Skip to main content
Log in

Liposomes as Carriers of Cancer Chemotherapy

Current Status and Future Prospects

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Chemotherapy is a modality of cancer therapy that needs much improvement. Development of a new chemical entity is very costly and time consuming, but improvements in delivery of existing agents may yield more rapid clinical results. Liposomes and other lipid-based drug delivery systems have the advantage, in this context, of utilising no new chemical entities.

In terms of mechanism of action, tumour targeting has been the focus of much work in liposomal drug delivery. The recent development of liposomes with longer circulation times has led to improved tumour targeting in animal studies. Other mechanisms of action, such as release from drug depot formulations, heat-triggered local drug release, and transfection of genetic materials, may prove to be useful in humans.

Liposomal formulations of more than a dozen antineoplastic agents have shown promise in vitro and in animal models. Somewhat mundane, but nevertheless crucial, issues of medical rationale and formulation engineering, and commercial considerations, have slowed testing in patients with cancer. However, 3 antineoplastic agents, doxorubicin, daunorubicin and cytarabine, are in advanced stages of clinical testing in humans. One or more of these should prove to be a medically useful and commercially viable product within the next few years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen TM, Hansen C. Pharmacokinetics of Stealth® versus conventional liposomes: effect of dose. Biochimica Biophysica Acta 1068: 133–141, 1991

    CAS  Google Scholar 

  • Allen TM, McAllister L, Mausolf S, Gyorffy E. Liposome-cell interactions. A study of the interactions of liposomes containing entrapped anti-cancer drugs with the EMT6, S49 and AE1 (transport-deficient) cell lines. Biochimica et Biophysica Acta 643: 346–362, 1981

    PubMed  CAS  Google Scholar 

  • Allen TM, Mehra T, Hansen C, Chin YC. Stealth liposomes: an improved sustained release system for 1-β-D-arabinofuranosylcytosine. Cancer Research 52: 2431–2439, 1992

    PubMed  CAS  Google Scholar 

  • Alving CR. Liposomes as carriers of antigens and adjuvants. Journal of Immunological Methods 140: 1–13, 1991

    PubMed  CAS  Google Scholar 

  • Anderson PM, Katsanis E, Leonard AS, Schow D, Loeffler CM, et al. Increased local antitumor effects of interleukin 2 liposomes in mice with MCA-106 sarcoma pulmonary metastases. Cancer Research 50: 1853–1856, 1990

    PubMed  CAS  Google Scholar 

  • Anderson PM, Katsanis E, Sencer SF, Hasz D, Ochoa AC, et al. Depot characteristics and biodistribution of inter-leukin-2 liposomes: importance of route of administration. Journal of Immunotherapy 12: 19–31, 1992

    PubMed  CAS  Google Scholar 

  • Anderson P, Vilcek J, Weissmann G. Entrapment of human leukocyte interferon in the aqueous interstices of liposomes. Infection and Immunity 31: 1099–1103, 1981

    PubMed  CAS  Google Scholar 

  • Assil KK, Hartzer M, Weinreb RN, Nehorayan M, Ward T, et al. Liposome suppression of proliferative vitreoretinopathy. Rabbit model using antimetabolite encapsulated liposomes. Investigative Ophthalmology and Visual Science 32: 2891–2897, 1991

    CAS  Google Scholar 

  • Assil KK, Lane J, Weinreb RN. Sustained release of the antimetabolite 5-fluorouridine-5′-monophosphate by multi-vesicular liposomes. Ophthalmic Surgery 19: 408–413, 1988

    PubMed  CAS  Google Scholar 

  • Balazsovits JA, Mayer LD, Bally MB, Cullis PR, McDonell M, et al. Analysis of the effect of liposome encapsulation on the vesicant properties, acute and cardiac toxicities, and antitumor efficacy of doxorubicin. Cancer Chemotherapy and Pharmacology 23: 81–86, 1989

    PubMed  CAS  Google Scholar 

  • Bally MB, Nayar R, Masin D, Hope MJ, Cullis PR, et al. Liposomes with entrapped doxorubicin exhibit extended blood residence times. Biochimica et Biophysica Acta 1023: 133–139, 1990

    PubMed  CAS  Google Scholar 

  • Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of Molecular Biology 13: 238–252, 1965

    PubMed  CAS  Google Scholar 

  • Bartoli MH, Boitard M, Fessi H, Beriel H, Devissaguet JP, et al. In vitro and in vivo antitumoral activity of free and encapsulated taxol. Journal of Microencapsulation 7: 191–197, 1990

    PubMed  CAS  Google Scholar 

  • Braun-Falco O, Korting HC (Eds). Liposome dermatics, Springer Verlag, Berlin, 1992

    Google Scholar 

  • Brown KD. Genetic Engineering News, 12: 1–19, 1992

    Google Scholar 

  • Burke TG, Sartorelli AC, Tritton TR. Selectivity of the anthracyclines for negatively charged model membranes: role of the amino group. Cancer Chemotherapy and Pharmacology 21: 274–280, 1988

    PubMed  CAS  Google Scholar 

  • Chamberlain MC, Khatibi S, Kim JC, Howell SB, Chatelut E, et al. Treatment of leptomeningeal metastasis with intraventricular administration of depot cytarabine. Archives of Neurology 50: 261–264, 1993

    PubMed  CAS  Google Scholar 

  • Chatelut E, Kim T, Kim S. A slow-releasing methotrexate formulation for intrathecal chemotherapy. Cancer Chemotherapy and Pharmacology 32: 179–182, 1993

    PubMed  CAS  Google Scholar 

  • Chu JW, Sharom FJ. Interleukin-2 binds to gangliosides in micelles and lipid bilayers. Biochimica et Biophysica Acta 1028: 205–214, 1990

    PubMed  CAS  Google Scholar 

  • Claassen E, Van Rooijen N. The effect of elimination of macrophages on the tissue distribution of liposomes containing [3H]methotrexate. Biochimica et Biophysica Acta 802: 428–434, 1984

    PubMed  CAS  Google Scholar 

  • Colley CM, Ryman BE. Liposomes as carriers in vivo for methotrexate. Biochemical Society Transactions 3: 157–159, 1975

    PubMed  CAS  Google Scholar 

  • Comiskey SJ, Heath TD. Serum-induced leakage of negatively charged liposomes at nanomolar lipid concentrations. Biochemistry 29: 3626–3631, 1990a

    PubMed  CAS  Google Scholar 

  • Comiskey SJ, Heath TD. Leakage and delivery of liposomeencapsulated methotrexate-7-aspartate in a chemically defined medium. Biochimica et Biophysica Acta 1024: 307–317, 1990b

    PubMed  CAS  Google Scholar 

  • Daniel PT, Holzschuh J, Muller CE, Roth HJ, Berg PA. Inhibition of phytohemagglutinine-induced T lymphocyte proliferation by 6-(octadecyldithio)purine, a novel liposomal prodrug of 6-mercaptopurine. Archives of Toxicology 13 (Suppl.): 179–182, 1989

    PubMed  CAS  Google Scholar 

  • Dapergolas G, Neerunjun ED, Gregoriadis G. Penetration of target areas in the rat by liposome-associated bleomycin, glucose oxidase and insulin. FEBS Letters 63: 235–239, 1976

    PubMed  CAS  Google Scholar 

  • Deamer D, Bangham AD. Large volume liposomes by an ether vaporation method. Biochimica et Biophysica Acta 443: 629–634, 1976

    PubMed  CAS  Google Scholar 

  • Delgado G, Potkul RK, Treat JA, Lewandowski GS, Barter JF, et al. A phase I/II study of intraperitoneally administered doxorubicin entrapped in cardiolipin liposomes in patients with ovarian cancer. American Journal of Obstetrics and Gynecology 160: 812–817, 1989

    PubMed  CAS  Google Scholar 

  • Deliconstantinos G, Gregoriadis G, Abel G, Jones M, Robertson D. Incorporation of cis-dichlorobiscyclopentylamineplatinum[II] into liposomes enhances its uptake by ADJ/ PC6A tumours implanted subcutaneously into mice. Biochemical Society Transactions 5: 1326–1328, 1977

    PubMed  CAS  Google Scholar 

  • Dohmitsu K, Akiyama S, Kawasaki S, Kataoka M, Kondoh K, et al. Hyperthermo chemotherapy of esophageal cancer with thermosensitive liposome, TAC-1043. Gan To Kagaku Ryoho 18: 1760–1763, 1991

    PubMed  CAS  Google Scholar 

  • Ellens H, Rustum Y, Mayhew E, Ledesma E. Distribution and metabolism of lipsome-encapsulated and free 1-β-D-arabinofuranosylcytosine (Ara-C) in dog and mouse tissues. Journal of Pharmacology and Experimental Therapeutics 222: 324–330, 1982

    PubMed  CAS  Google Scholar 

  • Eppstein DA. Altered pharmacologic properties of liposome-associated human interferon-alpha. II. Journal of Interferon Research 2: 117–125, 1982

    CAS  Google Scholar 

  • Eppstein DA, Stewart WE. Binding and capture of human interferon-alpha by reverse evaporation vesicles, multilamellar vesicles, and small unilamellar vesicles. Journal of Interferon Research 1: 495–504, 1981

    PubMed  CAS  Google Scholar 

  • Eppstein DA, Stewart WE. Altered pharmacological properties of liposome-associated human interferon-alpha. Journal of Virology 41: 575–582, 1982

    PubMed  CAS  Google Scholar 

  • Eppstein DA, Van der Pas MA, Gloff CA, Soike KF. Lipo-somal interferon-beta: sustained release treatment of simian varicella virus infection in monkeys. Journal of Infectious Diseases 159: 616–620, 1989

    PubMed  CAS  Google Scholar 

  • Fan D, Bucana CD, O’Brian CA, Zwelling LA, Seid C, et al. Enhancement of murine tumor cell sensitivity to adriamycin by presentation of the drug in phosphatidylcholine-phosphatidylserine liposomes. Cancer Research 50: 3619–3626, 1990

    PubMed  CAS  Google Scholar 

  • Faulds D, Balfour JA, Chrisp P, Langtry HD. Mitoxantrone: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in the chemotherapy of cancer. Drugs 41: 400–449, 1991

    PubMed  CAS  Google Scholar 

  • Fichtner I, Arndt D, Reszka R. Antineoplastic activity and toxicity of some alkylating cytostatics (cyclophosphamide, CCNU, cytostasan) encapsulated in liposomes in different murine tumour models. Journal of Microencapsulation 3: 77–87, 1986

    PubMed  CAS  Google Scholar 

  • Fichtner I, Arndt D, Reszka R, Gens J. Pharmacokinetic behavior of [57Co]bleomycin liposomes in mice: comparison with the unencapsulated substance. Anti-Cancer Drugs 2: 555–563, 1991

    PubMed  CAS  Google Scholar 

  • Fielding RM. Liposomal drug delivery: advantages and limitations from a clinical pharmacokinetic and therapeutic perspective. Clinical Pharmacokinetics 21: 155–164, 1991

    PubMed  CAS  Google Scholar 

  • Firth GB, Firth M, McKeran RO, Rees J, Walter P, et al. Application of radioimmunoassay to monitor treatment of human cerebral gliomas with bleomycin entrapped within liposomes. Journal of Clinical Pathology 41: 38–43, 1988

    PubMed  CAS  Google Scholar 

  • Firth G, Oliver AS, McKeran RO. Studies on the use of antimitotic drugs entrapped within liposomes and of their action on a human glioma cell line. Journal of Neurological Science 63: 153–165, 1984

    CAS  Google Scholar 

  • Fishman Y, Citri N. L-Asparaginase entrapped in liposomes: preparation and properties. FEBS Letters 60: 17–20, 1975

    PubMed  CAS  Google Scholar 

  • Fishman P, Peyman GA, Hendricks R, Hui SL. Liposome-encapsulated 3H-5FU in rabbits. International Ophthalmology 13: 361–365, 1989

    PubMed  CAS  Google Scholar 

  • Foldvari M, Mezei C, Mezei M. Intracellular delivery of drugs by liposomes containing P0 glycoprotein from peripheral nerve myelin into human M21 melanoma cells. Journal of Pharmaceutical Sciences 80: 1020–1028, 1991

    PubMed  CAS  Google Scholar 

  • Foong WC, Green KL. Retention and distribution of lipo-some-entrapped [3H]methotrexate injected into normal or arthritic rabbit joints. Journal of Pharmacy and Pharmacology 40: 464–468, 1988

    PubMed  CAS  Google Scholar 

  • Forssen EA, Coulter DM, Proffitt RT. Selective in vivo localization of daunorubicin small unilamellar vesicles in solid tumors. Cancer Research 52: 3255–3261, 1992

    PubMed  CAS  Google Scholar 

  • Forssen EA, Tokes ZA. In vitro and in vivo studies with adriamycin liposomes. Biochemical and Biophysical Research Communications 91: 1295–1301, 1979

    PubMed  CAS  Google Scholar 

  • Forssen EA, Tokes ZA. Use of anionic liposomes for the reduction of chronic doxorubicin-induced cardiotoxicity. Proceedings of the National Academy of Sciences of the United States of America 78: 1873–1877, 1981

    PubMed  CAS  Google Scholar 

  • Frangos DN, Killion JJ, Fan D, Fishbeck R, von Eschenbach AC, et al. The development of liposomes containing interferon alpha for the intravesical therapy of human superficial bladder cancer. Journal of Urology 143: 1252–1256, 1990

    PubMed  CAS  Google Scholar 

  • Freise J, Mueller WH, Magerstedt P, Schmoll HJ. Pharmacokinetics of liposome encapsulated cisplatin in rats. Archives Internationales de Pharmacodynamie et de Therapie 258: 180–192, 1982

    PubMed  CAS  Google Scholar 

  • Freise J, Schmidt FW, Magerstedt P. Effect of liposome-entrapped methotrexate on Ehrlich ascites tumor cells and uptake in primary liver cell tumor. Journal of Cancer Research and Clinical Oncology 94: 21–27, 1979

    PubMed  CAS  Google Scholar 

  • Gabizon AA. Selective tumor localization and improved therapeutic index of anthracyclines encapsulated in long-circulating liposomes. Cancer Research 52: 891–896, 1992

    PubMed  CAS  Google Scholar 

  • Gabizon A, Chisin R, Amselem S, Druckmann S, Cohen R, et al. Pharmacokinetic and imaging studies in patients receiving a formulation of liposome-associated adriamycin. British Journal of Cancer 64: 1125–1132, 1991

    PubMed  CAS  Google Scholar 

  • Gabizon A, Dagan A, Goren D, Barenholz Y, Fuks Z. Liposomes as in vivo carriers of adriamycin: reduced cardiac uptake and preserved antitumor activity in mice. Cancer Research 42: 4734–4739, 1982

    PubMed  CAS  Google Scholar 

  • Gabizon A, Goren D, Fuks Z, Meshorer A, Barenholz Y. Superior therapeutic activity of liposome-associated adriamycin in a murine metastatic tumour model. British Journal of Cancer 51: 681–689, 1985

    PubMed  CAS  Google Scholar 

  • Gabizon A, Peretz T, Sulkes A, Amselem S, Ben-Yosef R, et al. Systemic administration of doxorubicin-containing liposomes in cancer patients: a phase I study. European Journal of Cancer and Clinical Oncology 25: 1795–1803, 1989a

    CAS  Google Scholar 

  • Gabizon A, Price DC, Huberty J, Bresalier RS, Papahadjopoulos D. Effect of liposome composition and other factors on the targeting of liposomes to experimental tumors: biodistribution and imaging studies. Cancer Research 50: 6371–6378, 1990

    PubMed  CAS  Google Scholar 

  • Gabizon A, Shiota R, Papahadjopoulos D. Pharmacokinetics and tissue distribution of doxorubicin encapsulated in stable liposomes with long circulation times. Journal of the National Cancer Institute 81: 1484–1488, 1989b

    PubMed  CAS  Google Scholar 

  • Ganapathi R, Krishan A, Wodinsky I, Zubrod CG, Lesko LJ. Effect of cholesterol content on antitumor activity and toxicity of liposome-encapsulated 1-β-D-arabinofurano-sylcytosine in vivo. Cancer Research 40: 630–633, 1980

    PubMed  CAS  Google Scholar 

  • Goren D, Gabizon A, Barenholz Y. The influence of physical characteristics of liposomes containing doxorubicin on their pharmacological behavior. Biochimica et Biophysica Acta 1029: 285–294, 1990

    PubMed  CAS  Google Scholar 

  • Gregoriadis G. Drug entrapment in liposomes. FEBS Letters 36: 292–296, 1973

    PubMed  CAS  Google Scholar 

  • Gregoriadis G. Medical applications of liposome-entrapped enzymes. Methods in Enzymology 44: 698–709, 1976

    PubMed  CAS  Google Scholar 

  • Gregoriadis G, Florence, AT. Liposomes in drug delivery: clinical, diagnostic and ophthalmic potential. Drugs 45: 15–28, 1993

    PubMed  CAS  Google Scholar 

  • Gregoriadis G, Neerunjun ED. Treatment of tumour bearing mice with liposome-entrapped actinomycin D prolongs their survival. Research Communications in Chemical Pathology and Pharmacology 10: 351–362, 1975

    PubMed  CAS  Google Scholar 

  • Guaglianone K, Chan R, Hanisch S, Jeffers S, Muggia F, et al. Phase I clinical trial of liposomal daunorubicin (Daunoxome) in advanced malignancies. Proceedings of the American Society of Clinical Oncology 11: 361, 1992

    Google Scholar 

  • Hashida M, Sato K, Takakura Y, Sezaki H. Characterization of a lipophilic prodrug of 5-fluorouracil with a cholesterol promoiety and its application to liposomes. Chemical and Pharmaceutical Bulletin 36: 3186–3189, 1988

    CAS  Google Scholar 

  • Heath TD, Lopez NG, Papahadjopoulos D. The effects of liposome size and surface charge on liposome-mediated delivery of methotrexate-7-aspartate to cells in vitro. Biochimica et Biophysica Acta 820: 74–84, 1985

    PubMed  CAS  Google Scholar 

  • Hege KM, Daleke DL, Waldmann TA, Matthay KK. Comparison of anti-Tac and anti-transferrin receptor-conjugated liposomes for specific drug delivery to adult T-cell leukemia. Blood 74: 2043–2052, 1989

    PubMed  CAS  Google Scholar 

  • Henry N, Fantine EO, Bolard J, Garnier-Suillerot A. Interaction of adriamycin with negatively charged model membranes: evidence of two types of binding sites. Biochemistry 24: 7085–7092, 1985

    PubMed  CAS  Google Scholar 

  • Henwood JM, Brogden RN. Etoposide: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in combination chemotherapy of cancer. Drugs 39: 438–490, 1990

    PubMed  CAS  Google Scholar 

  • Herbst K. FDA panel humbles Vestar: Daunoxome rejected. BioCentury Extra 1(29): 1–2, 1993

    Google Scholar 

  • Herman EH, Rahman A, Ferrans VJ, Vick JA, Schein PS. Prevention of chronic doxorubicin cardiotoxicity in beagles by liposomal encapsulation. Cancer Research 43: 5427–5432, 1983

    PubMed  CAS  Google Scholar 

  • Ho RJ, Burke RL, Merigan TC. Liposome-formulated inter-leukin-2 as an adjuvant of recombinant HSV glycoprotein gD for the treatment of recurrent genital HSV-2 in guineapigs. Vaccine 10: 209–213, 1992

    PubMed  CAS  Google Scholar 

  • Hockertz S, Franke G, Kniep E, Lohmann-Matthes ML. Mouse interferon-gamma in liposomes: pharmacokinetics, organ-distribution, and activation of spleen and liver macrophages in vivo. Journal of Interferon Research 9: 591–602, 1989

    PubMed  CAS  Google Scholar 

  • Hockertz S, Franke G, Paulini I, Lohmann-Matthes ML. Immunotherapy of murine visceral leishmaniasis with murine recombinant interferon-gamma and MTP-PE encapsulated in liposomes. Journal of Interferon Research 11: 177–185, 1991

    PubMed  CAS  Google Scholar 

  • Hong F, Mayhew E. Therapy of central nervous system leukemia in mice by liposome-entrapped 1-β-D-arabinofuranosylcytosine. Cancer Research 49: 5097–5102, 1989

    PubMed  CAS  Google Scholar 

  • Hume DA, Nayar R. Encapsulation is not involved in the activities of recombinant gamma interferon associated with multilamellar phospholipid liposomes on murine bone marrow-derived macrophages. Lymphokine Research 8: 415–425, 1989

    PubMed  CAS  Google Scholar 

  • Hunt CA, Rustum YM, Mayhew E, Papahadjopoulos D. Retention of cytosine arabinoside in mouse lung following intravenous administration in liposomes of different size. Drug Metabolism and Disposition 7: 124–128, 1979

    PubMed  CAS  Google Scholar 

  • Iga K, Hamaguchi N, Igari Y, Ogawa Y, Toguchi H, Shimamoto T. Increased tumor cisplatin levels in heated tumors in mice after administration of thermosensitive, large unilamellar vesicles encapsulating cisplatin. Journal of Pharmaceutical Sciences 80: 522–525, 1991

    PubMed  CAS  Google Scholar 

  • Iga K, Ogawa Y, Toguchi H. Heat-induced drug release rate and maximal targeting index of thermosensitive liposomes in tumor-bearing mice. Pharmaceutical Research 9: 658–662, 1992

    PubMed  CAS  Google Scholar 

  • Inaba M, Yoshida N, Tsukagoshi S. Preferential action of liposome-entrapped 1-(2-chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea on lung metastasis of Lewis lung carcinoma as compared with the free drug. Gann 72: 341–345, 1981

    PubMed  CAS  Google Scholar 

  • Ishihara H, Hara T, Aramaki Y, Tsuchiya S, Hosoi K. Preparation of asialofetuin-labeled liposomes with encapsulated human interferon-gamma and their uptake by isolated rat hepatocytes. Pharmaceutical Research 7: 542–546, 1990

    PubMed  CAS  Google Scholar 

  • Ishihara H, Hara T, Aramaki Y, Tsuchiya S, Hosoi K. Interaction of recombinant human interferon-gamma with liposomes. Chemical and Pharmaceutical Bulletin 39: 1536–1539, 1991

    CAS  Google Scholar 

  • Joondeph BC, Peyman GA, Khoobehi B, Yue BY. Lipo-some-encapsulated 5-fluorouracil in the treatment of proliferative vitreoretinopathy. Ophthalmic Surgery 19: 252–256, 1988

    PubMed  CAS  Google Scholar 

  • Juliano RL, McCullough HN. Controlled delivery of an antitumor drug: localized action of liposome encapsulated cytosine arabinoside administered via the respiratory system. Journal of Pharmacology and Experimental Therapeutics 214: 381–387, 1980

    PubMed  CAS  Google Scholar 

  • Juliano RL, Stamp D. Pharmacokinetics of liposome-encapsulated anti-tumor drugs. Studies with vinblastine, actinomycin D, cytosine arabinoside, and daunomycin. Biochemical Pharmacology 27: 21–27, 1978

    CAS  Google Scholar 

  • Jungingier HE, Hofland EJ, Bouwstra JA. Liposomes and niosomes: interaction with the human skin. Cosmetics and Toiletries 106: 45–50, 1990

    Google Scholar 

  • Kaledin VI, Matienko NA, Nikolin VP, Gruntenko YV, Budker VG. Intralymphatic administration of liposomeencapsulated drugs to mice: possibility for suppression of the growth of tumor metastases in the lymph nodes. Journal of the National Cancer Institute 66: 881–887, 1981

    PubMed  CAS  Google Scholar 

  • Kano K, Fendler JH. Enhanced uptake of drugs in liposomes: use of labile vitamin B12 complexes of 6-mercaptopurine and 8-azaguanine. Life Sciences 20: 1729–1734, 1977

    PubMed  CAS  Google Scholar 

  • Karczmar GS, Tritton TR. The interaction of adriamycin with small unilamellar vesicle liposomes. A fluorescence study. Biochimica et Biophysica Acta 557: 306–319, 1979

    CAS  Google Scholar 

  • Kataoka T, Sakurai Y. Effect and mode of action of N4-behenoy1-β-D-arabinofuranosylcytosine. Recent Results in Cancer Research 70: 147–151, 1980

    PubMed  CAS  Google Scholar 

  • Kaye SB, Boden JA, Ryman BE. The effect of liposome (phospholipid vesicle) entrapment of actinomycin D and methotrexate on the in vivo treatment of sensitive and resistant solid murine tumours. European Journal of Cancer 17: 279–289, 1981

    PubMed  CAS  Google Scholar 

  • Kaye SB, Ryman BE. The fate of liposome-entrapped actinomycin D in vivo and its therapeutic effect in a solid murine tumour [proceedings] Biochemical Society Transactions 8: 107–108, 1980

    PubMed  CAS  Google Scholar 

  • Kedar A, Mayhew E, Moore RH, Williams P, Murphy GP. Effect of actinomycin D-containing lipid vesicles on murine renal adenocarcinoma. Journal of Surgical Oncology 15: 363–365, 1980

    PubMed  CAS  Google Scholar 

  • Khokhar AR, al-Baker S, Brown T, Perez-Soler R. Chemical and biological studies on a series of lipid-soluble [trans-(R,R)-and-(S,S)-1,2-diaminocyclohexane]platinum (II) complexes incorporated in liposomes. Journal of Medicinal Chemistry 34: 325–329, 1991

    PubMed  CAS  Google Scholar 

  • Khokhar AR, al-Baker S, Krakoff IH, Perez-Soler R. Toxicity and antitumor activity of cis-bis-carboxylato(trans-R,R-1,2-diaminocyclohexane) platinum(II) complexes entrapped in liposomes. Cancer Chemotherapy and Pharmacology 23: 219–224, 1989

    PubMed  CAS  Google Scholar 

  • Khokhar AR, Al-Baker S, Perez-Soler R. Toxicity and antitumor activity of hydrophobic diammine and diaminocyclohexane platinum complexes entrapped in multilamellar vesicles. Anti-Cancer Drug Design 3: 177–184, 1988a

    PubMed  CAS  Google Scholar 

  • Khokhar AR, Wright K, Siddik ZH, Perez-Soler R. Organ distribution and tumor uptake of liposome entrapped cisbis-neodecanoato trans-R,R-1,2-diaminocyclohexane platinum(II) administered intravenously and into the proper hepatic artery. Cancer Chemotherapy and Pharmacology 22: 223–227, 1988b

    PubMed  CAS  Google Scholar 

  • Khoobehi B, Char CA, Peyman GA. Assessment of laserinduced release of drugs from liposomes: an in vitro study. Lasers in Surgery and Medicine 10: 60–65, 1990

    PubMed  CAS  Google Scholar 

  • Khoobehi B, Peyman GA, Niesman MR, Oncel M. Hyperthermia and temperature-sensitive liposomes: selective delivery of drugs into the eye. Japanese Journal of Ophthalmology 33: 405–412, 1989

    PubMed  CAS  Google Scholar 

  • Killion JJ, Fan D, Bucana CD, Frangos DN, Price JE, et al. Augmentation of antiproliferative activity of interferon alfa against human bladder tumor cell lines by encapsulation of interferon alfa within liposomes. Journal of the National Cancer Institute 81: 1387–1392, 1989

    PubMed  CAS  Google Scholar 

  • Kim S, Chatelut E, Kim JC, Howell SB, Cates C, Kormanik PA, Chamberlain MC. Extended cerebrospinal-fluid cytarabine exposure following intrathecal administration of DTC 101. Journal of Clinical Oncology, in press, 1993a

  • Kim S, Khatibi S, Howell SB, McCully C, Balis FM, et al. Prolongation of drug exposure in cerebrospinal fluid by encapsulation into DepoFoam. Cancer Research 53: 1–3, 1993b

    Google Scholar 

  • Kim S, Kim DJ, Geyer MA, Howell SB. Multivesicular liposomes containing 1-β-D-arabinofuranosylcytosine for slow-release intrathecal therapy. Cancer Research 47: 3935–3937, 1987

    PubMed  CAS  Google Scholar 

  • Kim S, Martin GM. Preparation of cell-size unilamellar liposomes with high captured volume and defined size distribution. Biochimica et Biophysica Acta 646: 1–9, 1981

    PubMed  CAS  Google Scholar 

  • Kimelberg HK. Differential distribution of liposome-entrapped [3H]methotrexate and labelled lipids after intravenous injection in a primate. Biochimica et Biophysica Acta 448: 531–550, 1976

    PubMed  CAS  Google Scholar 

  • Kimelberg HK, Atchison ML. Effects of entrapment in liposomes on the distribution, degradation and effectiveness of methotrexate in vivo. Annals of the New York Academy of Sciences 308: 395–410, 1978

    PubMed  CAS  Google Scholar 

  • Kimelberg HK, Tracy TF, Watson RE, Kung D, Reiss FL, et al. Distribution of free and liposome-entrapped [3H]methotrexate in the central nervous system after intracerebroventricular injection in a primate. Cancer Research 38: 706–712, 1978

    PubMed  CAS  Google Scholar 

  • Knochenhauer E, Liliemark E, Kallberg N, Sjostrom B, Bergenstahl B, et al. Preparation and characterization of a calibrated liposomal teniposide formulation. Proceedings of the American Association for Cancer Research 33: 2655, 1992

    Google Scholar 

  • Kobayashi T, Kataoka T, Tsukagoshi S, Sakurai Y. Enhancement of anti-tumor activity of 1-β-D-arabinofuranosylcytosine by encapsulation in liposomes. International Journal of Cancer 20: 581–587, 1977

    CAS  Google Scholar 

  • Kobayashi T, Tsukagoshi S, Sakurai Y. Enhancement of the cancer chemotherapeutic effect of cytosine arabinoside entrapped in liposomes on mouse leukemia L-1210. Gann 66: 719–720, 1975

    PubMed  CAS  Google Scholar 

  • Kobrinskii GD, Mel’nikov VR, Kulakov VN, L’vov ND, Bolotin IM, et al. Treatment of experimental genital herpes with liposomal interferon. Biomedical Science 2: 29–32, 1991

    PubMed  CAS  Google Scholar 

  • Koff WC, Fogler WE, Gutterman J, Fidler IJ. Efficient activation of human blood monocytes to a tumoricidal state by liposomes containing human recombinant gamma interferon. Cancer Immunology and Immunotherapy 19: 85–89, 1985

    PubMed  CAS  Google Scholar 

  • Konno H, Yamashita A, Tadakuma T, Sakaguchi S. Inhibition of growth of rat hepatoma by local injection of liposomes containing recombinant interleukin-2. Antitumor effect of IL-2 liposome. Biotherapy 3: 211–218, 1991

    CAS  Google Scholar 

  • Kosloski MJ, Rosen F, Milholland RJ, Papahadjopoulos D. Effect of lipid vesicle (liposome) encapsulation of methotrexate on its chemotherapeutic efficacy in solid rodent tumors. Cancer Research 38: 2848–2853, 1978

    PubMed  CAS  Google Scholar 

  • Kumer N. Taxol induced polymerization of purified tubulin. Journal of Biological Chemistry 256: 10435–10441, 1981

    Google Scholar 

  • La Bonnardiere C. Association of mouse interferon with liposomes. FEBS Letters 77: 191–196, 1977

    PubMed  Google Scholar 

  • La Bonnardiere C. Preliminary data on the protective effect of interferon coupled with liposomes in the mouse-virus model of murine hepatitis. Annales de Microbiologie 129: 397–402, 1978

    PubMed  Google Scholar 

  • Leserman LD, Machy P, Barbet J. Cell-specific drug transfer from liposomes bearing monoclonal antibodies. Nature 293: 226–228, 1981

    PubMed  CAS  Google Scholar 

  • Liburdy RP, Magin RL. Microwave-stimulated drug release from liposomes. Radiation Research 103: 266–275, 1985

    PubMed  CAS  Google Scholar 

  • Liu KR, Peyman GA, She SC, Niesman MR, Khoobehi B. Reduced toxicity of intravitreally injected liposome-encapsulated cytarabine. Ophthalmic Surgery 20: 358–361, 1989

    PubMed  CAS  Google Scholar 

  • Loeffler CM, Platt JL, Anderson PM, Katsanis E, Ochoa JB, et al. Antitumor effects of interleukin 2 liposomes and anti-CD3-stimulated T-cells against murine MCA-38 hepatic metastasis. Cancer Research 51: 2127–2132, 1991

    PubMed  CAS  Google Scholar 

  • MacCoss M, Edwards JJ, Seed TM, Spragg SP. Phospholipid-nucleoside conjugates. The aggregational characteristics and morphological aspects of selected 1-β-D-arabinofuranosylcytosine 5′-diphosphate-L-1,2-diacylglycerols. Biochimica et Biophysica Acta 719: 544–555, 1982

    CAS  Google Scholar 

  • Madden TD, Harrigan PR, Tai LC, Bally MB, Mayer LD, et al. The accumulation of drugs within large unilamellar vesicles exhibiting a proton gradient: a survey. Chemistry and Physics of Lipids 53: 37–46, 1990

    PubMed  CAS  Google Scholar 

  • Maral R, Bourut C, Chenu E, Mathe G, Bernon R, et al. Comparison of the experimental antitumor activities of three nitrosourea derivatives chlorozotocin, RFCNU and CNCC encapsulated in liposomes with those in the free state. Oncology 42: 122–128, 1985

    PubMed  CAS  Google Scholar 

  • Martins MB, Jorge JC, Cruz ME. Acylation of L-asparaginase with total retention of enzymatic activity. Biochimie 72: 671–675, 1990

    PubMed  CAS  Google Scholar 

  • Matthay KK, Abai AM, Cobb S, Hong K, Papahadjopoulos D, et al. Role of ligand in antibody-directed endocytosis of liposomes by human T-leukemia cells. Cancer Research 49: 4879–4886, 1989

    PubMed  CAS  Google Scholar 

  • Matthay KK, Heath TD, Papahadjopoulos D. Specific enhancement of drug delivery to AKR lymphoma by antibody-targeted small unilamellar vesicles. Cancer Research 44: 1880–1886, 1984

    PubMed  CAS  Google Scholar 

  • Mayer LD, Bally MB, Cullis PR, Wilson SL, Emerman JT. Comparison of free and liposome encapsulated doxorubicin tumor drug uptake and antitumor efficacy in the SC115 murine mammary tumor. Cancer Letters 53: 183–190, 1990a

    PubMed  CAS  Google Scholar 

  • Mayer LD, Bally MB, Hope MJ, Cullis PR. Uptake of anti-neoplastic agents into large unilamellar vesicles in response to a membrane potential. Biochimica et Biophysica Acta 816: 294–302, 1985

    PubMed  CAS  Google Scholar 

  • Mayer LD, Bally MB, Loughrey H, Masin D, Cullis PR. Liposomal vincristine preparations which exhibit decreased drug toxicity and increased activity against murine L1210 and P388 tumors. Cancer Research 50: 575–579, 1990b

    PubMed  CAS  Google Scholar 

  • Mayer LD, Tai LC, Ko DS, Masin D, Ginsberg RS, et al. Influence of vesicle size, lipid composition, and drug-tolipid ratio on the biological activity of liposomal doxorubicin in mice. Cancer Research 49: 5922–5930, 1989

    PubMed  CAS  Google Scholar 

  • Mayhew E, Martin FJ, Murray M, Babbar S, Lasic D. In vivo efficacy of doxorubicin or epirubicin entrapped in long circulating liposomes against mouse colon tumor C26. Proceedings of the American Association for Cancer Research 33: 2656, 1992

    Google Scholar 

  • Mayhew E, Rustum YM. The use of liposomes as carriers of therapeutic agents. Progress in Clinical and Biological Research 172B: 301–310, 1985

    PubMed  CAS  Google Scholar 

  • Mayhew E, Rustum YM, Szoka F, Papahadjopoulos D. Role of cholesterol in enhancing the antitumor activity of cytosine arabinoside entrapped in liposomes. Cancer Treatment Report 63: 1923–1928, 1979

    CAS  Google Scholar 

  • Mazumder A. Effect of liposome-entrapped 5-fluorouracil on Ehrlich ascites tumour bearing mice. Indian Journal of Biochemistry and Biophysics 18: 120–123, 1981

    CAS  Google Scholar 

  • Mbawuike IN, Wyde PR, Anderson PM. Enhancement of the protective efficacy of inactivated influenza A virus vaccine in aged mice by IL-2 liposomes. Vaccine 8: 347–352, 1990

    PubMed  CAS  Google Scholar 

  • McCullough HN, Juliano RL. Organ-selective action of an antitumor drug: pharmacologic studies of liposome-encapsulated β-cytosine arabinoside administered via the respiratory system of the rat. Journal of the National Cancer Institute 63: 727–731, 1979

    PubMed  CAS  Google Scholar 

  • Merlin JL. In vitro evaluation of the association of thermosensitive liposome-encapsulated doxorubicin with hyperthermia. European Journal of Cancer 27: 1031–1034, 1991

    PubMed  CAS  Google Scholar 

  • Mizuno M, Yoshida J, Sugita K, Inoue I, Seo H, et al. Growth inhibition of glioma cells transfected with the human beta-interferon gene by liposomes coupled with a monoclonal antibody. Cancer Research 50: 7826–7829, 1990

    PubMed  CAS  Google Scholar 

  • Neerunjun ED, Gregoriadis G. Tumour regression with liposome-entrapped asparaginase: some immunological advantages. Biochemical Society Transactions 4: 133–134, 1976

    PubMed  CAS  Google Scholar 

  • Ng KY, Heath TD. Liposome-dependent delivery of pteridine antifolates: a two-compartment growth inhibition assay for evaluating drug leakage and metabolism. Biochimica et Biophysica Acta 981: 261–268, 1989

    PubMed  CAS  Google Scholar 

  • Nishimura Y, Ono K, Hiraoka M, Masunaga S, Jo S, et al. Treatment of murine SCC VII tumors with localized hyperthermia and temperature-sensitive liposomes containing cisplatin. Radiation Research 122: 161–167, 1990

    PubMed  CAS  Google Scholar 

  • Noe C, Hernandez-Borrell J, Kinsky SC, Matsuura E, Leserman L. Inhibition of cell proliferation with antibody-targeted liposomes containing methotrexate-7-dimyristoylphosphatidyl-ethanolamine. Biochimica et Biophysica Acta 946: 253–260, 1988

    PubMed  CAS  Google Scholar 

  • Ogawa Y, Toguchi H. Targeting therapy with a drug using temperature-sensitive liposomes entrapped antitumor drug together with localized hyperthermia. Gan to Kagaku Ryoho 17: 1127–1133, 1990

    PubMed  CAS  Google Scholar 

  • Ohsawa T, Miura H, Harada K. Evaluation of a new liposome preparation technique, the freeze-thawing method, using L-asparaginase as a model drug. Chemical and Pharmaceutical Bulletin 33: 2916–2923, 1985

    CAS  Google Scholar 

  • Oliver AS, Firth G, McKeran RO. Studies on the intracerebral injection of vincristine free and entrapped within liposomes in the rat. Journal of the Neurological Sciences 68: 25–30, 1985

    PubMed  CAS  Google Scholar 

  • Olson F, Hunt CA, Szoka FC, Vail WJ, Papahadjopoulos D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochimica et Biophysica Acta 1979 557: 9–23, 1979

    CAS  Google Scholar 

  • Olson F, Mayhew E, Maslow D, Rustum Y, Szoka F. Characterization, toxicity and therapeutic efficacy of adriamycin encapsulated in liposomes. European Journal of Cancer Clinical Oncology 18: 167–176, 1982

    PubMed  CAS  Google Scholar 

  • Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proceedings of the National Academy of Sciences of the United States of America 88: 11460–11464, 1991

    PubMed  CAS  Google Scholar 

  • Papahadjopoulos D, Heath T, Bragman K, Matthay K. New methodology for liposome targeting to specific cells. Annals of the New York Academy of Sciences 446: 341–348, 1985

    PubMed  CAS  Google Scholar 

  • Papahadjopoulos D, Miller N. Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals. Biochimica et Biophysica Acta 135: 624–638, 1967

    CAS  Google Scholar 

  • Parker RJ, Hartman KD, Sieber SM. Lymphatic absorption and tissue disposition of liposome-entrapped [14C]adriamycin following intraperitoneal administration to rats. Cancer Research 41: 1311–1317, 1981

    PubMed  CAS  Google Scholar 

  • Parker RJ, Priester ER, Sieber SM. Comparison of lymphatic uptake, metabolism, excretion, and biodistribution of free and liposome-entrapped [14C]cytosine β-D-arabinofuranoside following intraperitoneal administration to rats. Drug Metabolism and Disposition 10: 40–46, 1982

    PubMed  CAS  Google Scholar 

  • Patel KR, Li MP, Schuh JR, Baldeschwieler JD. The pharmacological efficacy of a rigid non-phospholipid liposome drug delivery system. Biochimica et Biophysica Acta 797: 20–26, 1984

    PubMed  CAS  Google Scholar 

  • Perez-Soler R, Lautersztain J, Stephens LC, Wright K, Khokhar AR. Preclinical toxicity and pharmacology of liposome-entrapped cis-bis-neodecanoato-trans-R,R-1,2-diaminocyclohexane platinum (II). Cancer Chemotherapy and Pharmacology 24: 1–8, 1989

    PubMed  CAS  Google Scholar 

  • Perez-Soler R, Lopez-Berestein G, Lautersztain J, al-Baker S, Francis K, et al. Phase I clinical and pharmacological study of liposome-entrapped cis-bis-neodecanoato-trans-R,R-1,2-diaminocyclohexaneplatinum (II). Cancer Research 50: 4254–4259, 1990

    PubMed  CAS  Google Scholar 

  • Perez-Soler R, Yang LY, Drewinko B, Lauterzstain J, Khokhar AR. Increased cytotoxicity and reversal of resistance to cis-diamminedichloro-platinum(II) with entrapment of cis-bis-neodecanoato-trans-R,R-1,2-diaminocyclohexaneplatinum (II) in multilamellar lipid vesicles. Cancer Research 48: 4509–4512, 1988

    PubMed  CAS  Google Scholar 

  • Pestalozzi B, Schwendener R, Sauter C. Phase I/II study of liposome-complexed mitoxantrone in patients with advanced breast cancer. Annals of Oncology 3:445–9, 1992

    PubMed  CAS  Google Scholar 

  • Poste G, Papahadjopoulos D. Drug-containing lipid vesicles render drug-resistant cell sensitive to actinomycin D. Nature 261: 699–701, 1976

    PubMed  CAS  Google Scholar 

  • Presant CA, Scolaro M, Kennedy P, Blayney DW, Flanagan B, et al. Liposomal daunorubicin treatment of HIV-associated Kaposi’s sarcoma. Lancet 341: 1242–1243, 1993

    PubMed  CAS  Google Scholar 

  • Rafaeloff R, Husain SR, Rahman A. Liposomes-encapsulated taxol (LET) is an effective modality to circumvent multidrug resistance (MDR) phenotype. Proceedings of the American Association for Cancer Research 33: 2883, 1992

    Google Scholar 

  • Rahman A, Kessler A, More N, Sikic B, Rowden G, et al. Liposomal protection of adriamycin-induced cardiotoxicity in mice. Cancer Research 40: 1532–1537, 1980

    PubMed  CAS  Google Scholar 

  • Rahman A, More N, Schein PS. Doxorubicin-induced chronic cardiotoxicity and its protection by liposomal administration. Cancer Research 42: 1817–1825, 1982

    PubMed  CAS  Google Scholar 

  • Rahman A, Panneerselvam M, Guirguis R, Castronovo V, Sobel ME, et al. Anti-laminin receptor antibody targeting of liposomes with encapsulated doxorubicin to human breast cancer cells in vitro. Journal of the National Cancer Institute 81: 1794–1800, 1989

    PubMed  CAS  Google Scholar 

  • Rahman A, Treat J, Roh JK, Potkul LA, Alvord WG, et al. A phase I clinical trial and pharmacokinetic evaluation of liposome-encapsulated doxorubicin. Journal of Clinical Oncology 8: 1093–1100, 1990

    PubMed  CAS  Google Scholar 

  • Rahman A, White G, More N, Schein PS. Pharmacological, toxicological, and therapeutic evaluation in mice of doxorubicin entrapped in cardiolipin liposomes. Cancer Research 45: 796–803, 1985

    PubMed  CAS  Google Scholar 

  • Rahman YE, Cerny EA, Tollaksen SL, Wright BJ, Nance SL, et al. Liposome-encapsulated actinomycin D: potential in cancer chemotherapy. Proceedings of the Society for Experimental Biology and Medicine 146: 1173–1176, 1974

    PubMed  CAS  Google Scholar 

  • Rahman YE, Hanson WR, Bharucha J, Ainsworth EJ, Jaroslow BN. Mechanisms of reduction of antitumor drug toxicity by liposome encapsulation. Annals of the New York Academy of Sciences 308: 325–342, 1978

    PubMed  CAS  Google Scholar 

  • Rahman YE, Kisieleski W, Buess EM, Cerny EA. Liposomes containing 3H-actinomycin D. Differential tissue distribution by varying the mode of drug incorporation. European Journal of Cancer 11: 883–889, 1975

    CAS  Google Scholar 

  • Richardson VJ, Curt GA, Ryman BE. Liposomally trapped AraCTP to overcome AraC resistance in a murine lymphoma in vitro. British Journal of Cancer 45: 559–564, 1982

    PubMed  CAS  Google Scholar 

  • Riondel J, Jacrot M, Fessi H, Puisieux F, Potier P. Effects of free and liposome-encapsulated taxol on two brain tumors xenografted into nude mice. In Vivo 6: 23–27, 1992

    PubMed  CAS  Google Scholar 

  • Ritter C, Rutman RJ. Relative enhancement by various liposomes of BCNU effectiveness against L-1210 leukemia in vivo. Research Communications in Chemical Pathology and Pharmacology 30: 123–131, 1980

    PubMed  CAS  Google Scholar 

  • Roy R, Kim S. Multivesicuiar liposomes containing bleomycin for subcutaneous administration. Cancer Chemotherapy and Pharmacology 28: 105–108, 1991

    PubMed  CAS  Google Scholar 

  • Rustum YM, Dave C, Mayhew E, Papahadjopoulos D. Role of liposome type and route of administration in the antitumor activity of liposome-entrapped 1-β-D-arabinofuranosylcytosine against mouse L1210 leukemia. Cancer Research 39: 1390–1395, 1979

    PubMed  CAS  Google Scholar 

  • Rustum YM, Mayhew E, Szoka F, Campbell J. Inability of liposome encapsulated 1-β-D-arabinofuranosylcytosine nucleotides to overcome drug resistance in L1210 cells. European Journal of Cancer Clinical Oncology 17: 809–817, 1981

    PubMed  CAS  Google Scholar 

  • Rutenfranz I, Bauer A, Kirchner H. Pharmacokinetic study of liposome-encapsulated human interferon-gamma after intravenous and intramuscular injection in mice. Journal of Interferon Research 10: 337–341, 1990a

    PubMed  CAS  Google Scholar 

  • Rutenfranz I, Bauer A, Kirchner H. Interferon gamma encapsulated into liposomes enhances the activity of monocytes and natural killer cells and has antiproliferative effects on tumor cells in vitro. Blut 61: 30–37, 1990b

    PubMed  CAS  Google Scholar 

  • Rutman RJ, Avadhani N-G, Ritter C. Activation in vitro of nitrogen mustard by liposomal transport. Biochemical Pharmacology 26: 85–88, 1977

    PubMed  CAS  Google Scholar 

  • Sasaki H, Kakutani T, Hashida M, Kimura T, Sezaki H. Blood dispositions of mitomycin C and a lipophilic prodrug after intramuscular and intravenous administration in liposomes and O/W emulsion. Chemical and Pharmaceutical Bulletin 33: 2968–2973, 1985a

    CAS  Google Scholar 

  • Sasaki H, Kakutani T, Hashida M, Sezaki H. Absorption characteristics of the lipophilic prodrug of mitomycin C from injected liposomes or an emulsion. Journal of Pharmacy and Pharmacology 37: 461–465, 1985b

    PubMed  CAS  Google Scholar 

  • Schiff PB, Faut J, Horowitz SB. Promotion of microtubule assembly in vitro by taxol. Nature 277: 655–667, 1979

    Google Scholar 

  • Schiff PB, Horowitz SB. Taxol assembles tubulin in the absence of exogenous guanosine 5′-triphosphate or microtubule-associated proteins. Biochemistry 20: 3242–3252, 1981

    Google Scholar 

  • Schwendener RA, Fiebig HH, Berger MR, Berger DP. Evaluation of incorporation characteristics of mitoxantrone into unilamellar liposomes and analysis of their pharmacokinetic properties, acute toxicity, and antitumor efficacy. Cancer Chemotherapy and Pharmacology 27: 429–39, 1991

    PubMed  CAS  Google Scholar 

  • Schwendener RA, Schott H. Treatment of L1210 murine leukemia with liposome-incorporated N4-hexadecyl-1-β-D-arabinofuranosyl cytosine. International Journal of Cancer 51: 466–469, 1992

    CAS  Google Scholar 

  • Segal AW, Gregoriadis G, Black CD. Liposomes as vehicles for the local release of drugs. Clinical Science and Molecular Medicine 49: 99–106, 1975

    PubMed  CAS  Google Scholar 

  • Segal AW, Gregoriadis G, Lavender JP, Tarin D, Peters TJ. Tissue and hepatic subcellular distribution of liposomes containing bleomycin after intravenous administration to patients with neoplasms. Clinical Science and Molecular Medicine 51: 421–425, 1976

    PubMed  CAS  Google Scholar 

  • Sencer SF, Rich ML, Katsanis E, Ochoa AC, Anderson PM. Anti-tumor vaccine adjuvant effects of IL-2 liposomes in mice immunized against MCA-102 sarcoma. European Cytokine Network 2: 311–318, 1991

    PubMed  CAS  Google Scholar 

  • Shibata S, Jinnouchi T, Mori K. Ultrastructural study of capillary permeability of liposome-encapsulated cisplatin in an experimental rat brain tumor model. Neurologia Medico-Chirurgica 29: 696–700, 1989

    PubMed  CAS  Google Scholar 

  • Shibata S, Ochi A, Mori K. Liposomes as carriers of cisplatin into the central nervous system — experiments with 9L gliomas in rats. Neurologia Medico-Chirurgica 30: 242–245, 1990

    PubMed  CAS  Google Scholar 

  • Shin DM, Fidler IJ, Bucana CD, Fan D, Hong WK, et al. Superior antiproliferative effects mediated by interferon-alpha entrapped in liposomes against a newly established human lung cancer cell line. Journal of Biological Response Modifiers 9: 355–360, 1990

    PubMed  CAS  Google Scholar 

  • Shin YS, Paik EM, Ahn YH, Kim BS, Kim YS. Anticancer effect of liposome incorporated with methotrexate and antibody against tumor specific surface antigen of rat hepatoma. Yonsei Medical Journal 30: 246–255, 1989

    PubMed  CAS  Google Scholar 

  • Simmons SP, Kramer PA. Liposomal entrapment of floxuridine. Journal of Pharmaceutical Sciences 66: 984–986, 1977

    PubMed  CAS  Google Scholar 

  • Simmons ST, Sherwood MB, Nichols DA, Penne RB, Sery T, et al. Pharmacokinetics of a 5-fluorouracil liposomal delivery system. British Journal of Ophthalmology 72: 688–691, 1988

    PubMed  CAS  Google Scholar 

  • Singh M, Ghose T, Mezei M, Belitsky P. Inhibition of human renal cancer by monoclonal antibody targeted methotrexate-containing liposomes in an ascites tumor model. Cancer Letters 56: 97–102, 1991

    PubMed  CAS  Google Scholar 

  • Skuta GL, Assil K, Parrish RK, Folberg R, Weinreb RN. Filtering surgery in owl monkeys treated with the anti-metabolite 5-fluorouridine 5′-monophosphate entrapped in multivesicular liposomes. American Journal of Ophthalmology 103: 714–716, 1987

    PubMed  CAS  Google Scholar 

  • Smith DM, Mayhew E, Reszka R, Ito M, O’Malley JA. Antiviral and antiproliferative properties of liposome-associated human interferon-gamma. Journal of Interferon Research 10: 153–160, 1990

    PubMed  CAS  Google Scholar 

  • Steerenberg PA, Storm G, de Groot G, Claessen A, Bergers JJ, et al. Liposomes as drug carrier system for cis-diamminedichloroplatinum (II). II. Antitumor activity in vivo, induction of drug resistance, nephrotoxicity and Pt distribution. Cancer Chemotherapy and Pharmacology 21: 299–307, 1988

    CAS  Google Scholar 

  • Storm G, Steerenberg PA, Emmen F, van Borssum Waalkes M, Crommelin DJ. Release of doxorubicin from peritoneal macrophages exposed in vivo to doxorubicin-containing liposomes. Biochimica et Biophysica Acta 965: 136–145, 1988

    PubMed  CAS  Google Scholar 

  • Storm G, van Hoesel QG, de Groot G, Kop W, Steerenberg PA, et al. A comparative study on the antitumor effect, cardiotoxicity and nephrotoxicity of doxorubicin given as a bolus, continuous infusion or entrapped in liposomes in the Lou/M Wsl rat. Cancer Chemotherapy and Pharmacology 24: 341–348, 1989

    PubMed  CAS  Google Scholar 

  • Straubinger RM, Lopez NG, Debs RJ, Hong K, Papahadjopoulos D. Liposome-based therapy of human ovarian cancer: parameters determining potency of negatively charged and antibody-targeted liposomes. Cancer Research 48: 5237–5245, 1988

    PubMed  CAS  Google Scholar 

  • Supersaxo A, Rubas W, Hartmann HR, Schott H, Hengartner H, et al. The antitumour effect of lipophilic derivatives of 5-fluoro-2′-deoxyuridine incorporated into liposomes. Journal of Microencapsulation 5: 1–11, 1988

    PubMed  CAS  Google Scholar 

  • Sur P, Roy DK. Enhancement of the action of bleomycin using liposomes with Ehrlich’s ascites carcinoma in mice. Indian Journal of Experimental Biology 17: 952–953, 1979

    PubMed  CAS  Google Scholar 

  • Szoka F, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proceedings of the National Academy of Sciences of the United States of America 75: 4194–4198, 1978

    PubMed  CAS  Google Scholar 

  • Szoka F, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annual Review of Biophysics and Bioengineering 9: 467–508, 1980

    PubMed  CAS  Google Scholar 

  • Tacker JR, Anderson RU. Delivery of antitumor drug to bladder cancer by use of phase transition liposomes and hyperthermia. Journal of Urology 127: 1211–1214, 1982

    PubMed  CAS  Google Scholar 

  • Tokunaga Y, Iwasa T, Fujisaki J, Sawai S, Kagayama A. Liposomal sustained-release delivery systems for intravenous injection. II. Design of liposome carriers and blood disposition of lipophilic mitomycin C prodrug-bearing liposomes. Chemical and Pharmaceutical Bulletin 36: 3557–3564, 1988a

    CAS  Google Scholar 

  • Tokunaga Y, Iwasa T, Fujisaki J, Sawai S, Kagayama A. Liposomal sustained-release delivery systems for intravenous injection. I. Physicochemical and biological properties of newly synthesized lipophilic derivatives of mitomycin C. Chemical and Pharmaceutical Bulletin 36: 3060–3069, 1988b

    CAS  Google Scholar 

  • Tokunaga Y, Iwasa T, Fujisaki J, Sawai S, Kagayama A. Liposomal sustained-release delivery systems for intravenous injection. III. Antitumor activity of lipophilic mitomycin C prodrug-bearing liposomes. Chemical and Pharmaceutical Bulletin 36: 3565–3573, 1988c

    CAS  Google Scholar 

  • Tokunaga Y, Iwasa T, Fujisaki J, Sawai S, Kagayama A. Liposomal sustained-release delivery systems for intravenous injection V. Biological disposition of liposome-entrapped lipophilic prodrug of 1-β-D-arabinofuranosylcytosine. Chemical and Pharmaceutical Bulletin 36: 4060–4067, 1988d

    CAS  Google Scholar 

  • Tomita T, Watanabe M, Takahashi T, Kumai K, Tadakuma T, et al. Temperature-sensitive release of adriamycin, an amphiphilic antitumor agent, from dipalmitoylphosphatidylcholine-cholesterol liposomes. Biochimica et Biophysica Acta 978: 185–190, 1989

    PubMed  CAS  Google Scholar 

  • Treat J, Greenspan A, Forst D, Sanchez JA, Ferrans VJ, et al. Antitumor activity of liposome-encapsulated doxorubicin in advanced breast cancer: phase II study. Journal of the National Cancer Institute 82: 1706–1710, 1990

    PubMed  CAS  Google Scholar 

  • Tritton TR, Murphree SA, Sartorelli AC. Adriamycin: a proposal on the specificity of drug action. Biochemical Biophysical Research Communications 84: 802–808, 1978

    CAS  Google Scholar 

  • Tsujii K, Sunamoto J, Fendler JH. Improved entrapment of drugs in modified liposomes. Life Sciences 19: 1743–1749, 1976

    PubMed  CAS  Google Scholar 

  • Utsugi T, Dinney CP, Killion JJ, Brown D, Fidler IJ. In situ activation of mouse lung macrophages by coadministration of liposomes containing the lipopeptide CGP 31362 and interleukin 2 involves interaction with T lymphocytes and natural killer cells. Lymphokine and Cytokine Research 10: 487–493, 1991

    PubMed  CAS  Google Scholar 

  • Vaage J, Mayhew E. Immunotherapy of a mouse mammary carcinoma by sustained peritumor release of IL-2. International Journal of Cancer 47: 582–585, 1991

    CAS  Google Scholar 

  • Vaage J, Mayhew E, Lasic D, Martin F. Therapy of primary and metastatic mouse mammary carcinomas with doxorubicin encapsulated in long circulating liposomes. International Journal of Cancer 51: 942–948, 1992

    CAS  Google Scholar 

  • van Hoesel QG, Steerenberg PA, Crommelin DJ, van Dijk A, van Oort W, et al. Reduced cardiotoxicity and nephrotoxicity with preservation of antitumor activity of doxorubicin entrapped in stable liposomes in the LOU/M Wsl rat. Cancer Research 44: 3698–3705, 1984

    PubMed  Google Scholar 

  • Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society 93: 2325–2327, 1971

    CAS  Google Scholar 

  • Weinstein JN, Magin RL, Cysyk RL, Zaharko DS. Treatment of solid L1210 murine tumors with local hyperthermia and temperature-sensitive liposomes containing methotrexate. Cancer Research 40: 1388–1395, 1980

    PubMed  CAS  Google Scholar 

  • Weinstein JN, Magin RL, Yatvin MB, Zaharko DS. Liposomes and local hyperthermia: selective delivery of methotrexate to heated tumors. Science 204: 188–191, 1979

    PubMed  CAS  Google Scholar 

  • Weiss RB, Christian MC. New cisplatin analogues in development: clinical potential in cancer chemotherapy. Drugs 46: 360–377, 1993

    PubMed  CAS  Google Scholar 

  • Woodle MC, Allen TM, Mayhew E, Uster PS. In vivo efficacy of vincristine entrapped in long-circulating liposomes. Proceedings of the American Association for Cancer Research 33: 2672, 1992

    Google Scholar 

  • Wright SE, White JC, Huang L. Partitioning of teniposide into membranes and the role of lipid composition. Biochimica et Biophysica Acta 1021: 105–113, 1990

    PubMed  CAS  Google Scholar 

  • Yatvin MB, Muhlensiepen H, Porschen W, Weinstein JN, Feinendegen LE. Selective delivery of liposome-associated cis-dichlorodiammineplatinum (II) by heat and its influence on tumor drug uptake and growth. Cancer Research 41: 1602–1607, 1981

    PubMed  CAS  Google Scholar 

  • Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science 202: 1290–1293, 1978

    PubMed  CAS  Google Scholar 

  • Zou YY, Ueno M, Yamagishi M, Horikoshi I, Yamashita I, et al. Targeting behavior of hepatic artery injected temperature sensitive liposomal adriamycin on tumor-bearing rats. Selective Cancer Therapeutics 6: 119–127, 1990

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S. Liposomes as Carriers of Cancer Chemotherapy. Drugs 46, 618–638 (1993). https://doi.org/10.2165/00003495-199346040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199346040-00004

Keywords

Navigation