Skip to main content
Log in

Miocamycin

A Review of its Antimicrobial Activity, Pharmacokinetic Properties and Therapeutic Potential

  • Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Synopsis

Miocamycin is an orally administered 16-membered macrolide antimicrobial drug. It has a spectrum of in vitro activity similar to that of erythromycin, inhibiting a range of Gram-positive and Gram-negative organisms, atypical microbes and some anaerobes. Importantly, miocamycin demonstrates greater in vitro potency than erythromycin against several pathogens including Legionella pneumophila, Mycoplasma hominis, and Ureaplasma urealyticum. Equally noteworthy is its activity against erythromycin-resistant staphylococcal and streptococcal species expressing inducible-type resistance. Miocamycin possesses poor overall activity against Haemophilias influenzae and is inactive against Enterobacteriaceae.

Penetration of miocamycin into body tissues and fluids is both rapid and extensive. The 3 major metabolites of miocamycin possess antimicrobial activity and may contribute to the therapeutic efficacy of the drug.

Clinical data indicate that miocamycin is useful in the treatment of upper and lower respiratory tract infections in both adult and paediatric patients. Miocamycin is also effective in the treatment of urogenital tract infections caused by Chlamydia trachomatis or U. urealyticum. Several studies suggest that miocamycin is at least as effective as erythromycin in these indications; however, comparisons with newer macrolide agents have yet to be performed. In other studies, miocamycin proved to be a useful agent in the treatment of periodontal infections and as anti-infective prophylaxis in dental surgery.

Miocamycin appears to have a tolerability profile qualitatively similar to that of other macrolides, with gastrointestinal and skin disorders being the most commonly reported adverse events. Current data suggest that the potential for drug interactions with miocamycin is low, with the possible exceptions of carbamazepine and cyclosporin.

Thus, although further confirmation and elaboration of various aspects of its efficacy and tolerability profile is needed, at this stage miocamycin offers a useful alternative oral therapy to erythromycin for the treatment of uncomplicated community-acquired respiratory tract infections and nongonococcal urethritis.

Antimicrobial Activity

The in vitro activity spectrum of miocamycin is similar to that of erythromycin. While it is generally less potent in vitro than erythromycin, differences in potency between the 2 drugs have been demonstrated for particular organisms.

Miocamycin is active against Streptococcus pneumoniae, S. pyogenes and S. agalactiae. It is also active against erythromycin-sensitive strains of Staphylococcus aureus and Enterococcus faecalis, and, in contrast to the 14-membered and 15-membered macrolide agents, is active against erythromycin-resistant strains expressing inducible-type resistance. The atypical respiratory tract pathogens Bordetella pertussis, Legionella pneumophila, Mycoplasma pneumoniae and Moraxella catarrhalis are susceptible to miocamycin, although the drug generally showed low activity against Haemophilus influenzae. Miocamycin is active against the commonly isolated urogenital pathogens Chlamydia trachomatis, Gardnerella vaginalis, Ureaplasma urealyticum and M. hominis. Miocamycin is also active against several anaerobic bacteria. Enterobacteriaceae are resistant to miocamycin.

The antimicrobial activity of miocamycin, as with other macrolides, is apparently achieved through protein synthesis inhibition. The in vivo efficacy of the drug appears to be greater than its in vitro antimicrobial activity would suggest. This observation may be explained by the high tissue concentrations achieved by miocamycin, its postantibiotic effect and potential beneficial effects on the immune system, and the formation of metabolites with antimicrobial activity.

Pharmacokinetic Properties

Mean peak serum concentrations of approximately 1.8 mg/L are attained in adults with normal renal and hepatic function within 0.5 to 1 hour of receiving a single dose of miocamycin 600mg. Food does not appear to affect the absorption of miocamycin. Elimination of miocamycin is primarily by hepatic metabolism and biliary excretion, and its elimination half-life is approximately 1 hour. The pharmacokinetic profile of miocamycin in children appears similar to that in adults. Peak plasma concentrations of the 3 major metabolites were in the range 0.5 to 1.8 mg/ L in healthy adult volunteers after a 1200mg dose of miocamycin.

Miocamycin has a large apparent volume of distribution (228 to 329L) and is not highly plasma protein bound (47%), indicating extensive tissue penetration. The drug distributes rapidly into tissues and tissue fluids, and achieves concentrations in the range of the minimum inhibitory concentrations (MIC) for most susceptible organisms in all tissues analysed.

Therapeutic Efficacy

The clinical efficacy of miocamycin has been assessed in both adult and paediatric patients with respiratory or urogenital tract infections in trials conducted in Japan and Italy. Many of the studies were noncomparative, while the majority of comparative studies were nonblinded. Study methodologies, particularly patient inclusion criteria, were generally lacking. Definitions of clinical cure or improvement varied considerably between studies and lower dosages were used in Japanese versus non-Japanese studies. Consequently, ratings of clinical efficacy varied widely among studies.

Miocamycin 600 to 1200 mg/day administered for 2 to 3 weeks produced clinical cure/improvement rates of 76 to 100% in clinical trials in adult patients with mainly acute exacerbations of bronchitis, or pneumonia. Miocamycin 50 mg/day administered for 10 days was effective in the treatment of bronchitis/pneumonia or pharyngitis/tonsillitis in children (cure rates 72 to 100%). Limited comparative studies indicate that miocamycin 1200 mg/day is at least as effective as erythromycin 1500 to 2000 mg/day, and has similar efficacy to dirithromycin 500 mg/day or josamycin 1500 mg/day, in adult patients with respiratory tract infections.

In 2 comparative studies in paediatric patients with upper or lower respiratory tract infections, miocamycin 50 mg/kg/day administered for 10 days was at least as effective as erythromycin 50 mg/kg/day and showed similar efficacy to amoxicillin 60 mg/kg/day.

Cure rates (combined clinical/micro-organism eradication) of 72 to 100% were achieved in adult patients with mainly acute urogenital tract infections caused by C. trachomatis or U. urealyticum after treatment with miocamycin 1200 or 1800 mg/day for up to 20 days. Miocamycin 1800 mg/day was at least as effective as erythromycin 2000 mg/day in 2 comparative studies in this indication.

In noncomparative clinical trials, miocamycin 1200 to 1800 mg/day was effective in the treatment of periodontal infections while various regimens provided adequate anti-infective prophylaxis in patients undergoing dental surgery.

Clinical Tolerability

The tolerability profile of miocamycin appears similar to that of other macrolide antimicrobial drugs. Limited data in adult patients indicate that miocamycin is generally well tolerated. Most adverse events were transient gastrointestinal tract or skin disorders of mild to moderate severity. A large Japanese postmarketing surveillance study in 12 053 paediatric patients confirmed this favourable tolerability profile, although these children received lower dosages than are generally used outside Japan. There are preliminary data suggesting that miocamycin has a lower stimulatory effect on gastrointestinal motility than erythromycin and other 14-membered macrolide agents; however, these findings are of uncertain clinical significance.

The overall potential for drug interactions with miocamycin would appear to be low. Studies in small numbers of patients and healthy volunteers indicate that miocamycin has little or no propensity to interact with theophylline. However, limited data in healthy volunteers and patients, respectively, suggest that miocamycin may significantly impair the elimination pharmacokinetics of carbamazepine and cyclosporin.

Dosage and Administration

Dosages vary between countries. The recommended oral dosage for adults is 600mg twice or 3 times daily in Italy and 800mg twice daily in France. In Italy, a regimen of 50 mg/kg/day in 2 or 3 divided administrations is recommended for children. Lower dosages have generally been used in Japan with 300mg 3 times daily and 20 to 40 mg/kg/day in 3 divided doses being the most frequently used adult and paediatric dosages, respectively, in clinical trials. Miocamycin is available in tablet or syrup formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agostoni C, Giovannini M, Fraschini F, Scaglione F, Galluzzo C, et al. Comparison of miocamycin versus amoxycillin in lower respiratory tract infections in children. Clinical response and effect on natural killer cell activity. Journal of International Medical Research 16: 305–311, 1988

    CAS  Google Scholar 

  • Alegente G, Marchi B, Progenia G, Mugnaini F, Saturni A, et al. Attività in vitro di miocamicina nei confronti di Gardnerella vaginalis. Farmaci & Terapia 6: 12–14, 1989

    Google Scholar 

  • Alesina R, Colombo ML, Ferrara A, Gialdroni Grassi G. Attività antibatterica in vitro della miocamicina. Chemioterapia Antimicrobica 4: 341–350, 1981

    Google Scholar 

  • Aoyama R, Kakizaki Y, Akira O, Izumi Y. Clinical studies on 9,3″-diacetylmidecamycin in respiratory tract infections in pediatric field. In Japanese. Japanese Journal of Antibiotics 35: 919–922, 1982

    CAS  Google Scholar 

  • Asensi F, Gobernado M. Treatment of infantile gastroenteritis caused by Campylobacter spp. Multicentre study with macrolides vs diet. In Spanish. Rivista Espanola de Quimioterapia 4: 145–150, 1991

    Google Scholar 

  • Bacci P, Grossi A, Vannucchi AM, Rafanelli D, Casini A, et al. Effects of miocamycin and erythromycin on polymorphonuclear cell function. Journal of Chemotherapy 4: 268–270, 1992.

    PubMed  CAS  Google Scholar 

  • Bahal N, Nahata MC. The new macrolide antibiotics: azithromycin, clarithromycin, dirithromycin and roxithromycin. Annals of Pharmacotherapy 26: 46–55, 1992

    PubMed  CAS  Google Scholar 

  • Bandera M, Bertolini S, Bonsignore G, Ginesu F, Gramiccioni E, et al. Controlled multicenter trial with miocamycin versus erythromycin and josamycin in the treatment of respiratory tract infections. Farmaci & Terapia 4: 70–74, 1987

    Google Scholar 

  • Bertinieri G, Caser L, Ceffa G, Cortese P, Martina C, et al. Miocamycin in the prophylaxis and treatment of outpatient skin infections. In Italian. Minerva Medicina 78: 1625–1627, 1987

    CAS  Google Scholar 

  • Borzani M, Varotto F, Garlaschi L, Conio F, Dell’Olio M, et al. Clinical and microbiological evaluation of miocamycin activity against group A beta-hemolytic streptococci in pediatric patients. Three years’ experience of erythromycin-resistant group A streptococci. Journal of Chemotherpy 1: 35–38, 1989

    CAS  Google Scholar 

  • Borzani M, Varotto F, Cogliati C, Catturini P, Dadda M. Terapia della faringite streptococcica nei bambini. Confronto tra attività antimicrobica di miocamicina, eritromicina e penicillina. In Italian. Farmaci & Terapia 8: 218–221, 1990

    Google Scholar 

  • Bucci E, Martuscelli R, Bucci P, Ferrari E. Profilo farmacologico e sperimentazione clinica di un nuovo macrolide. La Miocamicina. Giornale di Stomatologia e Ortognatodonzia 7: 72–74, 1988

    Google Scholar 

  • Capelli A, Capelli O, Azzolini L, Richeldi L, Prandi E, et al. Activities of human alveolar macrophages (HAMs). Note 1: observations on phagocytosis and bacterial killing in the presence of miocamycin. Chemioterapia. International Journal of the Mediterranean Society of Chemotherapy 7: 89–95, 1988

    CAS  Google Scholar 

  • Caretta Q, Chiarini F, di Rocco V, Brandimarte C, Biggio S, et al. Profilassi antinfettiva nei pazienti a rischio di endocardite nella bonifica del cavo orale. Importanza della associazione antibiotica. Cardiologia 33: 577–581, 1988

    CAS  Google Scholar 

  • Catania S, Mascellino MT, Fornasiero M, Musso R. Valutazioni cliniche e batteriologiche sull’efficacia della miocamicina in alcune infezioni delle alte vie respiratoire. European Review of Medical & Pharmacological Sciences 11: 323–325, 1087

    Google Scholar 

  • Chu S-Y, Sennello LT, Bunnell ST, Varga LL, Wilson DS, et al. Pharmacokinetics of clarithromycin, a new macrolide, after single ascending doses. Antimicrobial Agents and Chemotherapy 36: 2447–2453, 1992

    Article  PubMed  CAS  Google Scholar 

  • Clerici D, Garlaschi C, Varotto F, Marini A, Scaglione F, et al. Miocamycin in Chlamydia trachomatis infections in neonatology: clinical results, pharmacokinetics and microbiological evaluation. 6th Mediterranean Congress of Chemotherapy, Taormina, May 22–27, 1989. Journal of Chemotherapy (Suppl. 4): 583–585, 1989

    Google Scholar 

  • Couet W, Girault J, Reigner B, Ingrand I, Bizouard J, et al. Pharmacokinetics of ponsinomycin administered orally as a syrup at single doses of 400–800 and 1200mg in healthy volunteers. In French. Pathologie Biologie 37: 428–432, 1989a

    CAS  Google Scholar 

  • Couet W, Ingrand I, Reigner B, Girault J, Bizouard J, et al. Lack of effect of ponsinomycin on the plasma pharmacokinetics of theophylline. European Journal of Clinical Pharmacology 37: 101–104, 1989b

    PubMed  CAS  Google Scholar 

  • Couet W, Istin B, Decourt JP, Ingrand I, Girault J, et al. Lack of effect of ponsinomycin on the pharmacokinetics of nicoumalone enantiomers. British Journal of Clinical Pharmacology 30: 616–620, 1990a

    Article  PubMed  CAS  Google Scholar 

  • Couet W, Istin B, Ingrand I, Girault J, Fourtillan J-B. Effect of ponsinomycin on single-dose kinetics and metabolism of carbamazepine. Therapeutic Drug Monitoring 12: 144–149, 1990b

    Article  PubMed  CAS  Google Scholar 

  • Couet W, Istin B, Seniuta P, Morel D, Potaux L, et al. Effect of ponsinomycin on cyclosporin pharmacokinetics. European Journal of Clinical Pharmacology 39: 165–167, 1990c

    Article  PubMed  CAS  Google Scholar 

  • Couet W, Reigner BG, Ingrand I, Girault J, Istin B, et al. Multiple dosing pharmacokinetics of ponsinomycine in healthy volunteers. In French. Therapie 45: 105–109, 1990d

    CAS  Google Scholar 

  • Dal Negro R, Turco P, Pomari C, de Conti F. Miocamycin doesn’t affect theophylline serum levels in COPD patients. International Journal of Clinical Pharmacology, Therapy and Toxicology 26: 27–29, 1988

    Google Scholar 

  • Deguchi K, Yokota N, Koguchi M, Nakane Y, Fukushima Y, et al. Annual changes in susceptibility of clinical isolates to midecamycin acetate. In Japanese. Japanese Journal of Antibiotics 43: 1341–1352, 1990

    CAS  Google Scholar 

  • De Luca M. Clinical and microbiological effects of in vivo miocamycin therapy on oral infections and in surgical prophylaxis. Drugs Under Experimental and Clinical Research 14: 659–663, 1988

    PubMed  Google Scholar 

  • Dette GA, Knothe H. Kinetics of erythromycin uptake and release by human lymphocytes and polymorphonuclear leucocytes. Journal of Antimicrobial Chemotherapy 18: 73–82, 1986

    Article  PubMed  CAS  Google Scholar 

  • Dumas R, Brouland JP, Tedone R, Descotes J. Influence of macrolide antibiotics on the chemiluminescence of zymosan-activated human neutrophils. Chemotherapy 90: 381–384, 1990

    Article  Google Scholar 

  • Eady A, Ross JI, Cove JH. Multiple mechanisms of erythromycin resistance. Journal of Antimicrobial Chemotherapy 26: 461–471, 1990

    Article  PubMed  CAS  Google Scholar 

  • Felmingham D, Robbins MJ, Sanghrajka M, Leakey A, Ridgway GL. The in vitro activity of some 14-, 15- and 16-membered macrolides against Staphylococcus spp., Legionella spp., Mycoplasma spp. and Ureaplasma urealyticum. Drugs Under Experimental and Clinical Research 17: 91–99, 1991

    CAS  Google Scholar 

  • Fernandes PB, Hardy DJ. Comparative in vitro potencies of nine new macrolides. Drugs Under Investigation and Clinical Research 14: 445–451, 1988

    CAS  Google Scholar 

  • Ferreruela RM, Alcaraz MJ, Farga MA, Gimeno C, García-de-Lomas J. Activity of new macrolides against genitourinary and respiratory mycoplasmas. In Spanish. Revista Espanola de Quimioterapia 4: 209–215, 1991

    Google Scholar 

  • Fietta A, Bersani C, Santagada T, Bertoletti R, Gialdroni Grassi G. In vitro activity of macrolides on human phagocytic functions. Chemioterapia 6: 52–56, 1987

    PubMed  CAS  Google Scholar 

  • Fioretti M, Bandera M, Rimoldi R. Attività terapeutica e comportamento farmacocinetico della miocamicina a livello dell’apparato respiratorio. Giornale Italiano di Chemioterapia 31: 145–148, 1984

    PubMed  CAS  Google Scholar 

  • Fourtillan JB, Couet W, Ingrand I, Reigner B, Bizouard J, et al. Influence of food on ponsinomycin bioavailability when administered as a syrup. In French. Pathologie Biologie 37: 446–460, 1989

    CAS  Google Scholar 

  • Fraschini F, Scaglione F, Cantarella Marchi E, Scarpazza P, Falchi M, et al. Plasma and tissue concentrations of miocamycin in humans. In Ishigami (Ed.) Recent advances in chemotherapy. Proceedings of the 14th International Congress of Chemotherapy, 23–28 June 1985. Antimicrobial Section 2, pp. 1447–1449, University of Tokyo Press, Tokyo, 1985

    Google Scholar 

  • Fraschini F, Scaglione F, Cicchetti F, Rossi M, Borghi C, et al. Prostatic tissue concentrations and serum levels of myocamycin in human subjects. Drugs Under Experimental and Clinical Research 14: 253–255, 1988

    PubMed  CAS  Google Scholar 

  • Fraschini F, Scaglione F, Falchi M, Manzoni P, D’Orsi S, et al. Miocamycin penetration into oral cavity tissues and crevicular fluid. International Journal of Clinical Pharmacology Research 10: 293–296, 1989a

    Google Scholar 

  • Fraschini F, Scaglione F, Falchi M, Nebuloni R, Zampella K, et al. Kinetic profile of miocamycin in middle ear fluid and mucosa. Acta Otolaryngologica 111: 756–761, 1991

    Article  CAS  Google Scholar 

  • Fraschini F, Scaglione F, Ferrara F, Dugnani S, Falchi M, et al. Miocamycin and leucocyte activity in man. Chemotherapy 35: 289–295, 1989b

    Article  PubMed  CAS  Google Scholar 

  • Fukaya K, Shomura T, Someya S, Kikai S, Murata S, et al. Absorption, metabolism and excretion of 9,3″-diacetylmidecamycin (MOM) in humans. In Japanese. Chemotherapy 29: 448–456, 1981

    CAS  Google Scholar 

  • Fukaya K, Watanabe S, Fujita M. Absorption and excretion of miocamycin tablets and drug syrup. In Ishigami (Ed.) Recent advances in chemotherapy. Proceedings of the 14th International Congress of Chemotherapy, 23–28 June 1985. Antimicrobial section 2, pp. 1450–1451, University of Tokyo Press, Tokyo, 1985

  • Furneri PM, Cianci A, Garozzo A, Roccasalva L, Pinizzotto MR, et al. Some pharmacokinetic data on miocamycin II. Concentrations in gynaecological tissues. Drugs Under Experimental and Clinical Research 17: 181–186, 1991

    CAS  Google Scholar 

  • Furneri PM, Tempera G, Bisignano G, Cottarelli FV, Nicoletti G. Anti-mycoplasmal activity of a new macrolide: miocamycin. Chemioterapia 6: 341–345, 1987

    PubMed  CAS  Google Scholar 

  • Furneri PM, Blandino G, Roccasalva L, Cianci A, Palumbo G, et al. Some features of miocamycin in the gynecological field: pharmacokinetic data using preoperative administration and therapeutic aspects against chlamydial infections. 5th Mediterranean Congress of Chemotherapy, Taormina, May 22–27, 1988, Journal of Chemotherapy (Suppl. 4): 585–586, 1989

  • Furneri PM, Roccasalva L, Fallica L, Tempera G. Efficacy of miocamycin in the therapy of non-specific genital infections (NSGI): non-gonoccocal urethritis (NGU) and acute urethral syndrome (AUS). International Journal of Clinical Pharmacology Research 8: 111–116, 1988a

    PubMed  CAS  Google Scholar 

  • Furneri PM, Scalia G, Garozzo A, Tempera G. Some pharmacokinetic data on miocamycin I. Serum, urinary and prostatic levels. Drugs Under Experimental and Clinical Research 14: 755–762, 1988b

    CAS  Google Scholar 

  • Ginesu F, Ortu AR, Schena G. Esperienze cliniche con miocamicina nelle infezioni aspecifiche dell’apparato respiratorio. In Italian. Medicina Toracia 6: 651–660, 1984

    Google Scholar 

  • Goldman RC, Fesik SW, Doran CC. Role of protonated and neutral forms of macrolides in binding to ribosomes from Gram-positive and Gram-negative bacteria. Antimicrobial Agents and Chemotherapy 34: 426–431, 1990

    Article  PubMed  CAS  Google Scholar 

  • Grima P, Pasanisi G, Grima PF. Observations on 573 cases of genital infection from Chlamydia trachomatis. Current Therapeutic Research 49: 676–682, 1991

    Google Scholar 

  • Gullini S, Contato E, Mirolo G, Piva I, Bisi G, et al. Verifica dell’attività antimicrobica in vitro della miocamicina su 40 stipiti di Helicobacter pylori. Archivio di Medicina Interna 44: 245–251, 1992

    Google Scholar 

  • Gwaltney Jr JM. Pleuropulmonary and bronchial infections. In Mandell et al. (Eds) Principles and practice of infectious diseases, 3rd ed., pp. 529–531, Churchill Livingstone, New York, 1990

    Google Scholar 

  • Hamilton-Miller JMT. From foreign pharmacopoeias: ‘new’ antibiotics from old. Journal of Antimicrobial Chemotherapy 27: 702–704, 1991

    Article  PubMed  CAS  Google Scholar 

  • Hamilton-Miller JMT. In-vitro activities of 14-, 15-and 16-membered macrolides against Gram-positive cocci. Journal of Antimicrobial Chemotherapy 29: 141–147, 1992

    Article  PubMed  CAS  Google Scholar 

  • Hamilton-Miller JMT, Shah S. Post-antibiotic effects of miocamycin, roxithromycin and erythromycin on Gram-positive cocci. International Journal of Antimicrobial Agents 2: 105–109, 1993

    Article  PubMed  CAS  Google Scholar 

  • Hardy DJ, Hanson CW, Hensey DM, Beyer JM, Fernandes PB. Susceptibility of Campylobacter pylori to macrolides and fluoroquinolones. Journal of Antimicrobial Chemotherapy 22: 631–636, 1988a

    Article  PubMed  CAS  Google Scholar 

  • Hardy DJ, Hensey DM, Beyer JM, Vojtko C, McDonald EJ, et al. Comparative in vitro activities of new 14-, 15- and 16-membered macrolides. Antimicrobial Agents and Chemotherapy 32: 1710–1719, 1988b

    Article  PubMed  CAS  Google Scholar 

  • Iwai N, Sasaki A, Taneda Y, Mizoguchi F, Nakamura H. Clinical studies on 9,3″-diacetylmidecamycin in respiratory tract infections. In Japanese. Japanese Journal of Antibiotics 35: 739–753, 1982

    CAS  Google Scholar 

  • Iwasaki Y, Iwata S, Kanemitsu T, Jozaki K, Hattori H, et al. Fundamental and clinical evaluation of 9,3″-diacetylmidecamycin in pediatric field. In Japanese. Japanese Journal of Antibiotics 35: 429–437, 1982

    CAS  Google Scholar 

  • Kanamoto Y, Miyake Y, Suginaka H, Usui T. In vitro sensitivity of Ureaplasma urealyticum clinical isolates to new macrolides. Chemotherapy 37: 256–259, 1991

    Article  PubMed  CAS  Google Scholar 

  • Kawaharajo K, Sekizawa Y, Inoue M. In vitro and in vivo antibacterial activity of 9,3′-di-o-acetyl midecamycin (MOM). A new macrolide antibiotic. Journal of Antibiotics 34: 436–442, 1981

    CAS  Google Scholar 

  • Kees F, Grobecker H, Fourtillan JB, Tremblay D, Saint-Salvi B. Comparative pharmacokinetics of single dose roxithromycin (150 mg) versus erythromycin stearate (500 mg) in healthy volunteers. British Journal of Clinical Practice 42 (Suppl. 55): 51, 1988

    Google Scholar 

  • Kirst HA, Sides GD. New directions for macrolide antibiotics: pharmacokinetics and clinical efficacy. Antimicrobial Agents and Chemotherapy 33: 1419–1422, 1989

    Article  PubMed  CAS  Google Scholar 

  • Lacey RW, Lord VL, Howson GL. In vitro evaluation of miocamycin: bactericidal activity against streptococci. Journal of Antimicrobial Chemotherapy 13: 5–13, 1984

    Article  PubMed  CAS  Google Scholar 

  • Lai S, Bellesi P, Lombardi C, Magrini C, Casini A, et al. Chlamydia trachomatis infections in a group of urology outpatients: incidence and treatment with miocamycin. Farmaci & Terapia 12: 222–225, 1990

    Google Scholar 

  • Lolli R, Monaco B, Venezia A, De Nisi S. Valutazione clinica della efficacia della miocamicina nella pratica odontostomatologica. Archivio di Medicina Interna 40: 86–99, 1988

    Google Scholar 

  • Longhi S. Prevalenza di Chlamydia trachomatis nella patologia infiammatoria cronica delle vie urogenitali e confronto dell’efficacia clinica di minociclina, miocamicina e norfloxacina. In Italian. Giornale Italiano di Ricerche Cliniche e Terapeutiche 12: 167–170, 1991

    Google Scholar 

  • Loza E, Martinez Beltrán J, Baquero F, León A, Cantón R, et al. Comparative in vitro activity of clarithromycin. European Journal of Clinical Microbiology and Infectious Diseases 11: 856–866, 1992

    Article  CAS  Google Scholar 

  • Martín Luengo F, Dámasco D, García de Lomas J, Gómez Lus R, Jiménez de Anta MT, et al. Multicentre study of the In vitro activity of diacetyl midecamycin, erythromycin, josamycin and amoxicillin against various bacterial species. In Spanish. Revista Espanola de Quimioterapia 3: 153–157, 1990

    Google Scholar 

  • Mayama T, Maruyama K, Nakazawa T, Iida M. A survey of the side effects of midecamycin acetate (Miocamycin®) dry syrup after marketing. International Journal of Clinical Pharmacology, Therapy and Toxicology 28: 245–250, 1990

    CAS  Google Scholar 

  • Mazzei T, Ciuffi M, Lamanna S, Orsi A, Bonazza M, et al. Valutazione chemioterapica in vitro e farmacocinetica clinica della miocamicina (9,3″-di-o-acetil midecamicina, MOM). In Italian. Chemioterapia Antimicrobica 4: 351–360, 1981

    Google Scholar 

  • McDonald PJ, Craig WA, Kunin CM. Persistant effect of antibiotics on Staphylococcus aureus after exposure for limited periods of time. Journal of Infectious Diseases 135: 217–223, 1977

    Article  PubMed  CAS  Google Scholar 

  • Miglioli PA, Pivetta P, Orlando R, Palantini P, Varotto A, et al. Pharmacokinetics of miocamycin in patients with liver cirrhosis. Chemotherapy 35: 330–332, 1989

    Article  PubMed  CAS  Google Scholar 

  • Minamitani M, Hachimori K, Suzuki M. Clinical study on 9,3″-diacetylmidecamycin in the field of pediatrics. In Japanese. Japanese Journal of Anitbiotics 35: 909–918, 1982

    CAS  Google Scholar 

  • Miravalle C, Ardizzi A, Barberis S, Galietti F, Giorgis GE, et al. The use of miocamycin in recurring acute attacks of chronic obstructive bronchitis. In Italian. Minerva Medica 78: 623–626, 1987

    CAS  Google Scholar 

  • Nakayoshi T, Izumi M, Shinkai S, Fujita M. Comparative study on effects of 14- and 16-membered macrolides on gastrointestinal motility in unanesthetized dogs. Drugs Under Experimental and Clinical Research 14: 319–325, 1988

    PubMed  CAS  Google Scholar 

  • Nakayoshi T, Izumi M, Tatsuta K. Effects of macrolide antibiotics on gastroinestinal motility in fasting and digestive states. Drugs Under Experimental and Clinical Research 18: 103–109, 1992

    PubMed  CAS  Google Scholar 

  • Nakazawa S, Sato H, Niino K, Hirama Y, Narita A, et al. Studies on 9,3″-diacetylmidecamycin dry syrup in pediatric acute respiratory tract infections. In Japanese. Japanese Journal of Antibiotics 35: 240–250, 1982

    CAS  Google Scholar 

  • Napolitano C, Buzzi M, Mogini C, Fiorini G, Marziani R, et al. Trattamento con macrolidi delle flogosi pelviche da Chlamydia trachomatis. In Italian. 15th National Conference of the Italian Society of Chemotherapy, Pesaro-Urbino, June 9–13, 1987

  • National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing; Fourth Information Supplement. NCCLS Document M100-S4, NCCLS, Villanova, Pennsylvania, 1992

  • Nicoletti P, Rizzo M, Mazzei T, Novelli A, Ciuffi M, et al. Aspetti farmacocinetici della miocamicina. In Italian. Chemioterapia 2 (Suppl. 3): 140–141, 1983

    Google Scholar 

  • Nishimura T, Takashima T, Hiromatsu K, Tabuki K, Takagi M. Laboratory and clinical studies of 9,3″-diacetylmidecamycin in the pediatirc field. In Japanese. Japanese Journal of Antibiotics 35: 1199–1205, 1982

    CAS  Google Scholar 

  • Otterson MF, Sarna SK. Gastrointestinal motor effects of erythromycin. Abstract. American Journal of Physiology 259: G355, 1990

    CAS  Google Scholar 

  • Oyama K, Susuki K, Shimizu R. Clinical study of 9,3″-di-o-acetylmidecamycin (MOM). In Japanese. Chemotherapy 28: 748–754, 1980

    Google Scholar 

  • Pelle R, Sertoli G, Buzzi M, Alessandrini A, Midulla C, et al. I macrolidi nella terapia delle cervico-vaginiti da chlamydia trachomatis. In Italian. 15th National Conference of the Italian Society of Chemotherapy, Pesaro-Urbino, June 9–13, pp. 89–92, 1987

  • Periti P, Mazzei T, Mini E, Novelli A. Pharmacokinetic drug interactions of macrolides. Clinical Pharmacokinetics 23: 106–131, 1992

    Article  PubMed  CAS  Google Scholar 

  • Periti P, Mazzei T, Mini E, Novelli A. Clinical pharmacokinetic properties of the macrolide antibiotics. Effects of age and various pathophysiological states (Part I). Clinical Pharmacokinetics: 193–214, 1989

    Google Scholar 

  • Peters DH, Clissold SP. Clarithromycin. A review of its antimicrobial activity, pharmacokinetic properties and therapeutic potential. Drugs 44: 117–164, 1992

    Article  PubMed  CAS  Google Scholar 

  • Peters DH, Friedel HA, McTavish D. Azithromycin. A review of its antimicrobial activity, pharmacokinetic properties and clinical efficacy. Drugs 44: 750–799, 1992

    Article  PubMed  CAS  Google Scholar 

  • Pocidalo JJ, Albert F, Desnottes JF, Kernbaum S. Intraphagocytic penetration of macrolides. In vivo comparison of erythromycin and spiramycin. Journal of Antimicrobial Chemotherapy 16 (Suppl. A): 167–174, 1985

    PubMed  CAS  Google Scholar 

  • Pozzi E. Clinical efficacy of dirithromycin versus miocamycin in the treatment of acute bronchitis or acute exacerbations of chronic bronchitis. Journal of Antimicrobial Chemotherapy 31 (Suppl. C): 153–158, 1993

    PubMed  Google Scholar 

  • Principi N, Marchisio P, Calanchi A, Onorato J, Plebani A, et al. Streptococcal pharyngitis in Italian children: epidemiology and treatment with miocamycin. Drugs Under Experimental and Clinical Research 16: 639–647, 1990

    PubMed  CAS  Google Scholar 

  • Principi N, Onorato J, Giuliano MG, Viagno A. Effect of miocamycin on theophylline kinetics in children. European Journal of Clinical Pharmacology 31: 701–704, 1987

    Article  PubMed  CAS  Google Scholar 

  • Prokesch RC, Lee Hand W. Antibiotic entry into human polymorphonumclear leukocytes. Antimicrobial Agents and Chemotherapy 21: 373–380, 1982

    Article  PubMed  CAS  Google Scholar 

  • Ravizzola G, Pirali F, Colombrita D, Pollara P, Abeni D, et al. In vitro antibacterial activity of macrolides and other antibiotics against anaerobic bacteria. Journal of Chemotherapy 1 (Suppl. 4): 194–195. 1989

    PubMed  CAS  Google Scholar 

  • Ridgway GL, Mumtaz G, Gabriel G, Oriel JD. The activity of miocamycin (MOM) against Chlamydia trachomatis and mycoplasmas in vitro. Journal of Antimicrobial Chemotherapy 12: 511–514, 1983

    Article  PubMed  CAS  Google Scholar 

  • Rimoldi R, Fioretti M, Bandera M. Clinical experience with miocamycin in the treatment of respiratory tract infections. Drugs Under Experimental and Clinical Research 11: 263–268, 1985

    PubMed  CAS  Google Scholar 

  • Rimoldi R, Bandera M, Fioretti M, Giorcelli R. Miocamycin and theophylline blood levels. Chemioterapia 5: 213–216, 1986

    PubMed  CAS  Google Scholar 

  • Ritts RE. Antibiotics as biological response modifiers. Journal of Antimicrobial Chemotherapy 26 (Suppl. C): 31–36, 1990

    PubMed  CAS  Google Scholar 

  • Rossi R, Mora A. Role of Chlamydia trachomatis in chronic prostatis: diagnostic investigation and therapeutic experience with miocamycin. Journal of Chemotherapy 1 (Suppl. 4): 913–915, 1989

    PubMed  CAS  Google Scholar 

  • Ruggiero G, Utili R, Adinolfi LE, Attanasio V, Scarano MP, et al. Clinical efficacy of dirithromycin versus miocamycin in tonsillopharyngitis. Journal of Antimicrobial Chemotherapy 31: 103–109, 1993

    PubMed  Google Scholar 

  • Sanders SW, Jaeger H, Cunci R, Fujita M, Maurette JM. Single and multiple dose pharmacokinetics and tolerance of miocamycin in healthy European volunteers. In Ishigami (Ed.) Recent advances in chemotherapy. Proceedings of the 14th International Congress of Chemotherapy, Kyoto, 23–28 June, 1985. Antimicrobial section 2, pp. 1452–1453, University of Tokyo Press, Tokyo, 1985

    Google Scholar 

  • Sarna SK, Soergel KH, Koch TR, Stone JE, Wood CM, et al. Gastroinestinal motor effects of erythromycin in humans. Gastroenterology 101: 1488–1496, 1991

    PubMed  CAS  Google Scholar 

  • Scaglione F, Falchi M, Nebuloni R, Cattaneo G, Pintucci JP, et al. Miocamycin distribution in tonsillar and pulmonary tissues after repeated administration. Journal of Chemotherapy 2: 384–389, 1990

    PubMed  CAS  Google Scholar 

  • Sefton AM, Maskell JP, Kerawala C, Cannell H, Seymour A, et al. Comparative efficacy and tolerance of erythromycin and jos-amycin in the prevention of bacteraemia following dental extraction. Journal of Anitmicrobial Chemotherapy 25: 975–984, 1990

    Article  CAS  Google Scholar 

  • Shinozaki T, Meguro H, Koike Y, Hashira S, Fujii R. Clinical Results of 9,3″-diacetylmidecamycin in the field of pediatrics. In Japanese. Japanese Journal of Antibiotics 35: 251–260, 1982

    CAS  Google Scholar 

  • Shomura T, Someye S, Murata S, Umemura K, Nishio M. Metabolism of 9,3″-diacetylmidecamycin II. The structures of several metabolites of 9,3″-diacetylmidecamycin. Chemical and Pharmaceutical Bulletin 29: 2413–2419, 1981

    CAS  Google Scholar 

  • Sifrim D, Janssens J, Vantrappen G. Effect of midecamycin acetate on gastrointestinal motility in humans. International Journal of Clinical Pharmacology Research 12: 71–79, 1992a

    PubMed  CAS  Google Scholar 

  • Sifrim D, Janssens J, Vantrappen G. Comparison of the effects of midecamycin acetate and clarithromycin on gastrointestinal motility in man. Drugs Under Experimental and Clinical Research 18: 337–342, 1992b

    PubMed  CAS  Google Scholar 

  • Soejima R, Niki Y, Hino J, Kishimoto T, Nakagawa Y, et al. Double-blind comparative study of roxithromycin (RU 28965) and midecamycin acetate (MOM) in the treatment of pneumonia. In Japanese. Kansenshogaku Zasshi 63: 501–529, 1989

    CAS  Google Scholar 

  • Stratton CW, Cooksey RC. In Balows et al. (Eds) Manual of clinical microbiology, pp. 1153–1165, 5th ed., American Society for Microbiology, Washington, 1991

  • Steigbigel NH. In Mandell et al. (Eds) Principles and practices of infectious diseases, 3rd ed., pp. 308–323, Churchill Livingstone Inc., New York, 1990

  • Sugaya N, Namba M, Okimoto Y, Nakamura A, Terashima I, et al. Clinical studies of 9,3″-diacetylmidecamycin. In Japanese. Japanese Journal of Antibiotics 35: 754–760, 1982

    CAS  Google Scholar 

  • Tarani L, Teggi A, Bruni L, Tozzi MC, Smacchia MP, et al. Preliminary study of miocamycin pharmacokinetics in paediatric patients. In Italian. Rivista di Infettivologia Pediatrica 4: 251–255, 1989

    Google Scholar 

  • Thornsberry C. In Balows et al. (Eds) Manual of clinical microbiology, 5th ed., American Society for Microbiology, Washington, 1991

  • Torre D, Broggini M, Bottà V, Sampietro C, Busarello R, et al. In vitro and ex vivo effects of recent and new macrolide antibiotics on chemotaxis of human polymorphonuclear leucocytes. Journal of Chemotherapy 3: 236–239, 1991

    PubMed  CAS  Google Scholar 

  • Toyonaga Y, Kurosu Y, Sugita M, Hori M. Laboratory and clinical studies of 9,3″-diacetylmidecamycin in pediatric field. In Japanese. Japanese Journal of Antibiotics 35: 1475–1492, 1982

    CAS  Google Scholar 

  • Ursino F, Grosjacques M, Panattoni G, Pardini L, Matteucci F. Clinical study of a new macrolide, miocamycin, in 150 patients with disorders of the otorhinolaryngological field. In Italian. Clinica Terapeutica 122: 13–16, 1987

    CAS  Google Scholar 

  • Varotto F, Garlaschi ML, Garlaschi MC, Falchi M, Scaglione F, et al. In vitro postantibiotic effects of miocamycin and erythromycin on Gram-positive cocci. Journal of Chemotherapy 2: 355–361, 1990

    PubMed  CAS  Google Scholar 

  • Vercellino V, Foglio Bonda PL, Migliario M, Pomatto E. Efficacia e tollerabilità delia miocamicina nelle infezioni odontostomatologiche. Stomatologia Lombardo Veneta 2: 949–956, 1988

    Google Scholar 

  • Watanabe T, Hasegawa H, Fukada T, Kikuchi K, Shibata Y, et al. Postantibiotic effect of macrolides, tetracycline and quinolone antimicrobial agents against Mycoplasma pneumoniae. In Japanese. Chemotherapy (Tokyo) 39: 222–228, 1991

    CAS  Google Scholar 

  • Watanabe T, Kanno M, Tejima E, Orikasa Y. Effect of macrolides on ultrastructure of Staphylococcus aureus during postantibiotic phase. Drugs Under Experimental and Clinical Research 18: 81–88, 1992

    PubMed  CAS  Google Scholar 

  • Watanabe T, Miyauchi K, Kazuno Y, Kojima T, Inouye S, et al. In vitro and in vivo activity of miocamycin and a metabolite Mb-12 against Mycoplasma pneumonia. Drugs Under Experimental and Clinical Research 10: 371–378, 1984

    CAS  Google Scholar 

  • Watanabe T, Sobu K, Kanno Y, Takase T, Kawabata T, et al. Antibacterial activities and postantibiotic effect of macrolide antibiotics against S. pneumoniae and M. hominis. 18th International Congress of Chemotherapy, Stockholm, June 27–July 2, 1993. Abstract no. 956, p. 282, 1993

  • Yanagisawa K, Hoshina H, Ichihashi H. Clinical studies of 9,3″-diacetylmidecamycin in pediatric field. In Japanese. Japanese Journal of Antibiotics 35: 421–428, 1982

    CAS  Google Scholar 

  • Yoshida T, Watanabe T, Shomura T, Someya S, Okamoto R, et al. Bacteriological evaluation of midecamycin acetate and its metabolites. Japanese Journal of Antibiotics 35: 1462–1474, 1982

    PubMed  CAS  Google Scholar 

  • Zagnoni PG, De Luca M, Casini A. Carbamazepine-miocamycin interaction. Abstract. Epilepsia 32 (Suppl. 1): 28, 1991

    Google Scholar 

  • Zara GP, Thompson HH, Pilot MA, Ritchie HD. Effects of erythromycin on gastroinestinal tract motility. Journal of Antimicrobial Chemotherapy 16 (Suppl. A): 175–179, 1985

    PubMed  CAS  Google Scholar 

  • Zara GP, Qin XT, Pilot M-A, Thompson HH. Motor effects of erythromycin on the stomach and small intestine in man. Abstract. Gastroenterology 94: A515, 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Various sections of the manuscript reviewed by: D. Felmingham, Department of Clinical Microbiology, University College Hospital, London, England; P.C. Fuchs, St. Vincent Hospital and Medical Center, Portland, Oregon, USA; F. Fraschini, Department of Medical Pharmacology, Chemotherapy and Toxicology, University of Milan, Milan, Italy; J.M.T. Hamilton-Miller, Department of Medical Microbiology, Royal Free Hospital School of Medicine, London, England; M.G. Martens, Department of Obstetrics and Gynecology, Division of Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, Texas, USA; P. Periti, Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy; E. Pozzi, Department of Clinical and Biological Sciences, Respiratory Disease Division, University of Turin, Turin, Italy; R.A. Robson, Department of Nephrology, Christchurch Hospital, Christchurch, New Zealand; R. Soejima, Department of Medicine, Division of Respiratory Diseases, Kawasaki Medical School, Okayama, Japan; R. Wise, Department of Microbiology, Dudley Road Hospital, Birmingham, England; M.J. Wood, Department of Communicable Diseases and Tropical Medicine, East Birmingham Hospital, Birmingham, England.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holliday, S.M., Faulds, D. Miocamycin. Drugs 46, 720–745 (1993). https://doi.org/10.2165/00003495-199346040-00008

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199346040-00008

Keywords

Navigation