Skip to main content
Log in

Therapeutic Potential of Antiarrhythmic Peptides

Cellular Coupling as a New Antiarrhythmic Target

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. CAST Investigators. Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. N Engl J Med 1989; 321: 393–8.

    Article  Google Scholar 

  2. Echt DS, Liebson PR, Mitchell B, et al. Mortality and morbidity in patients receiving encainide, flecainide or placebo. The cardiac arrhythmia suppression trial. N Engl J Med 1991; 324: 781–8.

    Article  PubMed  CAS  Google Scholar 

  3. Podrid PJ. Aggravation of ventricular arrhythmia. A drug induced complication. Drugs 1985; 29 Suppl. 4: 33–44.

    Article  PubMed  Google Scholar 

  4. Dhein S, Müller A, Gerwin R, et al. Comparative study on the proarrhythmic effects of some class I antiarrhythmic agents. Circulation 1993; 87: 617–31.

    Article  PubMed  CAS  Google Scholar 

  5. Mitchell LB. Treatment of ventricular arrhythmias after recovery from myocardial infarction. Annu Rev Med 1994; 45: 119–38.

    Article  PubMed  CAS  Google Scholar 

  6. Leatham EW, Holt DW, McKenna WJ. Class III antiarrhythmics in overdose: presenting features and management principles. Drug Saf 1993; 9: 450–62.

    Article  PubMed  CAS  Google Scholar 

  7. Lazzara R. Antiarrhythmic drugs and torsade de pointes. Eur Heart J 1993; 14 Suppl. H: 88–92.

    PubMed  Google Scholar 

  8. Singh BN. Arrhythmia control by prolonging repolarization: the concept and its potential therapeutic impact. Eur Heart J 1993; 14 Suppl. H: 14–23.

    PubMed  CAS  Google Scholar 

  9. Spach MS, Josephson ME. Initiating reentry: the role of non-uniform anisotropy in small circuits. J Cardiovasc Electrophysiol 1994; 5: 182–209.

    Article  PubMed  CAS  Google Scholar 

  10. Page E. Cardiac gap junctions. In: Fozzard HA, editor. The heart and cardiovascular system. 2nd ed. New York: Raven Press, 1992: 1003–47.

    Google Scholar 

  11. Spray DC, Stern JH, Harris AL, et al. Gap junctional conductance: comparison of sensitivities to H and Ca ions. Proc Natl Acad Sci USA 1982; 79: 441–5.

    Article  PubMed  CAS  Google Scholar 

  12. Burt JM, Spray DC. Single-channel events and gating behaviour of the cardiac gap junction channel. Proc Natl Acad Sci USA 1988; 85: 3431–4.

    Article  PubMed  CAS  Google Scholar 

  13. Oliveira-Castro GM, Loewenstein WR. Junctional membrane permeability: effects of divalent cations. J Membr Biol 1971; 5: 51–77.

    Article  CAS  Google Scholar 

  14. Green CR, Severs NJ. Distribution and role of gap junctions in normal myocardium and human ischemic heart disease. Histochemistry 1993; 99: 105–20.

    Article  PubMed  CAS  Google Scholar 

  15. Severs NJ. Pathophysiology of gap junctions in heart disease. J Cardiovasc Electrophysiol 1994; 5: 462–75.

    Article  PubMed  CAS  Google Scholar 

  16. Cole WC, Picone JB, Sperelakis N. Gap junction uncoupling and discontinuous propagation in the heart: a comparison of experimental data with computer simulations. Biophys J 1988; 53: 809–18.

    Article  PubMed  CAS  Google Scholar 

  17. Aonuma S, Kohama Y, Akai K, et al. Studies on heart XIX: isolation of an atrial peptide that improves the rhythmicity of cultured myocardial cell clusters. Chem Pharm Bull 1980; 28: 3332–9.

    Article  PubMed  CAS  Google Scholar 

  18. Aonuma S, Kohama Y, Akai K, et al. Effects of oxytocin on beating properties, myosin-ATPase activity and macromolecular synthesis of rat myocardial cells in culture. Chem Pharm Bull 1979; 27: 1857–63.

    Article  PubMed  CAS  Google Scholar 

  19. Aonuma S, Kohama Y, Akai K, et al. Studies on heart XX: further effects of bovine ventricle protein (BVP) and antiarrhythmic peptide (AAP) on myocardial cells in culture. Chem Pharm Bull 1980; 28: 3340–6.

    Article  PubMed  CAS  Google Scholar 

  20. Goshima K. Arrhythmic movements of myocardial cells in culture and their improvement with antiarrhythmic drugs. J Mol Cell Cardiol 1976; 8: 217–38.

    Article  PubMed  CAS  Google Scholar 

  21. Kohama Y, Okimoto N, Mimura T, et al. A new antiarrhythmic peptide, N-3-(4-hydroxyphenyl)propionyl-Pro-Hyp-Gly-Ala-Gly. Chem Pharm Bull 1987; 35: 3928–30.

    Article  PubMed  CAS  Google Scholar 

  22. Aonuma S, Kohama Y, Makino T, et al. Studies on heart XXII: inhibitory effect of an atrial peptide on several drug induced arrhythmias in vivo. Yakugaku Zasshi 1983; 103: 662–6.

    PubMed  CAS  Google Scholar 

  23. Aonuma S, Kohama Y, Makino T, et al. Studies on heart XXI: amino acid sequence of antiarrhythmic peptide (AAP) isolated from atria. J Pharm Dyn 1982; 5: 40–8.

    Article  CAS  Google Scholar 

  24. Kohama Y, Kawahara Y, Okabe M, et al. Determination of immunoreactive antiarrhythmic peptide (AAP) in rats. J Pharmacobiodyn 1985; 8: 1024–31.

    Article  PubMed  CAS  Google Scholar 

  25. Kohama Y, Iwabuchi K, Shibahara T, et al. Response of immunoreactive antiarrhythmic peptide (IR-AAP) level associated with experimental arrhythmia in rats. J Pharmacobiodyn 1986; 9: 806–10.

    Article  PubMed  CAS  Google Scholar 

  26. Argentieri T, Cantor E, Wiggins JR. Antiarrhythmic peptide has no direct cardiac actions. Experientia 1989; 45: 737–8.

    Article  PubMed  CAS  Google Scholar 

  27. Dhein S, Manicone N, Gerwin R, et al. Actions of a new synthetic antiarrhythmic peptide in regional ischemia: a mapping study. Naunyn Schmiedebergs Arch Pharmacol 1994; 349 Suppl.: R55.

    Google Scholar 

  28. Dhein S, Manicone N, Müller A, et al. A new synthetic antiarrhythmic peptide reduces dispersion of epicardial activation recovery interval and diminishes alterations of epicardial activation patterns induced by regional ischemia. Naunyn Schmiedebergs Arch Pharmacol 1994; 350: 174–84.

    Article  PubMed  CAS  Google Scholar 

  29. Dhein S, Tudyka T, Schott M, et al. A new synthetic antiarrhythmic peptide enhances cellular coupling and reduces dispersion of potential duration. Pflugers Arch Eur J Physiol 1995; 429 Suppl.: R91.

    Google Scholar 

  30. Kohama Y, Kuwahara S, Yamamoto K, et al. Effect of N-3-(4-hydroxyphenyl)propionyl-Pro-Pro-Gly-Ala-Gly on calciuminduced arrhythmias. Chem Pharm Bull 1988; 36: 4597–9.

    Article  PubMed  CAS  Google Scholar 

  31. Kundu B, Rizvi SY, Mathur KB, et al. Antiarrhythmic activity of a novel analogue of AAP. Collect Czech Chem Commun 1990; 55: 575–80.

    Article  CAS  Google Scholar 

  32. Kundu B. Synthesis and CD characteristics of position 3 analogues of antiarrhythmic peptide. Collect Czech Chem Commun 1989; 54: 1422–30.

    Article  CAS  Google Scholar 

  33. Dikshit M, Srivastava R, Kundu B, et al. Antiarrhythmic and antithrombotic effect of antiarrhythmic peptide and its synthetic anlogues. Indian J Exp Biol 1988; 26: 874–6.

    PubMed  CAS  Google Scholar 

  34. DeMello WC. Increased spread of electrotonic potentials during diastolic depolarization in cardiac muscle. J Mol Cell Cardiol 1986; 18: 23–9.

    Article  CAS  Google Scholar 

  35. Manoach M, Varon D, Neuman M, et al. Spontaneous termination and initiation of ventricular fibrillation as a function of heart size, age, automatic autoregulation and drugs: a comparative study on different species of differnt age. Heart Vessels 1987; 2 Suppl.: 56–68.

    CAS  Google Scholar 

  36. Manoach M, Erez M, Varon D. Properties required for self ventricular defibrillation: influence of age and drugs. Cardiol Elderly 1993; 1: 337–44.

    Google Scholar 

  37. Bredikis J, Bukaskas F, Veteikis R. Decreased intercellular coupling after prolonged rapid stimulation in rabbit atrial muscle. Circ Res 1981; 49: 815–20.

    Article  PubMed  CAS  Google Scholar 

  38. Blayer Y, Reisin L, Manoach M. Ultrastructural-functional basis for spontaneous termination of ventricular fibrillation in mammals. J Basic Clin Physiol Pharmacol 1993; 4: 281–90.

    Article  PubMed  CAS  Google Scholar 

  39. Spach MS, Miller WT, Geselowitz DB, et al. The discontinuous nature of propagation in normal canine cardiac muscle. Circ Res 1981; 48: 39–54.

    Article  PubMed  CAS  Google Scholar 

  40. DeMello WC. Influence of the sodium pump on intercellular communication in heart fibres: effect of intracellular injection of sodium ion on electrical coupling. J Physiol 1976; 263: 171–97.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhein, S., Tudyka, T. Therapeutic Potential of Antiarrhythmic Peptides. Drugs 49, 851–855 (1995). https://doi.org/10.2165/00003495-199549060-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199549060-00001

Keywords

Navigation