Skip to main content
Log in

Lipoprotein Metabolism

An Overview

  • Published:
Drugs Aims and scope Submit manuscript

Summary

The biological benefits of lipids as sources of energy and precursors of cell components have led to the evolution of a complex plasma lipoprotein transport system, through which gram quantities of cholesterol, triglyceride, and phospholipid pass each day. A wide variety of tissues make demands on this pool. The adrenal glands and gonads avidly assimilate lipoprotein cholesterol for the production of steroid hormones, and rapidly dividing intestinal villus cells take up the sterol for membrane synthesis. Metabolically active tissues such as skeletal muscle use plasma triglyceride for energy production, while in times of surfeit this lipid is directed into adipocytes for storage.

Two organs, the liver and intestine, play a particularly important role in corporeal lipid metabolism, and together are responsible for the majority of lipoprotein synthesis and catabolism. In the plasma, lipid transport is regulated by specific apolipoproteins (apo), lipoprotein receptors, lipolytic enzymes and transfer proteins, which act in concert to maintain the balance of cholesterol and triglyceride homeostasis in tissues and plasma; their malfunction may cause or contribute to the development of dyslipidaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelin B, Bjorkheim I, Einarsson K. Cholesterol 7α hydroxylase and bile acid synthesis in relation to triglyceride and lipoprotein metabolism. In Fears & Sabine (Eds) Cholesterol 7α hydroxylase, pp. 137–177, CRC Press, Boca Raton, Fla, 1986

    Google Scholar 

  • Baker SR, Patsch JR, Forte T, Bensadoun A. Plasma lipoprotein changes resulting from immunologically blocked lipolysis. Journal of Lipid Research 22: 443–451, 1981

    Google Scholar 

  • Barter PJ, Kevin FC. Precursor of plasma triglyceride fatty acid in humans. Effect of glucose consumption, Clofibrate administration and alcoholic fatty liver. Metabolism 21: 117–124, 1972

    Article  PubMed  CAS  Google Scholar 

  • Berman M, Hall M, Levy RI, et al. Metabolism of Apo B and Apo C lipoproteins in man: kinetic studies in normal and hyperlipopro-teinemic subjects. Journal of Lipid Research 19: 38–56, 1978

    PubMed  CAS  Google Scholar 

  • Blum CB. Dynamics of apolipoprotein E metabolism in humans. Journal of Lipid Research 23: 1308–1316, 1982

    PubMed  CAS  Google Scholar 

  • Carlson LS, Holmqvist L, Nilsson-Ehle P. Deficiency of hepatic lipase activity in post heparin plasma in familial hyperalphatriglyceridemia. Acta Medica Scandinavica 219: 435–447, 1986

    Article  PubMed  CAS  Google Scholar 

  • Chan L, van Tuinen P, Ledbetter DH, et al. The human apolipoprotein B-100 gene: a highly polymorphic gene that maps to the short arm of chromosome 2. Biochemical Biophysical Research Communications 113: 248–255, 1985

    Article  Google Scholar 

  • Danielson H, Sjövall J. Bile acid metabolism. Annual Review of Biochemistry 44: 233–253, 1975

    Article  Google Scholar 

  • Da Lalla OF, Elliott HA, Gofman JW. Ultracentrifugal studies of high density serum lipoproteins in clinically healthy adults. American Journal of Physiology 179: 333–337, 1954

    Google Scholar 

  • Deckelbaum RJ, Olivecrona T, Eisenberg S. Plasma lipoproteins in hyperlipidemia: roles of neutral lipid exchange and lipase. In Carlson et al. (Eds) Treatment of hyperlipoproteinemia, pp. 85–93, Raven Press, New York, 1984

    Google Scholar 

  • Deckelbaum RJ, Eisenberg S, Oschry Y, Cooper M, Blum CB. Abnormal high density lipoproteins of abetalipoproteinemia. Journal of Lipid Research 23: 1274–1282, 1982

    PubMed  CAS  Google Scholar 

  • Demant T, Carlson LA, Holmquist C, et al. The metabolism of apo B containing lipoproteins in a patient with hepatic lipase deficiency. Atherosclerosis 74: 255–264, 1988

    Article  Google Scholar 

  • Dietschy JM, Wilson JD. Regulation of cholesterol metabolism. New England Journal of Medicine 282: 1128–1138, 1179–1183, 1241–1249, 1970

    Article  PubMed  CAS  Google Scholar 

  • Dory L, Boquet LM, Hamilton RL, Sloop CD, Roheim PS. Heterogeneity of dog intestinal fluid (peripheral lymph high density lipoproteins). Journal of Lipid Research 26: 519–527, 1985

    PubMed  CAS  Google Scholar 

  • Dory L, Sloop CH, Boquet LM, Hamilton RL, Roheim PS. Lecithin cholesterol acyltransferase mediated modification of discoidal peripheral lymph high density lipoproteins. Proceedings of the National Academy of Sciences of the United States of America 80: 3489–3493, 1983

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg S. Preferential enrichment of large sized very low density lipoprotein populations with transferred cholesteryl esters. Journal of Lipid Research 26: 487–493, 1985

    PubMed  CAS  Google Scholar 

  • Ginsberg HN, Ngoc-Anh LE, Goldberg IJR, Brown WV. Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI. Journal of Clinical Investigation 78: 1287–1295, 1986

    Article  PubMed  CAS  Google Scholar 

  • Gofman JW, Young W, Tandy R. Ischemic heart disease, atherosclerosis and longevity. Circulation 34: 679–697, 1966

    Article  PubMed  CAS  Google Scholar 

  • Goh EH, Heimberg M. Relationship between the activity of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase and secretion of very low density lipoprotein cholesterol in the isolated perfused liver and in the intact rat. Biochemical Journal 184: 1–6, 1979

    PubMed  CAS  Google Scholar 

  • Goldberg IJ, Ngoc-Anh Le, Paterniti JR, et al. Lipoprotein metabolism during acute inhibition of hepatic triglyceride lipase in the cynom-olgus monkey. Journal of Clinical Investigation 70: 1184–1192, 1982

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JL, Brown MS. Progress in understanding the LDL receptor and HMG CoA reductase, two membrane proteins that regulate the plasma cholesterol. Journal of Lipid Research 25: 1450–1462, 1984

    PubMed  CAS  Google Scholar 

  • Green PHR, Glickman PM. Intestinal lipoprotein metabolism. Journal of Lipid Research 22: 1153–1173, 1981

    PubMed  CAS  Google Scholar 

  • Green PHR, Glickman RM, Sandel CD, Blum CB, Tall AR. Human intestinal lipoproteins: studies in chyluric subjects. Journal of Clinical Investigation 64: 233–242, 1979

    Article  PubMed  CAS  Google Scholar 

  • Green PHR, Tall AR, Glickman RM. Rat intestine secretes discoidal high density lipoprotein. Journal of Clinical Investigation 61: 528–534, 1978

    Article  PubMed  CAS  Google Scholar 

  • Gregg RE, Zech LA, Schaefer EJ, Brewer HB. Type III hyperlipoproteinemia: defective metabolism of an abnormal apolipoprotein E. Science 221: 584–588, 1981

    Article  Google Scholar 

  • Hamilton RL. Hepatic secretion of nascent plasma lipoproteins. In Glauman et al. (Eds) Plasma protein secretion by the liver, pp. 357–374, Academic Press, London, 1983

    Google Scholar 

  • Havel RJ, Kane JP, Kashyap ML. Interchange of apolipoproteins between chylomicrons and high density lipoproteins during alimentary lipemia in man. Journal of Clinical Investigation 52: 32–38, 1973

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi K, Fainaru M, Havel RJ. Composition of mesenteric lymph chylomicrons in the rat and alterations produced upon exposure to chylomicrons to blood serum and serum proteins. Journal of Lipid Research 19: 712–722, 1978

    PubMed  CAS  Google Scholar 

  • Janus ED, Nicoll AM, Turner PR, Magill P, Lewis B. Kinetic bases of the primary hyperlipidaemias: studies of apolipoprotein B turnover in genetically defined subjects. European Journal of Clinical Investigation 10: 161–174, 1980

    Article  PubMed  CAS  Google Scholar 

  • Kane JP, Havel RJ. Disorders of the biogenesis and secretion of lipoproteins containing the B apolipoproteins. In Scriver et al. (Eds) The metabolic basis of inherited disease, 6th ed., Vol. 1, pp. 1139–1164, New York, McGraw-Hill, 1989

    Google Scholar 

  • Kane JP, Hardman DA, Paulus HE. Heterogeneity of apolipoprotein B: isolation of a new species from human chylomicrons. Proceedings of the National Academy of Sciences of the United States of America 77: 2465–2469, 1980

    Article  PubMed  CAS  Google Scholar 

  • Knott TJ, Rall SC, Innerarity TL, et al. Human apolipoprotein B: structure of carboxy-terminal domains, sites of gene expression and chromosomal localisation. Science 230: 37–43, 1985

    Article  PubMed  CAS  Google Scholar 

  • Krebs EG, Beavo JA. Phosphorylation-dephosphorylation of enzymes. Annual Review of Biochemistry 48: 923–959, 1979

    Article  PubMed  CAS  Google Scholar 

  • Mahley RW, Innerarity TL. Lipoprotein receptors and cholesterol homeostasis. Biochimica Biophysica Acta 737: 197–222, 1983

    Article  CAS  Google Scholar 

  • Mjos OD, Faergeman O, Hamilton RL, Havel RJ. Characterisation of remnants produced during the metabolism of triglyceride-rich lipoproteins of blood plasma and intestinal lymph in the rat. Journal of Clinical Investigation 56: 603–615, 1975

    Article  PubMed  CAS  Google Scholar 

  • Myant NB, Mitropoulos KA. Cholesterol 7α hydroxylase. Journal of Lipid Research 18: 135–153, 1977

    PubMed  CAS  Google Scholar 

  • Nicoll A, Lewis B. Evaluation of the roles of lipoprotein lipase and hepatic lipase in lipoprotein metabolism: in vivo and in vitro studies in man. European Journal of Clinical Investigation 10: 487–495, 1980

    Article  PubMed  CAS  Google Scholar 

  • Nilsson-Ehle P, Garfunkel AS, Schotz MC. Lipolytic enzymes and plasma lipoprotein metabolism. Annual Review of Biochemistry 49: 667–693, 1980

    Article  PubMed  CAS  Google Scholar 

  • Norum KR, Bert T, Helgerud P, Drevon CA. Transport of cholesterol. Physiological Review 63: 1343–1397, 1983

    CAS  Google Scholar 

  • Norum KR, Miller NE, Miller CJ. Familial lecithin: cholesterol acyltransferase deficiency. In Miller et al. (Eds) Clinical and metabolic aspects of high density lipoproteins, pp. 297–318, Elsevier, Amsterdam, 1984

    Google Scholar 

  • Packard CJ, Munro A, Lorimer A, Gotto AM, Shepherd J. Metabolism of apolipoprotein B in large triglyceride-rich very low density lipoproteins of normal and hypertriglyceridemic subjects. Journal of Clinical Investigation 74: 2178–2192, 1984

    Article  PubMed  CAS  Google Scholar 

  • Packard CJ, Shepherd J. Cholesterol 7α hydroxylase: involvement in hepatobiliary axis and regulation of plasma lipoprotein levels. In Fears & Sabine (Eds) Cholesterol 7α hyydroxylase, pp. 47–165, CRC Press, Boca Raton, Fla, 1986

    Google Scholar 

  • Parker TS, McNamara DJ, Brown C, et al. Mevalonic acid in human plasma: relationship of concentration and circadean rhythm to cholesterol synthesis rates in man. Proceedings of the National Academy of Sciences of the United States of America 79: 3037–3041, 1982

    Article  PubMed  CAS  Google Scholar 

  • Patsch JR, Prasad SS, Gotto AM, Bengttson-Olivecrona G. Postprandial lipemia. Journal of Clinical Investigation 74: 2017–2023, 1984

    Article  PubMed  CAS  Google Scholar 

  • Schaefer EJ, Jenkins LL, Brewer HB. Human chylomicron apolipoprotein catabolism. Biochemical Biophysical Research Communications 80: 405–412, 1978

    Article  CAS  Google Scholar 

  • Schaefer EJ, Wetzel MG, Bengttson G, et al. Transfer of human lymph chylomicron constituents of other lipoprotein density gradients during in vitro lipolysis. Journal of Lipid Research 23: 1259–1273, 1982

    PubMed  CAS  Google Scholar 

  • Shepherd J, Packard CJ, Stewart JM, et al. Apolipoprotein A and B (Sf 100–400) metabolism during bezafibrate therapy in hypertriglyceridemic subjects. Journal of Clinical Investigation 74: 2164–2177, 1984

    Article  PubMed  CAS  Google Scholar 

  • Simpson HS, Williamson CM, Pringle S, et al. Hypolipidaemic drugs and chylomicron metabolism. In Greten (Ed) Intestinal lipid and lipoprotein metabolism, pp. 194–201, Zuckschwerdt Verlag, Munchen, 1989

    Google Scholar 

  • Tall AR, Green PHR, Glickman RM, Riley JW. Metabolic fate of chylomicron phospholipids and apoproteins in the rat. Journal of Clinical Investigation 64: 977–989, 1979

    Article  PubMed  CAS  Google Scholar 

  • Tall AR, Small DS. Plasma high density lipoproteins. New England Journal of Medicine 299: 1232–1236, 1978

    Article  PubMed  CAS  Google Scholar 

  • Windler E, Chao Y, Havel RJ. Regulation of the hepatic uptake of triglyceride-rich lipoproteins in the rat. Journal of Biological Chemistry 55: 8303–8307, 1980

    Google Scholar 

  • Wu AL, Windmueller HG. Relative contributions by liver and intestine to individual plasma apolipoproteins in the rat. Journal of Biological Chemistry 254: 7316–7322, 1979

    PubMed  CAS  Google Scholar 

  • Zilversmit DB. Lipid transfer proteins. Journal of Lipid Research 25: 1563–1569, 1984

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shepherd, J. Lipoprotein Metabolism. Drugs 47 (Suppl 2), 1–10 (1994). https://doi.org/10.2165/00003495-199400472-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199400472-00003

Keywords

Navigation