrombin III in shock and disseminated intravascular coagulation. Clin Appl Thromb/Hemostasis 1995; 1: 62–5.

    Google Scholar 

  153. Maki M, Terao T, Ikenoue T, et al. Clinical evaluation of antithrombin III concentrate (BI 6.013) for disseminated intravascular coagulation in obstetrics: well-controlled multicenter trial. Gynecol Obstet Invest 1987; 23: 230–40.

    PubMed  CAS  Google Scholar 

  154. Blauhut B, Kramar H, Vinazzer H, et al. Substitution of antithrombin III in shock and DIC: a randomized study. Thromb Res 1985; 39: 81–9.

    PubMed  CAS  Google Scholar 

  155. Fourrier F, Huart J-J, Runge I, et al. Results of a double-blind, placebo-controlled trial of antithrombin III concentrates in septic shock with DIC. In: Müller-Berghaus G, Madiener K, Blombäck M, et al., editors. DIC: pathogenesis, diagnosis and therapy of disseminated intravascular fibrin formation. Amsterdam: Excerpta Medica, 1993: 221–6.

    Google Scholar 

  156. Schächinger V, Allert M, Kasper W, et al. Adjunctive intracoronary infusion of antithrombin III during percutaneous trans-luminal coronary angioplasty: results of a prospective, randomized trial. Circulation 1994; 90: 2258–66.

    PubMed  Google Scholar 

  157. Bock SC, Wion KL, Vehar GA, et al. Cloning and expression of the cDNA for human antithrombin III. Nucl Acids Res 1982; 10: 8113–25.

    PubMed  CAS  Google Scholar 

  158. Bröker M, Ragg H, Karges HE. Expression of human antithrombin III in Saccharomyces cerevisiae and Saccharomyces pombe. Biochem Biophys Res Commun 1987; 908: 203–13.

    Google Scholar 

  159. Björk I, Ylinenjärvi K, Olson ST, et al. Decreased affinity of recombinant antithrombin for heparin due to increased glycosylation. Biochem J 1992; 286: 793–800.

    PubMed  Google Scholar 

  160. Fan B, Crews BC, Turko IV, et al. Heterogeneity of recombinant human antithrombin III expressed in baby hamster kidney cells: effect of glycosylation differences on heparin binding and structure. J Biol Chem 1993; 268: 17588–96.

    PubMed  CAS  Google Scholar 

  161. Zettlmeissl G, Conad HS, Nimtz M, et al. Characterization of recombinant human antithrombin III synthesized in Chinese hamster ovary cells. J Biol Chem 1989; 264: 21153–9.

    PubMed  CAS  Google Scholar 

  162. Patson PA, Gettins PJW. A database of recombinant wild-type and mutant serpins. Thromb Haemost 1994; 72: 166–79.

    Google Scholar 

  163. Antman E, TIMI-9A Investigators. Hirudin in myocardial infarction: safety report from the thrombolysis and thrombin inhibition in myocardial infarction (TIMI-9A) trial. Circulation 1994; 90: 1624–30.

    PubMed  CAS  Google Scholar 

  164. Gusto IIa Investigators. Randomized trial of intravenous heparin versus recombinant hirudin for acute coronary syndromes. Circulation 1994; 90: 1631–7.

    Google Scholar 

  165. Haycraft JB. On the action of a secretion obtained from the medicinal leech on the coagulation of the blood. Proc R Soc Lond 1884; 36: 478–87.

    Google Scholar 

  166. Jacoby C. Über Hirudin. Dtsch Med Wochenschr 1904; 30: 1786.

    Google Scholar 

  167. Shionoya T: Studies in experimental extracorporeal thrombosis: effects of certain anticoagulants (heparin and hirudin) on extracorporeal thrombosis and on the mechanism of thrombus formation. J Exper Med 1927; 49: 19–26.

    Google Scholar 

  168. Markwardt F. Die Isolierung und chemische Characterisierung des Hirudin. Hoppe-Seyler’s Z Physiol Chem 1957; 308: 147–56.

    PubMed  CAS  Google Scholar 

  169. Stringer KA, Lindenfeld JA. Hirudins: antithrombin anticoagulants. Ann Pharmacother 1992; 26: 1535–40.

    PubMed  CAS  Google Scholar 

  170. Markwardt F, Nowak G, Stürzebecher J, et al. Pharmacokinetics and anticoagulant effect of hirudin in man. Thromb Haemost 1984; 52: 160–3.

    PubMed  CAS  Google Scholar 

  171. Bichler J, Fichtl B, Siebeck M, et al. Pharmacokinetics and pharmacodynamics of hirudin in man after single subcutaneous and intravenous bolus administration. Drug Res 1988; 38: 704–10.

    CAS  Google Scholar 

  172. Talbot MD, Ambler J, Butler KD, et al. Recombinant desulfatohirudin (CGP 39393) anticoagulant and antithrombotic properties in vivo. Thromb Haemost 1991; 61: 77–80.

    Google Scholar 

  173. Marbet GA, Verstraete M, Kienast J, et al. Clinical pharmacology of intravenously administered recombinant desulfatohirudin (CGP 39393) in healthy volunteers. J Cardiovasc Pharmacol 1993; 22: 364–72.

    PubMed  CAS  Google Scholar 

  174. Verstraete M, Nurmohamed M, Kienast J, et al. Biologic effets of recombinant hirudin (CGP 39393) in human volunteers. J Am Coll Cardiol 1993; 22: 1080–8.

    PubMed  CAS  Google Scholar 

  175. Zoldhelyi P, Webster MWI, Fuster V, et al. Recombinant hirudin in patients with chronic, stable coronary artery disease: safety, half-life and effect on coagulation parameters. Circulation 1993; 88: 2015–22.

    PubMed  CAS  Google Scholar 

  176. Hoet B, Tornai I, Arnout J, et al. Open study of intravenous recombinant hirudin (CGP 39393) on platelet function and coagulation in healthy volunteers. Drug Invest 1994; 7: 127–33.

    CAS  Google Scholar 

  177. Close P, Bichler J, Kerry R, et al. Weak allergenicity of recombinant hirudin CGP 39393 (™Revasc) in immunocompetent volunteers. Coron Art Dis 1994; 5: 943–9.

    CAS  Google Scholar 

  178. van den Bos AA, Deckers JW, Heyndrickx GR, et al. Safety and efficacy of recombinant hirudin (CGP 39393) versus heparin in patients with stable angina undergoing coronary angioplasty. Circulation 1993; 88: 2058–66.

    PubMed  Google Scholar 

  179. Topol EJ, Bonan R, Jewitt D, et al. Use of a direct antithrombin, hirulog, in place of heparin during coronary angioplasty. Circulation 1993; 87: 1622–9.

    PubMed  CAS  Google Scholar 

  180. Cannon CP, McCabe CH, Henry TD, et al. A pilot trial of recombinant desulfatohirudin compared with heparin in conjunction with tissue-type plasminogen activator and aspirin for acute myocardial infarction: results of the Thrombolysis in Myocardial Infarction (TIMI) 5 trial. J Am Coll Cardiol 1994; 23: 993–1003.

    PubMed  CAS  Google Scholar 

  181. Lee LV, for the TIMI-6 Investigators. Initial experience with hirudin and streptokinase in acute myocardial infarction: results of the thrombolysis in myocardial infarction (TIMI) 6 trial. Am J Cardiol 1995; 75: 7–13.

    PubMed  CAS  Google Scholar 

  182. Neuhaus KL, von Essen R, Tebbe U, et al. Safety observations from the pilot phase of the randomized r-hirudin for improvement of thrombolysis (HIT-III) study. Circulation 1994; 90: 1638–42.

    PubMed  CAS  Google Scholar 

  183. Topol EJ, Fuster V, Harrington RA, et al. Recombinant hirudin for unstable angina pectoris. Circulation 1994; 89: 1557–66.

    PubMed  CAS  Google Scholar 

  184. Maraganore JM, Bourdon P, Jablonski J, et al. Design and characterization of hirulogs: a novel class of bivalent peptide inhibitors of thrombin. Biochem 1990, 29: 7095–7101.

    CAS  Google Scholar 

  185. Skrzypczak-Jankun E, Carperos VE, Ravichandran KG, et al. Structure of hirugen and hirulog 1 complexes of α-thrombin. J Mol Biol 1991; 221: 1379–93.

    PubMed  CAS  Google Scholar 

  186. Fox I, Dawson A, Loynds P, et al. Anticoagulant activity of hirulog, a direct inhibitor of thrombin. Thromb Haemost 1993; 69: 157–63.

    PubMed  CAS  Google Scholar 

  187. Cannon CP, Maraganore JM, Loscalzo J, et al. Anticoagulant effect of hirulog, a novel thrombin inhibitor, in patients with coronary artery disease. Am J Cardiol 1993; 71: 778–82.

    PubMed  CAS  Google Scholar 

  188. Lidon R-M, Theroux P, Juneau M, et al. Initial experience with a direct antithrombin, hirulog, in unstable angina. Circulation 1993; 1495–501.

  189. Fuchs J, McCabe CH, Antman EM, et al. Hirulog in the treatment of unstable angina: results of the TIMI-7 trial. J Am Coll Cardiol 1994; 22: 56A.

    Google Scholar 

  190. Lidon RM, Theroux P, Lesprance J, et al. A pilot, early angiographic patency study using a direct thrombin inhibitor as adjunctive therapy to streptokinase in acute myocardial infarction. Circulation 1994; 89: 1567–72.

    PubMed  CAS  Google Scholar 

  191. Théroux P, Perez-Villa F, Waters D, et al. Randomized double-blind comparison of two doses of hirulog with heparin as adjunctive therapy to streptokinase to promote early patency of the infarct-related artery in acute myocardial infarction. Circulation 1995; 91: 2132–9.

    PubMed  Google Scholar 

  192. Cadroy Y, Maraganore JM, Hanson SR, et al. Selective inhibition by a synthetic hirudin peptide of fibrin-dependent thrombosis in baboons. Proc Natl Acad Sci USA 1991; 88: 1177–81.

    PubMed  CAS  Google Scholar 

  193. Jakubowski JA, Maraganore JM. Inhibition of coagulation and thrombin-induced platelet activation by a synthetic dodecapeptide modeled on the carboxy-terminus of hirudin. Blood 1990; 75: 399–406.

    PubMed  CAS  Google Scholar 

  194. Couglin SR, Vu TH, Hung DT, et al. Characterization of a functional thrombin receptor. J Clin Invest 1992; 89: 351–6.

    Google Scholar 

  195. Kikumoto R, Tamao Y, Tezuka T, et al. Selective inhibition of thrombin by (2R,4R)-4-methyl-1-[N2-(3-methyl-1,2,3,4-tetrahydro-8-quinolinyl)sulfonyl]-arginyl]-2-piperidinecar boxylic acid. Biochemistry 1984; 23: 85–90.

    PubMed  CAS  Google Scholar 

  196. Imura Y, Stassen J.-M., Collen D. Comparative antithrombotic effects of heparin, recombinant hirudin, and argatroban in a hamster femoral vein platelet-rich mural thrombus model. J Pharmacol Exper Ther 1992; 261: 895–8.

    CAS  Google Scholar 

  197. Jang I, Gold HK, Ziskind AA, et al. Prevention of platelet-rich arterial thrombosis by selective thrombin inhibition. Circulation 1990; 81: 219–25.

    PubMed  CAS  Google Scholar 

  198. Fitzgerald DJ, FitzGerald GA. Role of thrombin and thromboxane A2 in reocclusion following coronary thrombolysis with tissue-type plasminogen activator. Proc Natl Acad Sci USA 1989; 86: 7585–9.

    PubMed  CAS  Google Scholar 

  199. Haskel EJ, Prager NA, et al. Relative efficacy of antithrombin compared with antiplatelet agents in accelerating coronary thrombolysis and prevention of reocclusion. Circulation 1991; 83: 1048–56.

    PubMed  CAS  Google Scholar 

  200. Zoldhelyi P, Fuster V, Chesebro JH. Antithrombins as conjunctive therapy in arterial thrombolysis. Coron Artery Dis 1992; 3: 1003–9.

    Google Scholar 

  201. Kettner C, Mersinger L, Knabb R. The selective inhibition of thrombin by peptides of boroarginine. J Biol Chem 1990; 265: 18289–97.

    PubMed  CAS  Google Scholar 

  202. Hung DT, Vu TK, Wheaton VI, et al. ‘Mirror image’ antagonism of thrombin-induced platelet activation based on thrombin receptor structure. J Clin Invest 1992; 89: 444–50.

    PubMed  CAS  Google Scholar 

  203. Knapp A, Degenhardt T, Dodt J. Hirudisins: hirudin-derived thrombin inhibitors with disintegrin activity. J Biol Chem 1992; 267: 24230–4.

    PubMed  CAS  Google Scholar 

  204. Bode C, Hudelmayer M, Mehwald P, et al. Fibrin-targeted recombinant hirudin inhibits fibrin deposition on experimental clots more efficiently than recombinant hirudin. Circulation 1994; 90: 1956–63.

    PubMed  CAS  Google Scholar 

  205. Waxman L, Smith DE, Arcuri KE, et al. Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa. Science 1990; 248: 593–6.

    PubMed  CAS  Google Scholar 

  206. Vlasuk GP, Ramjit D, Fujita T, et al. Comparison of the in vivo anticoagulant properties of standard heparin and the highly selective factor Xa inhibitors antistasin and tick anticoagulant peptide (TAP) in a rabbit model of venous thrombosis. Thromb Haemost 1991; 65: 257–62.

    PubMed  CAS  Google Scholar 

  207. Schaffer LW, Davidson JT, Vlasuk GP, et al. Antithrombotic efficacy of recombinant tick anticoagulant peptide; a potent inhibitor of coagulation factor X in a primate model of arterial thrombosis. Circulation 1991; 84: 1741–8.

    PubMed  CAS  Google Scholar 

  208. Sitko GR, Ramjit DR, Stabilito II, et al. Conjunctive enhancement of enzymatic thromborysis and prevention of thrombotic occlusion with the selective factor Xa inhibitor, tick anticoagulant peptide. Circulation 1992; 85: 805–15.

    PubMed  CAS  Google Scholar 

  209. Lynch Jr JJ, Sitko GR, Mellot MJ, et al. Maintenance of canine coronary artery patency following thrombolysis with front-loaded plus low dose maintenance conjunctive therapy: a comparison of factor Xa versus thrombin inhibition. Cardiovasc Res 1994; 28: 78–85.

    PubMed  CAS  Google Scholar 

  210. Eisenberg PR, Siegel JE, Abendschein DR, et al. Importance of factor Xa in determining the procoagulant activity of whole-blood clots. J Clin Invest 1993; 91: 1877–83.

    PubMed  CAS  Google Scholar 

  211. Dunwiddie CT, Waxman L, Vlasuk GP, et al. Purification and characterization of inhibitors of blood coagulation factors Xa from hematophageous organisms. Methods Enzymol 1993; 223: 291–312.

    PubMed  CAS  Google Scholar 

  212. Schaffer LW, Davidson JT, Vlasuk GP, et al. Selective factor Xa inhibition by recombinant antistasin prevents vascular graft thrombosis in baboons. Arterioscler Thromb 1992; 12: 879–85.

    PubMed  CAS  Google Scholar 

  213. Dunwiddie CT, Nutt EM, Vlasuk GP, et al. Anticoagulant efficay and immunogenicity of the selective factor Xa inhibitor antistasin following subcutaneous administration in the rhesus monkey. Thromb Haemost 1992; 67: 371–6.

    PubMed  CAS  Google Scholar 

  214. Mellott MJ, Holahan MA, Lynch JJ, et al. Acceleration of recombinant tissue-type plasminogen activator-induced reperfusion and prevention of reocclusion by recombinant antistasin, a selective factor Xa inhibitor, in a canine model of femoral arterial thrombosis. Circ Res 1992; 70: 1152–60.

    PubMed  CAS  Google Scholar 

  215. Van Boeckel CAA, Petitou M. The unique antithrombin III domain of heparin leads to new synthetic antithrombotics. Angew Chem, Int Ed Engl 1993; 12: 1671–90.

    Google Scholar 

  216. Beguin S, Choay J, Hemker HC. The action of a synthetic pentasaccharide on thrombin generation in whole plasma. Thromb Haemost 1989; 61: 397–401.

    PubMed  CAS  Google Scholar 

  217. Lozano M, Bos A, de Groot PhG, et al. Suitability of low-molecular-weight heparinoids and a pentasaccharide for an in vitro human thrombosis model. Arterioscler Thromb 1994; 14: 1215–22.

    PubMed  CAS  Google Scholar 

  218. Walenga JM, Fareed J, Petitou M, et al. Intravenous antithrombotic activity of a synthetic heparin polysaccharide in a human serum induced stasis thrombosis model. Thromb Res 1986; 43: 243–8.

    PubMed  CAS  Google Scholar 

  219. Walenga JM, Bora L, Petitou M, et al. The inhibition of generation of thrombin and the antithrombotic effect of a pentasaccharide with sole anti-factor Xa activity. Thromb Res 1988; 51: 23–33.

    PubMed  CAS  Google Scholar 

  220. Hobbelem PMJ, Van Dinther TG, Vogel GMT, et al. Pharmacological profile of the chemically synthesized antithrombin III binding fragment of heparin (pentasacharide) in rats. Thromb Haemost 1990; 63: 265–70.

    Google Scholar 

  221. Cadroy Y, Hansson SR, Harker LA. Antithrombotic effects of synthetic pentasaccharide with high affinity for plasma antithrombin III in non-human primates. Thromb Haemost 1993; 70: 631–5.

    PubMed  CAS  Google Scholar 

  222. Hara T, Yokoyama A, Ishihara H, et al. DX-9065a, a new synthetic, potent anticoagulant and selective inhibitor for factor Xa. Thromb Haemost 1994; 71: 314–9.

    PubMed  CAS  Google Scholar 

  223. Yamazaki M, Asakura H, Aoshima K, et al. Effects of DX-9065a, an orally active, newly synthesized and specific inhibitor of factor Xa, against experimental disseminated intravascular coagulation in rats. Thromb Haemost 1994; 72: 393–6.

    CAS  Google Scholar 

  224. Maraganore JR, Healy JF, Parker ET, et al. Inhibition of thrombin activation of factor VIII by a synthetic peptide corresponding to residues 1675–1686 in factor VIII [abstract]. Circulation 1992; 86(1): 413.

    Google Scholar 

  225. Reutelingsperger CPM, Hornstra G, Hemker HC. Isolation and partial purification of a novel anticoagulant from arteries of human umbilical cord. Eur J Biochem 1985; 151: 625–9.

    PubMed  CAS  Google Scholar 

  226. Reutelingsperger CPM, Kop JMM, Hornstra G, et al. Purification and characterization of a novel protein from bovine aortic intima that inhibits coagulation. Eur J Biochem 1988; 173: 171–8.

    PubMed  CAS  Google Scholar 

  227. Funakoshi T, Hendrickson LE, McMullen BA, et al. Primary structure of human placental anticoagulant protein. Biochemistry 1987; 26: 8087–92.

    PubMed  CAS  Google Scholar 

  228. Iwasaki A, Suda M, Nakao H, et al. Structure and expression of cDNA for an inhibitor of blood coagulation isolated from human placenta: a new lipocortin-like protein. J Biochem 1987; 102: 1261–73.

    PubMed  CAS  Google Scholar 

  229. Maurer-Fogy I, Reutelingsperger CPM, Pieters J, et al. Cloning and expression of cDNA for human vascular anticoagulant, a Ca2+-dependent phospholipid-binding protein. Eur J Biochem 1988; 174: 585–92.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verstraete, M., Zoldhelyi, P. Novel Antithrombotic Drugs in Development. Drugs 49, 856–884 (1995). https://doi.org/10.2165/00003495-199549060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199549060-00002

Keywords

Navigation