Skip to main content
Log in

The Clinical Potential of Renin Inhibitors and Angiotensin Antagonists

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Summary

The renin angiotensin system is a major contributor to the pathophysiology of cardiovascular diseases such as congestive heart failure and hypertension. For this reason, attempts to specifically block this system have been a pharmacological goal for over 25 years. Blockade of the renin system has been attempted at 3 pivotal sites: the rate limiting angiotensinogen-renin step, conversion of angiotensin I to angiotensin II, and the active receptor sites for the terminal products of angiotensin II and aldosterone.

Converting enzyme inhibitors have been successfully studied and utilised in clinical cardiovascular disorders, but questions persist regarding the specificity of their action. Thus, other more specific approaches remain under evaluation.

Inhibition of the action of renin on angiotensinogen was demonstrated with early inhibitory peptides and in experimental studies with specific antibodies. Most currently available renin inhibitors are nonpeptides, which nonetheless require intravenous administration. An oral renin inhibitor with clinical effects has been evaluated in early human trials. Like renin inhibitors and converting enzyme inhibitors, specific angiotensin antagonists were studied early in the course of renin system pharmacological blockade. Early angiotensin antagonists were limited, due to the requirement for intravenous administration and because of their short half-lives. They also had the potential for mixed agonist/antagonist physiological and pharmacological effects, which could result in a pressor, rather than a depressor, response.

The angiotensin receptor antagonists have the appeal of blocking the specific receptor at its target tissue site, analogous to other well described systems. Newer angiotensin antagonists do not have the limitations of the precursor peptides. Losartan (DUP753) is a specific angiotensin II AT1 receptor antagonist. It is orally effective without agonist activity, and has high receptor binding characteristics. Early studies indicate that it is a specific probe of the renin system, and is providing newer insights into the role of the renin system in cardiovascular disorders. Emerging clinical studies indicate that it is effective for blood pressure reduction and as a vasodilator.

Aldosterone antagonists such as spironolactone have been available for decades. Spironolactone is being used in an ongoing trial to assess the impact of combined converting enzyme and aldosterone inhibition. Newer aldosterone antagonists could add to targeted blockade of aldosterone without the adverse effects of the precursor compound, and the potential for combined specific renin system blockade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alderman MH, Madhavan S, Ooi WL, Cohen H, Sealey JE, et al. Association of the renin-sodium profile with the risk of myocardial infarction in patients with hypertension. New England Journal of Medicine 324: 1098–1104, 1991

    Article  PubMed  CAS  Google Scholar 

  • Anderson GH, Streeten DHP, Dalakos TG. Pressor response to 1-sar-8-ala-angiotensin II (saralasin) in hypertensive subjects. Circulation Research 40: 243–250, 1977

    Article  PubMed  CAS  Google Scholar 

  • Ashton WT, Cantone CL, Meurer LC, Tolman RL, Greenlee WJ, et al. Renin inhibitors containing C-termini derived from mercaptoheterocycles. Journal of Medicinal Chemistry 35: 2103–2112, 1992

    Article  PubMed  CAS  Google Scholar 

  • Atsuumi S, Nakano M, Koike Y, Tanaka S, Matsuyama K, et al. Renin inhibitors I: synthesis and structure-activity relationships of transition-state inhibitors containing homostatine analogues at the scissile bond. Chemical and Pharmaceutical Bulletin 40: 364–370, 1992

    Article  CAS  Google Scholar 

  • Baker WR, Fung AK, Kleinert HD, Stein HH, Plattner JJ, et al. Nonpeptide renin inhibitors employing a novel 3-aza(or oxa)-2,4-dialkyl glutaric acid moiety as a P2/P3 amide bond replacement. Journal of Medicinal Chentistry 35: 1722–1734, 1992

    Article  CAS  Google Scholar 

  • Bovy PR, Collins JT, Olins GM, McMahon EG, Hutton WC. Conformationally restricted polysubstituted biphenyl derivatives with angiotensin II receptors antagonist properties. Journal of Medicinal Chemistry 34: 2410–2414, 1991

    Article  PubMed  CAS  Google Scholar 

  • Bovy PR, ONeal JM, Olins GM, Patton DR, McMahon EG, et al. Structure-activity relationships for the carboxy-terminus truncated analogues of angiotension II, a new class of angiotensin II antagonists. Journal of Medicinal Chemistry 33: 1477–1482, 1990

    Article  PubMed  CAS  Google Scholar 

  • Bovy PR, Trapani AJ, McMahon EG, Palomo M. A carboxy-terminus truncated analogue of angiotensin II, [sar1]angiotensin II-(1–7)-amide, provides an entry to a new class of angiotensin II antagonists. Journal of Medicinal Chemistry 32: 520–522, 1989

    Article  PubMed  CAS  Google Scholar 

  • Boyd SA, Fung AK, Baker WR, Mantei RA, Armiger YL, et al. C-terminal modifications of nonpeptide renin inhibitors: improved oral bioavailability via modification of physicochentical properties. Journal of Medicinal Chemistry 35: 1735–1746, 1992

    Article  PubMed  CAS  Google Scholar 

  • Buhlmayer P, Criscione L, Fuhrer W, Furet P, de Gasparo M, et al. Nonpeptidic angiotensin II antagonists: synthesis and in vitro activity of a series of novel naphthalene and tetrahydronaphthalene derivatives. Journal of Medicinal Chemistry 34: 3105–3114, 1991

    Article  PubMed  CAS  Google Scholar 

  • Burton J, Cody RJ, Herd JA, Haber E. Specific inhibition of renin by an angiotensinogen analog: studies in sodium depletion and renin-dependent hypertension. Proceedings of the National Academy of Sciences of the United States of America 77: 5476–5479, 1980

    Article  PubMed  CAS  Google Scholar 

  • Burton J, Haber E, Poulsen K. The design of effective renin inhibitors. In Walter & Meienhofer (Eds) Peptides: chemistry, structure and biology, Ann Arbor Science Publishers Inc., Ann Arbor, 1975

    Google Scholar 

  • Camenzind E, Nussberger J, Juillerat L, Munafo A, Fischli W, et al. Effect of the renin response during renin inhibition: oral Ro 42–5892 in normal humans. Journal of Cardiovascular Pharmacology 18: 299–307, 1991

    Article  PubMed  CAS  Google Scholar 

  • Chang RS, Lotti VJ. Two distinct angiotensin II receptor binding sites in rat adrenal revealed by new selective nonpeptide ligands. Molecular Pharmacology 37: 347–351, 1990

    PubMed  CAS  Google Scholar 

  • Christen Y, Waeber B, Nussberger J, Porchet M, Borland RM, et al. Oral administration of DuP 753, a specific angiotensin II receptor antagonist, to normal male volunteers: inhibition of pressor response to exogenous angiotensin I and II. Circulation 83: 1333–1342, 1991

    Article  PubMed  CAS  Google Scholar 

  • Cody RJ. Hemodynamic responses to specific renin angiotensin inhibitors in hypertension and heart failure: a review. Drugs 28: 144–169, 1984

    Article  PubMed  CAS  Google Scholar 

  • Cody RJ. Conceptual and therapeutic approaches to inhibition of the renin-angiotensin system in chronic congestive heart failure. Journal of Cardiovascular Pharmacology 8 (Suppl. 1): S58-S65, 1986

    Article  Google Scholar 

  • Cody RJ. Assessment of neurohormonal parameters in congestive heart failure: determination of sodium and water regulation. In Morganroth & Moore (Eds) Congestive heart failure, pp. 25–37, Martinus Nijhoff, Boston, 1987

    Chapter  Google Scholar 

  • Cody RJ. Neurohormonal influences in the pathogenesis of congestive heart failure. In Weber K. (Ed.) Cardiology clinics heart failure, pp. 73–86, WB Saunders, Philadelphia, 1989

    Google Scholar 

  • Cody RJ. Renin system inhibition: beginning the fourth epoch. Circulation 85: 362–364, 1992

    Article  PubMed  CAS  Google Scholar 

  • Cody RJ, Brown DM, Hunnicutt M, Sinnathamby S. Effect of specific angiotensin II (AII) inhibition on LV function in the spontaneously hypertensive rat (SHR). American Journal of Hypertension 6: 27A, 1993a

    Google Scholar 

  • Cody RJ, Brown DM, Hunnicutt M, Sinnathamby S. Hemodynamic and arterial compliance responses to chronic specific angiotensin II (AII) inhibition in the spontaneously hypertensive rat (SHR). American Journal of Hypertension 6: 3A, 1993b

    Google Scholar 

  • Cody RJ, Burton J, Evin G, Poulsen K, Herd JA, et al. A substrate analog inhibitor of renin that is effective in vivo. Biochemical and Biophysical Research Communications 97: 230–235, 1980a

    Article  PubMed  CAS  Google Scholar 

  • Cody RJ, Covit AB, Schaer GL, Laragh JH. Estimation of angiotensin II receptor activity in chronic congestive heart failure. American Heart Journal 108: 81–89, 1984

    Article  PubMed  CAS  Google Scholar 

  • Cody RJ, Covit AB, Schaer GL, Laragh JH, Sealey JE, et al. Sodium and water balance in chronic congestive heart failure. Journal of Clinical Investigation 77: 1441–1452, 1986

    Article  PubMed  CAS  Google Scholar 

  • Cody RJ, Fouad FM, Tarazi RC, Bravo EL. Hemodynamic effects of a new angiotensin antagonist (sarlthr8) angiotensin 11 in hypertensive man. Circulation 61: 338–344, 1980b

    Article  PubMed  Google Scholar 

  • Cody RJ, Franklin KW, Kluger J, Laragh JH. Mechanisms governing the postural response, and baroreceptor abnormalities in chronic congestive heart failure: effects of acute and long term converting enzyme inhibition. Circulation 66: 135–141, 1982a

    Article  PubMed  CAS  Google Scholar 

  • Cody RJ, Haas GJ, Binkley PF, Brown DM. Peripheral and aortic vascular responses to a specific angiotensin II antagonist, DUP 753, in the spontaneously hypertensive rat (SHR). American Journal of Hypertension 4: 32A, 1991a

    Google Scholar 

  • Cody RJ, Haas GJ, Binkley PF, Brown DM. Hemodynamic and vascular characteristics of DUP753: A specific angiotensin 11 antagonist in the spontaneously hypertensive rat (SHR) (abstract). Journal of the American College of Cardiology 17: 202A, 1991b

    Google Scholar 

  • Cody RJ, Laragh JH. The renin-angiotensin-aldosterone system in chronic congestive heart failure: pathophysiology and implications for treatment. In Cohn (Ed.) Drug treatment of heart failure, pp. 79–104, Advanced Therapeutics Communications International, Secaucus, 1988

    Google Scholar 

  • Cody RJ, Livingston W, Brown DM, Hunnicutt M, Sinnathamby S. Angiotensin ATI blockade suppresses myocardial, but not aortic endothelin-1 transcription in pressure overload ventricular failure. Circulation 88 (Suppl.1): 1–294, 1993c

    Google Scholar 

  • Cody RJ, Rodger RF, Hartley LH, Burton J, Herd JA. Acute hypertension in a non-human primate: humoral and hemodynamic mechanisms. Hypertension 4: 219–225, 1982b

    Article  PubMed  CAS  Google Scholar 

  • Cooper J, Quail W, Frazao C, Foundling SI, Blundell TL, et al. X-ray crystallographic analysis of inhibition of endothiapepsin by cyclohexyl renin inhibitors. Biochemistry 31: 8142–8150, 1992

    Article  PubMed  CAS  Google Scholar 

  • Criscione L, Thomann H, Whitebread S, de Gasparo M, Buhlmayer P, et al. Binding characteristics and vascular effects of various angiotensin II antagonists. Journal of Cardiovascular Pharmacology 16 (Suppl. 4): S56-S59, 1990

    Article  Google Scholar 

  • Cushman DW, Wang FL, Fung WC, Harvey CM, DeForrest JM. Differentiation of angiotensin-converting enzyme (ACE) inhibitors by their selective inhibition of ACE in physiologically important target organs. American Journal of Hypertension 2: 294–306, 1989

    PubMed  CAS  Google Scholar 

  • Doherty AM, Sircar I, Kornberg BE, Quin III J, Winters RT, et al. Design and synthesis of potent, selective, and orally active fluorine-containing renin inhibitors. Journal of Medicinal Chemistry 35: 2–14, 1992

    Article  PubMed  CAS  Google Scholar 

  • Doig JK, MacFadyen RJ, Sweet CS, Lees KR, Reid JL. Dose-ranging study of the angiotensin type I receptor antagonist losartan (DUP753/MK954) in salt-deplete normal man. Journal of Cardiovascular Pharmacology 21: 732–738, 1993

    Article  PubMed  CAS  Google Scholar 

  • Dzau VJ. Implications of local angiotensin production in cardiovascular physiology and pharmacology. American Journal of Cardiology 59: 59A-65A, 1987

    Article  Google Scholar 

  • Dzau VJ, Hirsch AT. Emerging role of the tissue renin-angiotensin systems in congestive heart failure. European Heart Journal 11 (Suppl. B): 65–71, 1990

    PubMed  CAS  Google Scholar 

  • Dzau VJ, Kopelman RI, Barger CA, Haber E. Renin-specific anti-body for study of cardiovascular homeostasis. Science 207: 1091–1093, 1980

    Article  PubMed  CAS  Google Scholar 

  • Dzau VJ, Pratt RE. Renin gene expression, biosynthesis, and cellular pathways of secretion. Clinical Physiology and Biochemistry 6: 210–216, 1988

    PubMed  CAS  Google Scholar 

  • Epps DE, Poorman RA, Mandel F, Schostarez HJ. Determination of dissociation constants of high affinity (pM) human renin inhibitors: application to analogues of ditekiren (U-71,038). Journal of Medicinal Chemistry 34: 2107–2112, 1991

    Article  PubMed  CAS  Google Scholar 

  • Fisher JF, Harrison AW, Bundy GL, Wilkinson KF, Rush BD, et al. Peptide to glycopeptide: glycosylated oligopeptide renin inhibitors with attenuated in vivo clearance properties. Journal of Medicinal Chemistry 34: 3140–3143, 1991

    Article  PubMed  CAS  Google Scholar 

  • Francis GS, Benedict C, Johnstone DE, Kirlin PC, Nicklas J, et al. for the SOLVD Investigators. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure: a substudy of the studies of left ventricular dysfunction (SOLVD). Circulation 82: 1724–1729, 1990

    Article  PubMed  CAS  Google Scholar 

  • Gardner CJ, Twissel DJ, Charlton PA, Cherry PC. Acute and chronic effects of renin inhibitor GR 70982 in the conscious marmoset. European Journal of Pharmacology 192: 329–335, 1991

    Article  PubMed  CAS  Google Scholar 

  • Glassman HN, Kleinert HD, Boger RS, Moyse DM, Griffiths AN, et al. Clinical pharmacology of enalkiren, a novel, dipeptide renin inhibitor. Journal of Cardiovascular Pharmacology 16 (Suppl. 4): S76-S81, 1990

    Article  Google Scholar 

  • Greenfield JC, Loux SJ, Sood VK, Jenkins KM, Davio SR. In vitro evaluation of the plasma and blood compatibility of a parenteral formulation for ditekiren, a novel renin inhibitor pseudopeptide. Pharmacological Research 8: 475–479, 1991

    Article  CAS  Google Scholar 

  • Greenlee WJ. Renin inhibitors. Pharmacological Research 4: 364–374, 1987

    Article  CAS  Google Scholar 

  • Greenlee WJ. Renin inhibitors. Medical Research Reviews 10: 173–236, 1990

    Article  CAS  Google Scholar 

  • Haber E. Why renin inhibitors? American Journal of Hypertension 7: S81-S86, 1989

    Article  Google Scholar 

  • Haber E, Hui KY, Carlson WD, Bernatowicz MS. Renin inhibitors: a search for principles of design. Journal of Cardiovascular Pharmacology 10 (Suppl. 7): S54-S58, 1987

    Article  Google Scholar 

  • Hall MM, Khosla MC, Khairallah PA, Bumpus FM. Angiotensin analogs: the influence of sarcosine substituted in position 1. Journal of Pharmacology and Experimental Therapeutics 188: 222–228, 1974

    PubMed  CAS  Google Scholar 

  • Herblin WF, Chiu AT, McCall DE, et al. Angiotensin II receptor heterogeneity, American Journal of Hypertension 4: 299S-302S, 1991

    Google Scholar 

  • Hirsch AT, Pinto YM, Schunkert H, Dzau VJ. Potential role of the tissue renin-angiotensin system in the pathophysiology of congestive heart failure. American Journal of Cardiology 66: 22D-32D, 1990

    Article  Google Scholar 

  • Humke U, Levens N, Wood J, Hofbauer K. Responses to renin inhibition in conscious primates. American Journal of Physiology 261: F179-FI86, 1991

    Google Scholar 

  • Hunnicutt M, Alton ME, Haas GJ, Brown DM, Cody RJ. Attenuated development of left ventricular hypertrophy (LVH) with long term DUP753 in the spontaneously hypertensive rat (SHR). American Journal of Hypertension 6: in press, 1993

  • Hutchins C, Greer J. Comparative modelling of proteins in the design of novel renin inhibitors. Critical Reviews in Biochemistry and Molecular Biology 26: 77–127, 1991

    Article  PubMed  CAS  Google Scholar 

  • Ii Y, Murakami E, Hiwada K. Effect of renin inhibitor, ES-8891, on renal renin secretion and storage in the marmoset: comparison with captopril. Journal of Hypertension 9: 1119–1125, 1991

    PubMed  CAS  Google Scholar 

  • Iwai N, Inagami T. Regulation of the expression of the rat angiotensin II receptor mRNA. Biochemical and Biophysical Research Communications 182: 1094–1099, 1991

    Article  Google Scholar 

  • Jaiswal N, Diz DI, Tallant EA, Khosla MC, Ferrario CM. The non-peptide angiotensin II antagonist DuP 753 is a potent stimulus for prostacyclin synthesis. American Journal of Hypertension 4: 228–233, 1991

    PubMed  CAS  Google Scholar 

  • Kleinert HD. Renin inhibitors: discovery and development. An overview and perspective. American Journal of Hypertension 2: 800–808, 1989

    PubMed  CAS  Google Scholar 

  • Kleinert HD, Baker WR, Stein HH. Renin inhibitors. Advanced Pharmacology 22: 207–250, 1991

    Article  CAS  Google Scholar 

  • Kubo SH, Clark M, Laragh JH, Borer JS, Cody RJ. Identification of normal neurohormonal activity in mild congestive heart failure and the stimulating effect of upright posture and diuretics. American Journal of Cardiology 60: 1322–1328, 1987

    Article  PubMed  CAS  Google Scholar 

  • Kubo SH, Cody RJ. Circulatory autoregulation in chronic congestive heart failure. Response to tilt in 41 patients. American Journal of Cardiology 52: 512–518, 1983

    Article  PubMed  CAS  Google Scholar 

  • Lacour C, Roccon A, Cazaubon C, Richaud JP, Segondy D, et al. A pharmacodynamic study of the renin inhibitor SR 43,845, administered intratracheally in conscious cynomolgus monkeys. Journal of Hypertension (Suppl. 9): S384-S385, 1991

    Google Scholar 

  • Laragh JH, Sealey JE. The renin-angiotensin aldosterone hormonal system and regulation of sodium, potassium, and blood pressure homeostasis. In Orloff & Berliner (Eds) Handbook of renal physiology, section 8, pp. 831–908, American Physiological Society, Washington, 1973

    Google Scholar 

  • Lunney EA, Humblet CC, Repine JT, Blundell TL, Cooper JB, et al. Molecular modelling of renin inhibitor P2 substituents. Advances in Experimental Medicine and Biology 306: 391–394, 1991

    Article  PubMed  CAS  Google Scholar 

  • Martin SF, Austin RE, Oalmann CJ, Baker WR, Condon SL, et al. 1,2,3-trisubstituted cyclopropanes as conformationally restricted peptide isosteres: application to the design and synthesis of novel renin inhibitors. Journal of Medicinal Chemistry 35: 1710–1721, 1992

    Article  PubMed  CAS  Google Scholar 

  • Michel JB, Guettier C, Reade R, Sayah S, Corvol P, et al. Immunologic approaches to blockade of the renin-angiotensin system: a review. American Heart Journal 117: 756–767, 1989

    Article  PubMed  CAS  Google Scholar 

  • Naftilan AJ, Zuo WM, Inglefinger J, Ryan Jr TJ, Pratt RE, et al. Localization and differential regulation of angiotensinogen mRNA expression in the vessel wall. Journal of Clinical Investigation 87: 1300–1311, 1991

    Article  PubMed  CAS  Google Scholar 

  • Neuberg GW, Kukin ML, Penn J, Medina N, Yushak M, et al. Hemodynamic effects of renin inhibition by enalkiren in chronic congestive heart failure. American Journal of Cardiology 67: 63–66, 1991

    Article  PubMed  CAS  Google Scholar 

  • Niarchos AP, Pickering TG, Case DB, Sullivan P, Laragh JH. Role of the renin-angiotensin system in blood pressure regulation: the cardiovascular effects of converting enzyme inhibition in normotensive subjects. Circulation Research 45: 829–837, 1979

    Article  PubMed  CAS  Google Scholar 

  • Ng KKF, Vane JR. Fate of angiotensin I in the circulation. Nature 218: 144–150, 1968

    Article  PubMed  CAS  Google Scholar 

  • Ng KKF, Vane JR. Some properties of angiotensin converting enzyme in the lung in vivo. Nature 225: 1142–1144, 1970

    Article  PubMed  CAS  Google Scholar 

  • Norman JA, Hadjilambris O, Baska R, Sharp DY, Kumar R. Stable expression, secretion, and characterization of active human renin in mammalian cells. Molecular Pharmacology 41: 53–59, 1992

    PubMed  CAS  Google Scholar 

  • Ocain TD, Deininger DD, Ruso R, et al. New modified heterocyclic phenylalanine derivatives: incorporation into potent inhibitors of human renin. Journal of Medicinal Chemistry 35: 823–832, 1992

    Article  PubMed  CAS  Google Scholar 

  • Okamura T, Aimi Y, Kimura H, Murakami K, Toda N. Existence of renin in the endothelium of human artery. Journal of Hypertension 10: 49–53, 1992

    Article  PubMed  CAS  Google Scholar 

  • Oparil S, Koerner T, O’Donaghue JK. Mechanism of angiotensin I converting enzyme inhibition by SQ20881 (Glu-Trp-Pro-Arg-ProG1n- lle-Pro-Pro) in vivo: further evidence for extrapulmonary conversion. Hypertension 1: 13–22, 1979

    Article  PubMed  CAS  Google Scholar 

  • Patt WC, Hamilton HW, Taylor MD, Ryan MJ, Taylor Jr DG, et al. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors. Journal of Medicinal Chemistry 35: 2562–2572, 1992

    Article  PubMed  CAS  Google Scholar 

  • Poulsen K, Burton J, Haber E. Competitive inhibitors of renin: a review. Progress in Biochemical Pharmacology 12: 135–141, 1976

    PubMed  CAS  Google Scholar 

  • Raddatz P, Jonczyk A, Minck KO, Schmitges CJ, Sombroek J. Substrate analogue renin inhibitors containing replacements of histidine in P2 or isosteres of the amide bond between P3 and P2 sites. Journal of Medicinal Chemistry 34: 3267–3280, 1991

    Article  PubMed  CAS  Google Scholar 

  • Repine JT, Kaltenbronn JS, Doherty AM, et al. Renin inhibitors containing alpha-heteroatom amino acids as P2 residues. Journal of Medicinal Chemistry 35: 1032–1042, 1992

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SH, Kleinert HD, Stein HH, Martin DL, Chekal MA, et al. Design of a well-absorbed renin inhibitor. Journal of Medicinal Chemistry 34: 469–471, 1991

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki M, Asano M, Fukunaga Y, Usui T, Ichihara M, et al. Pharmacological properties of YM-21095, a potent and highly specific renin inhibitor. American Journal of Hypertension 4: 932–938, 1991

    PubMed  CAS  Google Scholar 

  • Skeggs JT, Lentz KE, Kahn JR, Hochstrasser H. Kinetics of the reaction of renin with nine synthetic peptide substrates. Journal of Experimental Medicine 128: 13–34, 1968

    Article  PubMed  CAS  Google Scholar 

  • Stein HH, Fung AK, Cohen J, Baker WR, Rosenberg SH, et al. Slow, tight binding to human renin of some nonpeptidic renin inhibitors containing a 4-methoxymethoxypiperidinylamide at the P4 position. FEBS Letters 300: 301–304, 1992

    Article  PubMed  CAS  Google Scholar 

  • Szelke M, Leckie BJ, Tree M, Brown A, Grant J, et al. H-77: a potent new renin inhibitor: in vitro and in vivo studies. Hypertension 4: 59–69, 1982

    PubMed  CAS  Google Scholar 

  • Thurston H, Swales JD. Action of angiotensin antagonists and antiserum upon the pressor response to renin: further evidence for the local generation of angiotensin II. Clinical Science and Molecular Medicine 46: 273–276, 1974

    PubMed  CAS  Google Scholar 

  • Timmermans PB, Carini DJ, Chiu AT, Duncia JV, Price Jr WA, et al. Nonpeptide angiotensin 11 receptor antagonists. American Journal of Hypertension 3: 599–604, 1990

    PubMed  CAS  Google Scholar 

  • Turker RK, Page IH, Bumpus PM. Antagonists of angiotensin II. In Page & Bumpus (Eds) Angiotensin. pp. 162–169, Springer Verlag, New York, 1974

    Chapter  Google Scholar 

  • Weber AE, Halgren TA, Doyle JJ, Lynch RJ, Siegl PK, et al. Design and synthesis of P2-P1’-linked macrocyclic human renin inhibitors. Journal of Medicinal Chemistry 34: 2692–2701, 1991

    Article  PubMed  CAS  Google Scholar 

  • Wienen W, Mauz AB, Van Meel JC, Entzeroth M. Different types of receptor interaction of peptide and nonpeptide angiotensin II an tagonists revealed by receptor binding and functional studies. Molecular Pharmacology 41: 1081–1088, 1992

    PubMed  CAS  Google Scholar 

  • Williams GH, Hollenberg NK. Accentuated vascular and endocrine response to SQ20,881 in hypertension. New England Journal of Medicine 297: 194–201, 1977

    Article  Google Scholar 

  • Wong PC, Hart SD, Zaspel AM, et al. Functional studies of nonpeptide angiotensin II receptor subtype-specific ligands: DuP 753 (All-I) and PDI23319 (All-2). Journal of Pharmacology and Experimental Therapeutics 255: 584–592, 1990a

    PubMed  CAS  Google Scholar 

  • Wong PC, Price WA, Chiu AT, Duncia JV, Carini DJ, et al. Nonpeptide angiotensin II receptor antagonists X: hypotensive action of DuP 753, an angiotensin II antagonist, in spontaneously hypertensive rats. Hypertension 15: 459–468, 1990b

    Article  PubMed  CAS  Google Scholar 

  • Wong PC, Price WA, Chiu AT, et al. Nonpeptide angiotensin II receptor antagonists: studies with EXP9270 and DUP 753. Hypertension 15: 823–834, 1990c

    Article  PubMed  CAS  Google Scholar 

  • Wong PC, Price WA, Chiu AT, et al. Nonpeptide angiotensin II receptor antagonists XI: pharmacology of EXP3174, an active metabolite of DUP 753, an orally active antihypertensive agent. Journal of Pharmacology and Therapeutics 255: 211–217, 1990d

    CAS  Google Scholar 

  • Zusman RM. Renin- and nonrenin-mediated antihypertensive actions of converting enzyme inhibitors. Kidney International 29: 969–983, 1984

    Article  Google Scholar 

  • Zusman RM, Burton J, Christensen D, Nussberger J, Dodds A, et al. Hemodynamic effects of a competitive renin inhibitory peptide in humans: evidence for multiple mechanisms of action. Transactions of the Association of American Physicians 96: 365–374, 1983

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cody, R.J. The Clinical Potential of Renin Inhibitors and Angiotensin Antagonists. Drugs 47, 586–598 (1994). https://doi.org/10.2165/00003495-199447040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199447040-00003

Keywords

Navigation