Skip to main content
Log in

Multiple Sclerosis Therapy

A Practical Guide

  • Practical Therapeutics
  • Published:
Drugs Aims and scope Submit manuscript

Summary

A growing amount of evidence suggests that a disturbance of immunological function is of importance in the pathogenesis of multiple sclerosis. This is reflected in the drugs used to slow progression and to treat relapses. Immunosuppressive drugs such as azathioprine, cyclophosphamide and cyclosporin might have some potential to slow down progression of multiple sclerosis, but their use is limited by potentially serious adverse effects. Recently, it was shown that interferon-β-1b can diminish the exacerbation rate in multiple sclerosis without leading to unacceptable adverse effects. Nevertheless, symptomatic treatment remains of crucial importance in the management of multiple sclerosis patients. Spasticity, depression, fatigue and urinary, paroxysmal and sensory symptoms can all be alleviated to some extent with pharmacological interventions, although rehabilitation procedures and psychosocial consultations are no less important.

Further therapeutic approaches to multiple sclerosis will be directed at either the specificity of the immune response or the grade of activation of the immune response. Magnetic resonance imaging techniques will play an important role in the evaluation of efficacy of new therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paty DW, Oger JJF, Kastrukoff LF, et al. Magnetic resonance imaging in the diagnosis of multiple sclerosis (MS): a prospective study of comparison with clinical evaluation, evoked potentials, oligoclonal banding, and CT. Neurology 1988; 38: 180–5.

    Article  PubMed  CAS  Google Scholar 

  2. Grossman RI, Gonzalez-Scarano F, Atlas SW, et al. Multiple sclerosis: gadolinium enhancement in MR imaging. Radiology 1986; 161: 721–5.

    PubMed  CAS  Google Scholar 

  3. Koopmans RA, Li DKB, Grochowski E, et al. Benign versus chronic progressive multiple sclerosis: magnetic resonance imaging features. Ann Neurol 1989; 25: 74–81.

    Article  PubMed  CAS  Google Scholar 

  4. Thompson AJ, Kermode AG, Wicks D, et al. Major differences in the dynamics of primary and secondary progressive multiple sclerosis. Ann Neurol 1991; 29: 53–62.

    Article  PubMed  CAS  Google Scholar 

  5. Miller DH, Barkhof F, Berry I, et al. Magnetic resonance imaging in monitoring the treatment of multiple sclerosis: concerted action guidelines. J Neurol Neurosurg Psychiatry 1991; 54: 683–8.

    Article  PubMed  CAS  Google Scholar 

  6. Nauta JJP, Thompson AJ, Barkhof F, et al. Magnetic resonance imaging in monitoring the treatment of multiple sclerosis patients: statistical power of parallel-groups and crossover designs. J Neurol Sci 1994; 122: 6–14.

    Article  PubMed  CAS  Google Scholar 

  7. McFarland HF, Frank JA, Albert PS, et al. Using gadoliniumenhanced magnetic resonance imaging lesions to monitor disease activity in multiple sclerosis. Ann Neurol 1992; 32: 758–66.

    Article  PubMed  CAS  Google Scholar 

  8. Paty DW, Li DKB. Interferon beta-lb is effective in relapsingremitting multiple sclerosis: II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 1993; 43: 662–7.

    Article  PubMed  CAS  Google Scholar 

  9. Fillipi M, Horsfield MA, Morrissey SP, et al. Quantitative brain MRI lesion load predicts the course of clinically isolated syndromes suggestive of multiple sclerosis. Neurology 1994; 44: 635–41.

    Article  Google Scholar 

  10. Panitch HS, Hirsch RL, Schindler J, et al. Treatment of multiple sclerosis with gamma interferoni exacerbations associated with activation of the immune system. Neurology 1987; 37: 1097–102.

    Article  PubMed  CAS  Google Scholar 

  11. Martin R, McFarland HF, McFarlin DE. Immunological aspects of demyelinating diseases. Annu Rev Immunol 1992; 10: 153–87.

    Article  PubMed  CAS  Google Scholar 

  12. Sharief MK, Hentges R. Association between TNF-alpha and disease progression in patients with multiple sclerosis. N Engl J Med 1991; 325: 467–72.

    Article  PubMed  CAS  Google Scholar 

  13. Beck J, Rondot P, Catinot L, et al. Increased production of interferon-gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol Scand 1988; 78: 318–23.

    Article  PubMed  CAS  Google Scholar 

  14. Beck J, Rondot P, Jullien P, et al. TGF-beta activity produced during regression of exacerbations in multiple sclerosis. Acta Neurol Scand 1991; 84: 452–4.

    Article  PubMed  CAS  Google Scholar 

  15. Rieckmann P, Albrecht M, Kitze B, et al. Cytokine mRNA levels in mononuclear blood cells from patients with multiple sclerosis. Neurology 1994; 44: 1523–6.

    Article  PubMed  CAS  Google Scholar 

  16. Baron J, Madri J, Ruddle N, et al. Surface expression of alpha4 integrin by CD4 T cells is required for their entry into brain parenchyma. J Exp Med 1993; 177: 57–68.

    Article  PubMed  CAS  Google Scholar 

  17. Hartung HP, Michels M, Reiners K, et al. Soluble ICAM-l serum levels in multiple sclerosis and viral encephalitis. Neurology 1993; 43: 2331–5.

    Article  PubMed  CAS  Google Scholar 

  18. Rose AS, Kuzma JW, Kurtzke JF, et al. Cooperative study in the evaluation of therapy in multiple sclerosis: ACTH versus placebo. Neurology 1970; 20 (2): 1–59.

    Article  PubMed  CAS  Google Scholar 

  19. Durelli L, Cocito D, Riccio A, et al. High-dose intravenous methylprednisolone in the treatment of multiple sclerosis: clinical-immunologic correlations. Neurology 1986; 36: 238–43.

    Article  PubMed  CAS  Google Scholar 

  20. Milligan NM, Newcombe R, Compston DAS. A double-blind controlled trial of high dose methylprednisolone in patients with multiple sclerosis: 1. Clinical effects. J Neurol Neurosurg Psychiatry 1987; 50: 511–6.

    Article  PubMed  CAS  Google Scholar 

  21. Miller DH, Thompson AJ, Morrissey SP, et al. High dose steroids in acute relapses of multiple sclerosis: MRI evidence for a possible mechanism of therapeutic effect. J Neurol Neurosurg Psychiatry 1992; 55: 450–3.

    Article  PubMed  CAS  Google Scholar 

  22. Bindoff L, Lyons PR, Newman PK, et al. Methylprednisolone in multiple sclerosis: a comparative dose study. J Neurol Neurosurg Psychiatry 1988; 51: 1108–9.

    Article  PubMed  CAS  Google Scholar 

  23. La Mantia L, Eoli M, Milanese C, et al. Double blind trial of dexamethasone versus methylprednisolone in multiple sclerosis acute relapses. Eur Neurol 1994; 34: 199–203.

    Article  PubMed  Google Scholar 

  24. Alam SM, Kyriakides T, Lawden M, et al. Methylprednisolone in multiple sclerosis: a comparison of oral with intravenous therapy at equivalent high dose. J Neurol Neurosurg Psychiatry 1993; 56: 1219–20.

    Article  PubMed  CAS  Google Scholar 

  25. Beck RW, Cleary PA, Trobe JD, et al. The effect of corticosteroids for acute optic neuritis on the subsequent development of multiple sclerosis. N Engl J Med 1993; 329: 1764–9.

    Article  PubMed  CAS  Google Scholar 

  26. Lyons PR, Newman PK, Saunders M. Methylprednisolone therapy in multiple sclerosis: a profile of adverse effects. J Neurol Neurosurg Psychiatry 1988; 51: 285–7.

    Article  PubMed  CAS  Google Scholar 

  27. Wenning GK, Wietholter H, Schnauder G, et al. Recovery of the hypothalamic-pituitary-adrenal axis from suppression by short-term, high-dose intravenous prednisolone therapy in patients with MS. Acta Neurol Scand 1994; 89: 270–3.

    Article  PubMed  CAS  Google Scholar 

  28. Thompson AJ, Kennard C, Swash M, et al. Relative efficacy of intravenous methylprednisolone and ACTH in the treatment of acute relapse in MS. Neurology 1989; 39: 969–71.

    Article  PubMed  CAS  Google Scholar 

  29. Weiner HL, Dau PC, Khatri BO, et al. Double-blind study of true vs. sham plasma exchange in patients treated with immunosuppression for acute attacks of multiple sclerosis. Neurology 1989; 39: 1143–9.

    Article  PubMed  CAS  Google Scholar 

  30. British and Dutch multiple Sclerosis Azathioprine Trial Group. Double-masked trial of azathioprine in multiple sclerosis. Lancet 1988; 2: 179–83.

    Google Scholar 

  31. Yudkin PL, Ellison GW, Ghezzi A, et al. Overview of azathioprine treatment in multiple sclerosis. Lancet 1991; 338: 1051–55.

    Article  PubMed  CAS  Google Scholar 

  32. Rudge P, Koetsier JC, Mertin J, et al. Randomised double blind controlled trial of cyclosporin in multiple sclerosis. J Neurol Neurosurg Psychiatry 1989; 52: 559–65.

    Article  PubMed  CAS  Google Scholar 

  33. Multiple Sclerosis Study Group. Efficacy and toxicity of cyclosporine in chronic progressive multiple sclerosis: a randomized, double-blinded, placebo-controlled clinical trial. Ann Neurol 1990; 27: 591–605.

    Article  Google Scholar 

  34. Kappos L, Patzold U, Dommasch D, et al. Cyclosporine versus azathioprine in the long-term treatment of multiple sclerosis — results of the German multicenter study. Ann Neurol 1988; 23: 56–63.

    Article  PubMed  CAS  Google Scholar 

  35. Hauser SL, Dawson DM, Lehrich JR, et al. Intensive immunosuppression in progressive multiple sclerosis: a randomized, three-arm study of high-dose intravenous cyclophosphamide, plasma exchange, and ACTH. N Engl J Med 1983; 308: 173–80.

    Article  PubMed  CAS  Google Scholar 

  36. Killian JM, Bressier RB, Armstrong RM, et al. Controlled pilot trial of monthly intravenous cyclophosphamide in multiple sclerosis. Arch Neurol 1988; 45: 27–30.

    Article  PubMed  CAS  Google Scholar 

  37. Canadian Cooperative multiple Sclerosis Study Group. The Canadian cooperative trial of cyclophosphamide and plasma exchange in progressive multiple sclerosis. Lancet 1991; 337: 441–6.

    Google Scholar 

  38. Likosky WH, Fireman B, Elmore R, et al. Intense immunosuppression in chronic progressive multiple sclerosis: the Kaiser study. J Neurol Neurosurg Psychiatry 1991; 54: 1055–60.

    Article  PubMed  CAS  Google Scholar 

  39. Weiner HL, Mackin GA, Orav EJ, et al. Intermittent cyclophosphamide pulse therapy in progressive multiple sclerosis: final report of the Northeast Cooperative Multiple Sclerosis Treatment Group. Neurology 1993; 43: 910–8.

    Article  PubMed  CAS  Google Scholar 

  40. Noseworthy JH, Hopkins MB, Vandervoort MK, et al. An opentrial evaluation of mitoxantrone in the treatment of progressive MS. Neurology 1993; 43: 1401–6.

    Article  PubMed  CAS  Google Scholar 

  41. Khatri BO, McQuillen MP, Harrington GJ, et al. Chronic progressive multiple sclerosis: double-blind controlled study of plasmapheresis in patients taking immunosuppressive drugs. Neurology 1985; 35: 312–9.

    Article  PubMed  CAS  Google Scholar 

  42. Khatri BO, McQuillen MP, Hoffmann RG, et al. Plasma exchange in chronic progressive multiple sclerosis: a long-term study. Neurology 1991; 41: 409–14.

    Article  PubMed  CAS  Google Scholar 

  43. Faulds D, Benfield P. Interferon beta-lb in multiple sclerosis: an initial review of its rationale for use and therapeutic potential. Clin Immunother 1994; 1(1): 79–87.

    Google Scholar 

  44. IFNB multiple Sclerosis Study Group. Interferon beta-lb is effective in relapsing-remitting multiple sclerosis: I. Clinical results of a multicenter, randomized, double-blind, placebocontrolled trial. Neurology 1993; 43: 655–61.

    Article  Google Scholar 

  45. Matthews WB. Clinical aspects. In: Matthews WB, Compston A, Allen IV, et al., editors. McAlpine’s multiple sclerosis. Edinburgh, London, Melbourne and New York: Churchill Livingstone, 1991: 282–6.

    Google Scholar 

  46. Lapierre Y, Bouchard. S, Tansey G, et al. Treatment of spasticity with tizanidine in multiple sclerosis. Can J Neurol Sci 1987; 14 (3 Suppl.):513–7.

    PubMed  CAS  Google Scholar 

  47. Hauser SL, Doolittle TH, Lopez-Bresnahan M, et al. An antispasticity effect of threonine in multiple sclerosis. Arch Neurol 1992; 49: 923–6.

    Article  PubMed  CAS  Google Scholar 

  48. Borg-Stein J, Pine ZM, Miller JR, et al. Botulinum toxin for the treatment of spasticity in multiple sclerosis: new observations. Am J Phys Med Rehabil 1993; 72: 364–8.

    Article  PubMed  CAS  Google Scholar 

  49. Patterson V, Watt M, Byrnes D, et al. Management of severe spasticity with intrathecal baclofen delivered by a manually operated pump. J Neurol Neurosurg Psychiatry 1994; 57: 582–5.

    Article  PubMed  CAS  Google Scholar 

  50. Francis DA, Grundy D, Heron JR. The response to isoniazid of action tremor in multiple sclerosis and its assessment using polarised light goniometry. J Neurol Neurosurg Psychiatry 1986; 49: 87–9.

    Article  PubMed  CAS  Google Scholar 

  51. Hewer RL, Cooper R, Morgan MH. An investigation into the value of treating intention tremor by weighting the affected limb. Brain 1972; 95: 579–90.

    Article  PubMed  CAS  Google Scholar 

  52. Goldman MS, Kelly PJ. Symptomatic and functional outcome of stereotactic ventralis lateralis thalamotomy for intention tremor. J Neurosurg 1992; 77: 223–9.

    Article  PubMed  CAS  Google Scholar 

  53. Fowler CJ, Van Kerrebroeck PEV, Nordebo A, et al. Treatment of lower urinary tract dysfunction in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 1992; 55: 986–9.

    Article  PubMed  CAS  Google Scholar 

  54. Fraioli B, Esposito V, Guidetti B, et al. Treatment of trigeminal neuralgia by thermocoagulation, glycerolization, and percutaneous compression of the gasserian ganglion and/or retrogasserian rootlets: long-term results and therapeutic protocol. Neurosurgery 1989; 24: 239–45.

    Article  PubMed  CAS  Google Scholar 

  55. Kondziolka D, Lunsford LD, Bisonette DJ. Long-term results after glycerol rhizotomy for multiple sclerosis-related trigeminal neuralgia. Can J Neurol Sci 1994; 21: 137–40.

    PubMed  CAS  Google Scholar 

  56. Minden SL, Schiffer RB. Affective disorders in multiple sclerosis: review and recommendations for clinical research. Arch Neurol 1990; 47: 98–104.

    Article  PubMed  CAS  Google Scholar 

  57. Sadovnik AD, Eisen K, Ebers GC, et al. Cause of death in patients attending multiple sclerosis clinics. Neurology 1991; 41: 1193–6.

    Article  Google Scholar 

  58. Silver JM, Hales RE, Yudofsky SC. Psychopharmacology of depression in neurologic disorders. J Clin Psychiatry 1990; 51: 33–9.

    Google Scholar 

  59. Cohen RA, Fisher M. Amantadine treatment of fatigue associated with multiple sclerosis. Arch Neurol 1989; 46: 676–80.

    Article  PubMed  CAS  Google Scholar 

  60. Sipe JC, Romine JS, Koziol JA, et al. Cladribine in treatment of chronic progressive multiple sclerosis. Lancet 1994; 344: 9–13.

    Article  PubMed  CAS  Google Scholar 

  61. Goodkin DE, Rudick PA, Vanderbrug Medendorp S, et al. Low-dose (7.5 mg) oral methotrexate is effective in reducing the rate of progression of neurological impairment in patients with chronic progressive multiple sclerosis. Neurology. In press.

  62. Zhang J, Medaer R, Stinissen P, et al. MHC-restricted depletion of human myelin basic protein-reactive T cells by T cell vaccination. Science 1993; 261: 1451–4.

    Article  PubMed  CAS  Google Scholar 

  63. Bourdette DN, Whitham RH, Chou YK, et al. Immunity to TCR peptides in multiple sclerosis. J Immunol 1994; 152: 2510–9.

    PubMed  CAS  Google Scholar 

  64. Weiner H, Mackin G, Matsui M, et al. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 1993; 259: 1321–4.

    Article  PubMed  CAS  Google Scholar 

  65. Al Sabbagh A, Miller A, Santos LMB, et al. Antigen-driven tissue-specific suppression following oral tolerance: orally administered myelin basic protein suppresses proteolipid protein-induced experimental autoimmune encephalomyelitis in SJL mice. Eur J Immunol 1994; 24: 2104–9.

    Article  Google Scholar 

  66. Bornstein MB, Johnson KP. Treatment of multiple sclerosis with copolymer I. In: Rudick RA, Goodkin DE, editors. Treatment of multiple sclerosis. New York: Springer-Verlag, 1992: 173–98.

    Chapter  Google Scholar 

  67. Hutchings P, o’Reilly L, Parish NM, et al. The use of non-depleting anti-CD4 monoclonal antibody to re-establish tolerance to cells in NOD mice. Eur J Immunol 1992; 22: 1913–8.

    Article  PubMed  CAS  Google Scholar 

  68. Moreau T, Thorpe J, Miller D, et al. Preliminary evidence from magnetic resonance imaging for reduction in disease activity after lymphocyte depletion in multiple sclerosis. Lancet 1994; 344: 298–301.

    Article  PubMed  CAS  Google Scholar 

  69. Svenningsson A, Stemme S. Cell adhesion molecules in multiple sclerosis: targets for future therapeutic strategies? CNS Drugs 1994; 2 (2): 87–95.

    Article  Google Scholar 

  70. van Diemen HAM, Polman CH, van Dongen TMMM, et al. The effect of 4-amino-pyridine on clinical signs in multiple sclerosis: a randomized, placebo-controlled, double-blind, crossover study. Ann Neurol 1992; 32: 123–30.

    Article  PubMed  Google Scholar 

  71. Polman CH, Bertelsmann FW, van Loenen AC, et al. 4-Aminopyridine in the treatment of patients with multiple sclerosis: long-term efficacy and safety. Arch Neurol 1994; 51: 292–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Oosten, B.W., Truyen, L., Barkhof, F. et al. Multiple Sclerosis Therapy. Drugs 49, 200–212 (1995). https://doi.org/10.2165/00003495-199549020-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199549020-00005

Keywords

Navigation