Skip to main content
Log in

Cibenzoline

A Review of its Pharmacological Properties and Therapeutic Potential in Arrhythmias

  • Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Synopsis

Cibenzoline is a class I antiarrhythmic drug with limited class III and IV activity which can be administered orally or intravenously. An elimination half-life of about 8 to 12 hours permits twice daily administration, although age and renal function must be considered when determining dosage. Cibenzoline has some activity in ventricular and supraventricular arrhythmias, including drug-refractory ventricular tachycardia or ventricular arrhythmias following recent acute myocardial infarction, although results in patients with sustained ventricular tachycardia are less promising. In comparative trials, cibenzoline has demonstrated efficacy similar to or better than that of a variety of other class I antiarrhythmic drugs and was at least as well tolerated, with a more convenient dosage schedule. However, further studies to clarify the proarrhythmic effects of cibenzoline and its use in patients with impaired left ventricular function are required, and the use of cibenzoline (and other class I antiarrhythmic agents) in patients with other than potentially lethal ventricular arrhythmias should be avoided following the results of the CAST studies.

Thus, cibenzoline is an effective antiarrhythmic agent with a favourable pharmacokinetic profile that may be considered with other class I drugs in patients requiring therapy for high risk arrhythmias.

Pharmacodynamic Properties

In isolated tissues cibenzoline exhibits class I and to a lesser extent, class III and IV antiarrhythmic activity. In intact animals intravenous cibenzoline increases atrial refractory periods, atrioventricular nodal, intraventricular and His-Purkinje (HV) conduction times, and ventricular refractory periods. Stroke volume decreases as a result of the direct negative inotropic action of cibenzoline combined with an increase in systemic vascular resistance.

In patients with arrhythmia cibenzoline produces dose-proportional increases in QRS (≤ 33%), QTc (≤ 12%), AH (≤ 14%), and HV (> -47%) intervals, and ventricular effective refractory period (≤ 9%). In conjunction with the pronounced decrease in maximum upstroke velocity of the action potential (Vmax), this indicates a predominantly class Ic profile. Contrary to the bradycardic effect seen in isolated tissues and intact animals, cibenzoline either increases or has no effect on heart rate in man. This may be due to vagolytic activity or to a baroreflex-mediated increase in heart rate due to reported decreases in blood pressure.

Cibenzoline also exerts a negative inotropic effect following single-dose intravenous administration, with significant transient decreases in the rate of change of left ventricular pressure, ejection fraction and stroke volume index, accompanied by an increase in vascular resistance, occurring within the therapeutic range of plasma concentrations. Afterload reduction in compensation for the negative inotropic effect appears to occur with longer term oral administration, but these effects require that cibenzoline be used with caution in patients with depressed left ventricular function.

Pharmacokinetic Properties

Cibenzoline can be administered both intravenously and orally; bioavailability after oral administration is about 85%, with peak plasma concentrations occurring 1 to 3 hours post dose. The plasma concentration-time profile is best described by a 3-compartment model in healthy subjects and a 2-compartment model in patients with acute myocardial infarction. The volume of distribution is large at 4.1 to 7.3 L/kg, and protein binding is 50 to 60%. In humans, 30 to 65% of cibenzoline is excreted unchanged in the urine; total clearance ranges from 30 to 50 L/h and renal clearance from 17 to 30 L/h. In patients with renal impairment and in the elderly, renal clearance of cibenzoline decreases and elimination half-life increases from about 7.5 to more than 20 hours. Plasma concentrations of cibenzoline associated with the abolition of arrhythmias ranged from 293 to 569 μg/L. In general, a trough plasma concentration greater than 300 μg/L was associated with antiarrhythmic activity.

Therapeutic Use

Cibenzoline has been evaluated in both ventricular and supraventricular tachyarrhythmias. Noncomparative and placebo-controlled trials have demonstrated the efficacy of cibenzoline in patients with arrhythmias, including patients with ventricular arrhythmias refractory to established antiarrhythmic agents. In small comparative studies, cibenzoline was at least as effective as quinidine, disopyramide, mexiletine, aprindine, lidocaine (lignocaine) and nadoxolol in patients with ventricular arrhythmias (cibenzoline response rate 38 to 78%), and as effective as flecainide, quinidine and disopyramide in patients with supraventricular arrhythmias (cibenzoline response rate 36 to 76%). However, results in patients with sustained ventricular tachycardia are less promising (cibenzoline response rate 28 to 54%).

Few studies have evaluated the effects of underlying organic cardiovascular disease on the response to cibenzoline therapy. While beneficial effects on haemodynamic functional parameters have been observed with short term cibenzoline administration in this patient group, the effects in patients with a reduced ejection fraction have been variable and considerable caution is recommended in these patients.

Tolerability

Cibenzoline has been relatively well tolerated in clinical trials and was usually at least as well tolerated as other antiarrhythmic agents in comparative studies. Gastrointestinal adverse effects, nervousness and tremulousness, and to a lesser extent blurred vision, dry mouth, urinary retention, hypotension/syncope, and asymptomatic increases in liver transaminases and decreases in white blood cell counts have been observed. Prolongation of PR and QRS intervals may also occur and occasional cases of bundle branch block and exacerbation of congestive heart failure have been noted. Limited studies suggest cibenzoline has proarrhythmic effects comparable to other antiarrhythmic agents. As cibenzoline influences the ECG and has a negative inotropic effect, care must be taken when administering other cardioactive agents concomitantly.

Dosage and Administration

Cibenzoline dosage should be individually titrated although in clinical trials most patients responded to 130 to 160mg twice daily orally. Cibenzoline is available as the 130mg formulation. In Japan 50 or 100mg 3 times daily of the cibenzoline succinate has been used. Dosage requirements are reduced in the elderly and it has been recommended that patients with renal dysfunction receive two-thirds the normal dosage once daily, while those with renal failure receive one-third the normal dose 12-hourly or the normal dose 36-to 48-hourly. Plasma concentrations should be monitored initially in patients with compromised renal function, and left ventricular function should be monitored in patients with a severely reduced ejection fraction.

Cibenzoline 1 to 1.75 mg/kg intravenously has been administered in patients with supraventricular arrhythmias and 1 to 3 mg/kg in patients with ventricular arrhythmias, but the use of intravenous cibenzoline has not been well characterised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arena JP, McArdle JJ, Laxminarayan S. Characterization of the class I antiarrhythmic activity of cibenzoline succinate in guinea pig papillary muscle. Journal of Pharmacology and Experimental Therapeutics 240: 441–450, 1987

    PubMed  CAS  Google Scholar 

  • Aronoff G, Brier M, Mayer ML, Barbalas M, Aogaichi K, et al. Bio-availability and kinetics of cibenzoline in patients with normal and impaired renal function. Journal of Clinical Pharmacology 31: 38–44, 1991

    PubMed  CAS  Google Scholar 

  • Atarashi H, Hayakawa H, Kato K, Iinuma H, Hosoda S, et al. Clinical experience of cibenzoline on various arrhythmias in long-term therapy. In Japanese. Rinsho Iyaku 4: 2331–2342, 1988

    Google Scholar 

  • Atarashi H, Hayakawa H, Kato K, Iinuma H, Hosoda S, et al. Study of clinical effect and safety of cibenzoline on supraventricular arrhythmia. In Japanese. Rinsho Iyaku 4: 1851–1867, 1988

    Google Scholar 

  • Atarashi H, Iida K, Kou M, Hirayama Y, Gotoh M, et al. Electrophysiologic effects of intravenous cibenzoline succinate, a new class I antiarrhythmic agent. In Japanese Kokyu to Junkan 36: 1119–1124, 1988

    CAS  Google Scholar 

  • Aymard Dufour MF, Spriet Pourra C. Choc Cardiogénique et bloc intra-ventriculaire majeur au cours d’un traitment par la cibenzoline. Therapie 43: 243–244, 1988

    PubMed  CAS  Google Scholar 

  • Baligadoo S, Chiche P. Beneficial effects of U.P. 339.01 a new antiarrhythmic agent against ventricular premature beats. Abstract 692. Circulation 58: 11–179, 1978

    Google Scholar 

  • Bauer Ph, Bollaert PE, Sadoul N, Lambert H, Larcan A. Emploi du Ringer lactate dans l’intoxication à la cibenzoline. Presse Médicale 18: 588, 1989

    CAS  Google Scholar 

  • Bommer W, Seher R, Reffeira P, Tarn K, Rebeck K, et al. Safety and efficacy of cibenzoline versus quinidine for ventricular arrhythmias. Abstract. Clinical Research 33: 4A, 1985

    Google Scholar 

  • Boucher M, Dubray C, Kantelip JP, Talmant JM, Dufour a, et al. Cardiac electrophysiological effects of cibenzoline in the conscious dog: plasma concentration-response relationships. Journal of Cardiovascular Pharmacology 14: 616–621, 1989

    PubMed  CAS  Google Scholar 

  • Brazzell RK, Aogaichi K, Heger Jr JJ, Somberg JC, Carliner NH, et al. Cibenzoline plasma concentration and antiarrhythmic effect. Clinical Pharmacology and Therapeutics 35: 307–316, 1984

    PubMed  CAS  Google Scholar 

  • Brazzell RK, Colburn WA, Aogaichi K, Szuna AJ, Somberg JC, et al. Pharmacokinetics of oral cibenzoline in arrhythmia patients. Clinical Pharmacokinetics 10: 178–186, 1985

    PubMed  CAS  Google Scholar 

  • Brazzell RK, Khoo K-C, Szuna AJ, Sandor D, Aogaichi K, et al. Pharmacokinetics and pharmacodynamics of intravenous cibenzoline in normal volunteers. Journal of Clinical Pharmacology 25: 418–423, 1985

    PubMed  CAS  Google Scholar 

  • Brazzell RK, Rees MMC, Khoo K-C, Szuna AJ, Sandor D, et al. Age and cibenzoline disposition. Clinical Pharmacology and Therapeutics 36: 613–619, 1984

    PubMed  CAS  Google Scholar 

  • Browne KF, Prystowsky EN, Zipes DP, Chilson DA, Heger JJ. Clinical efficacy and electrophysiologic effects of cibenzoline therapy in patients with ventricular arrhythmias. Journal of the American College of Cardiology 3: 857–864, 1984

    PubMed  CAS  Google Scholar 

  • Brugada P, Andries EW, Mont L, Gursoy S, Willems H, et al. Mechanisms of sudden cardiac death. Drugs 41 (Suppl.2): 16–23, 1991

    PubMed  Google Scholar 

  • Canal M, Flouvat B, Aubert P, Guedon J, Prinseau J, et al. Pharmacokinetics of cibenzoline in patients with renal impairment. Journal of Clinical Pharmacology 25: 197–203, 1985

    PubMed  CAS  Google Scholar 

  • Canal M, Flouvat B, Tremblay D, Dufour A. Pharmacokinetics in man of a new antiarrhythmic drug, cibenzoline. European Journal of Clinical Pharmacology 24: 509–515, 1983

    PubMed  CAS  Google Scholar 

  • Cazes M, Chassaing C, Martinet M, Cloarec A, Provost, D, et al. Comparison of anticholinergic effects of cibenzoline, disopyramide, and atropine. Journal of Cardiovascular Pharmacology 15: 308–316, 1990

    PubMed  CAS  Google Scholar 

  • Clémenty J, Aymard M-F, Coste P, Bonnet J. Etude comparative en double aveugle de l’efficacité et de la tolérance de la cibenzoline et du disopyramide dans le traitement des extrasystoles ventriculaires stables. Médecine et Hygiène 44: 3377–3381, 1986

    Google Scholar 

  • Cocco G, Strozzi C, Pansini R, Rochat N, Bulgarelli R, et al, Anti-arrhythmic use of cibenzoline, a new class 1 antiarrhythmic agent with class 3 and 4 properties, in patients with recurrent ventricular tachycardia. European Heart Journal 5: 108–114, 1984

    PubMed  CAS  Google Scholar 

  • Dahl JM, Roche VF, Hilleman DE. Visual compatability of cibenzoline succinate with commonly used acute-care medications. American Journal of Hospital Pharmacy 44: 1123–1125, 1987

    PubMed  CAS  Google Scholar 

  • Dangman KH. Cardiac effects of cibenzoline. Journal of Cardiovascular Pharmacology 6: 300–311, 1984

    PubMed  CAS  Google Scholar 

  • Desoutter P, Dufour A, Aymard MF, Haiat R. Pharmacokinetic study of a new anti-arrhythmic drug, cibenzoline, during the acute phase of myocardial infarction: therapeutic correlations. In Levy S, et al. (Eds) Recent advances in cardiac arrhythmias, Vol 1, pp. 288–293, John Libbey, London, 1983

    Google Scholar 

  • Dixon R, Carbone J, Tilley J, Liu Y-Y. Radioimmunoassay for the new antiarrhythmic agent cibenzoline in human plasma. Journal of Pharmaceutical Sciences 72: 100–101, 1983

    PubMed  CAS  Google Scholar 

  • Doorley BM, Hutcheon DE, Dapson SC. The antifibrilatory effects of cibenzoline on Langendorff-perfused rabbit hearts. Abstract 3956. Federation Proceedings 43: 961, 1984

    Google Scholar 

  • Frances Y, Luccioni R, Delaage M, Donnarel G, Medvedowsky JL, et al. Prévention au long cours des récidives de fibrillation auriculaire par la cibenzoline. Étude multicentrique à propos de 89 observations. Archives des Maladies du Coeur et des Vaisseaux 78: 99–103, 1985

    PubMed  Google Scholar 

  • Furuta T, Toyama J, Yamada K. Comparative study of cibenzoline and disopyramide on fast channel blocking and anticholinergic action in isolated guinea pig cardiac muscle. Environmental Medicine 27: 99–104, 1983

    CAS  Google Scholar 

  • Gachot BA, Bezier M, Cherrier J-F, Daubeze J. Cibenzoline and hypoglycaemia. Correspondence. Lancet 2: 280, 1988

    PubMed  CAS  Google Scholar 

  • Gross A, Guerci B, Grulet H, Taupin JM, Durlach V, et al. Hypoglycemies dues a la cibenzoline. Abstract 44. Diabctc et Metabolisme 16: 12, 1990

    Google Scholar 

  • Hackman MR, Lee TL, Brooks MA. Determination of cibenzoline in plasma and urine by high-performance liquid chromatography. Journal of Chromatography 273: 347–356, 1983

    PubMed  CAS  Google Scholar 

  • Haruno A, Matsuzaki T, Hashimoto K. Antiarrhythmic effects of optical isomers of cibenzoline on canine ventricular arrhythmias. Journal of Cardiovascular Pharmacology 16: 376–382, 1990

    PubMed  CAS  Google Scholar 

  • Herpin D, Gaudeau B, Boutaud P, Amiel A, Tourdias, et al. Clinical trial of a new anti-arrhythmic drug: cibenzoline (cipralan™). Current Therapeutic Research 30: 742–752, 1981

    Google Scholar 

  • Hilleman DE, Mohiuddin SM, Ahmed IS, Dahl JM. Cibenzoline-induced hypoglycemia. Drug Intelligence and Clinical Pharmacy 21: 38–40, 1987

    PubMed  CAS  Google Scholar 

  • Hinsch E, Dahlen P, Pace D, Klevans L, Cohen M. Antiarrhythmic and hemodynamic profile of cibenzoline. Abstract 5846. Federation Proceedings 42: 1289, 1983

    Google Scholar 

  • Holazo AA, Brazzell RK, Colburn WA. Pharmacokinetic and pharmacodynamic modeling of cibenzoline plasma concentrations and antiarrhythmic effect. Journal of Clinical Pharmacology 26: 336–345, 1986

    PubMed  CAS  Google Scholar 

  • Hoick M, Osterrieder W. Inhibition of the myocardial Ca2+inward current by the class 1 antiarrhythmicagent, cibenzoline. British Journal of Pharmacology 87: 705–711, 1986

    Google Scholar 

  • Houdent Ch, Noblet C, Vandoren C, Levesque H, Morin C, et al. Hypoglycémie induite par la cibenzoline chez le sujet âgé. Revue de Medecine Interne 12: 143–145, 1991

    PubMed  CAS  Google Scholar 

  • Humen DP, Lesoway R, Kostuk WJ. Acute, single, intravenous doses of cibenzoline: an evaluation of safety, tolerance, and hemodynamic effects. Clinical Pharmacology and Therapeutics 41: 537–545, 1987

    PubMed  CAS  Google Scholar 

  • Humen DP, Lesoway R, Kostuk WJ. Cibenzoline, a new anti-arrhythmic: hemodynamic effects. Abstract II-B. Clinical pharmacology and Therapeutics 35: 248, 1984

    Google Scholar 

  • Ikeda N, Singh BN. Electrophysiologic profile of a new antiarrhythmic drug, cibenzoline, in isolated cardiac tissues. Abstract 2008. Federation Proceedings 42: 635

    Google Scholar 

  • 1983Investigators of the Cardiac Arrhythmia Suppression Trial. Special Report. Preliminary Report. Effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. New England Journal of Medicine 32: 406–412, 1989

    Google Scholar 

  • Jeandel C, Preiss MA, Pierson H, Penin F, Cuny G, et al. Hypoglycaemia induced by cibenzoline. Correspondence. Lancet 1: 1232–1233, 1988

    PubMed  CAS  Google Scholar 

  • Karagueuzian HS, Sugi K, Ohta M, Meesmann M, Ino T, et al. The efficacy of cibenzoline and propafenone against inducible sustained and nonsustained ventricular tachycardias in conscious dogs with isolated chronic right ventricular infarction: a comparative study with procainamide. American Heart Journal 112: 1173–1183, 1986

    PubMed  CAS  Google Scholar 

  • Kato K, Iinuma H, Hosoda S, Sugimoto T, Hayakawa K, et al. Clinical efficacy and safety of cibenzoline in patients with supraventricular premature contraction. A double-blind group comparative trial in comparison with disopyramide in a multi-center cooperation. In Japanese. Rinsho Hyoka 17: 35–55, 1989

    Google Scholar 

  • Kato K, Iinuma H, Hosoda S, Sugimoto T, Hayakawa K, et al. Clinical efficacy and safety of cibenzoline in patients with ventricular premature contraction. A double-blind group comparative trial in comparison with disopyramide in a multi-center cooperation. In Japanese. Rinsho Hyoka 17: 11–34, 1989

    Google Scholar 

  • Kato K, Iinuma H, Hosoda S, Sugimoto T, Hayakawa K, et al. Dose finding trial of cibenzoline in patients with ventricular premature contraction using double-blind technique in a multi-center cooperation. In Japanese. Rinsho Hyoka 16: 643–660, 1988

    Google Scholar 

  • Kato R, Sotobata I, Yokota M, Miyagaki H, Ito A, et al. The pharmacokinetics and antiarrhythmic effect of oral cibenzoline. In Japanese. Rinsho Yakuri 20: 363–372, 1989

    Google Scholar 

  • Kato R, Suzuki M, Goto T, Fukumitsu T, Terasawa T, et al. Suppressive effects of cibenzoline on atrioventricular reentrant tachycardia. Japanese Journal of Electrocardiography 9: 806–815, 1989

    Google Scholar 

  • Kato T, Hayakawa K, Kato K, Hosoda S, Sugimoto T, et al. Pilot study of intravenous cibenzoline in patients with ventricular and supraventricular arrhythmias by a multi-center cooperation. In Japanese. Rinsho Iyaku 6: 1179–1192, 1990

    Google Scholar 

  • Katoh T, Ishihara S, Tanaka T, Kobayashi Y, Takada K, et al. Hemodynamic effects of intravenous cibenzoline, a new antiarrhythmic agent. In Japanese. Rinsho Yakuri 19: 707–716, 1988

    Google Scholar 

  • Keefe D, Williams S, Miura D, Terribile S, Somberg J. A randomized parallel trial of cibenzoline and quinidine for prevention of recurrence of atrial fibrillation or flutter. Abstract. Journal of Clinical Pharmacology 25: 470, 1985

    Google Scholar 

  • Keren G, Tepper D, Butler B, Miura D, Aogaichi K, et al. The efficacy of cibenzoline in preventing PES induction of ventricular tachycardia in the dog. Journal of Clinical Pharmacology 24: 466–472, 1984

    PubMed  CAS  Google Scholar 

  • Khoo K-C, Givens SV, Parsonnet M, Massarella JW. Effect of oral cibenzoline on steady-state digoxin concentrations in healthy volunteers. Journal of Clinical Pharmacology 28: 29–35, 1988

    PubMed  CAS  Google Scholar 

  • Khoo K-C, Szuna AJ, Colburn WA, Aogaichi K, Morganroth J, et al. Single-dose pharmacokinetics and dose proportionality of oral cibenzoline. Journal of Clinical Pharmacology 24: 283–288, 1984

    PubMed  CAS  Google Scholar 

  • Klein RC, Horwitz LD, Rushforth N. Efficacy and safety of oral cibenzoline for ventricular arrhythmias. American Journal of Cardiology 57: 592–597, 1986

    PubMed  CAS  Google Scholar 

  • Kostis JB, Davis D, Kluger J, Aogaichi K, Smith M. Cifenline in the short-term treatment of patients with ventricular premature complexes: a double-blind placebo-controlled study. Journal of Cardiovascular Pharmacology 14: 88–95, 1989

    PubMed  CAS  Google Scholar 

  • Kostis JB, Davis D, Kluger J, Williams CB, Krieger SD, et al. Long-term efficacy of cibenzoline in the treatment of ventricular ectopic activity. Abstract. Clinical Pharmacology and Therapeutics 41: 233, 1987

    Google Scholar 

  • Kostis JB, Krieger S, Moreyra A, Cosgrove N. Cibenzoline for treatment of ventricular arrhythmias: a double-blind placebo-controlled study. Journal of the American College of Cardiology 4: 372–377, 1984

    PubMed  CAS  Google Scholar 

  • Kotake H, Matsuoka S, Ogino K, Takami T, Hasegawa J, et al. Electrophysiological study of cibenzoline in voltage-clamped rabbit sinoatrial preparations. Journal of Pharmacology and Experimental Therapeutics 241: 982–986, 1987

    PubMed  CAS  Google Scholar 

  • Kovacs JL, Tuzel I, Aogaichi K, Heger JJ, Richmond L, et al. False-positive urine protein reaction with cibenzoline, a new antiarrhythmic agent. Journal of Clinical Pharmacology 24: 127–128, 1984

    Google Scholar 

  • Kühlkamp V, Meerhof J, Schmidt F, Mayer F, Ickrath O, et al. Electrophysiologic effects and efficacy of cibenzoline on stimulation-induced atrial fibrillation and flutter and implications for treatment of paroxysmal atrial fibrillation. American Journal of Cardiology 65: 628–632, 1990

    PubMed  Google Scholar 

  • Kühlkamp V, Schmid F, Mayer F, Ickrath O, Haasis R, et al. Effects of intravenous cibenzoline on ventricular vulnerability and electro-physiology in patients with sustained ventricular tachycardia in comparison to a control group. Journal of Cardiovascular Pharmacology 15: 472–475, 1990

    PubMed  Google Scholar 

  • Kühlkamp V, Schmid F, Ress KM, Krämer BK, Mayer F, et al. Quantification of cibenzoline and its imidazole metabolite by high-performance liquid chromatography in human serum. Journal of Chromatography 528: 267–273, 1990

    PubMed  Google Scholar 

  • Kühlkamp V, Schmid F, Risler T, Seipel L. Randomized comparison of flecainide and cibenzoline in the conversion of atrial fibrillation. International Journal of Cardiology 31: 65–69, 1991

    PubMed  Google Scholar 

  • Kushner M, Magiros E, Peters R, Carliner N, Plotnick G, et al. The electrophysiologic effects of oral cibenzoline. Journal of Electrocardiology 17: 15–24, 1984

    PubMed  CAS  Google Scholar 

  • Lang J, Timour Q, Aupetit JF, Lancon JP, Lakhal M, et al. Frequency-and time-dependent depression of ventricular distal conduction by two novel antiarrhythmic drugs, cibenzoline and flecainide. Archives Internationales de Pharmacodynamie et de Therapie 293: 97–108, 1988

    PubMed  CAS  Google Scholar 

  • Lee MA, Fenster PE, Garcia ZM, Kipps JE, Huang SKS. Cibenzoline for symptomatic ventricular arrhythmias: a prospective, randomized, double-blind, placebo controlled trial and a long term open label study. Canadian Journal of Cardiology 5: 295–298, 1989

    PubMed  CAS  Google Scholar 

  • Leinweber F-J, Loh AC, Szuna AJ, Carbone JJ, Williams TH, et al. Biotransformation of cibenzoline to 2-(2,2-diphenylcyclopropyl)-lH-imidazole. Xenobiotica 13: 287–294, 1983

    PubMed  CAS  Google Scholar 

  • Loh AC, Szuna AJ, Carbone JJ, Williams TH, Sasso GJ, et al. Identification and pharmacologic activity of a cibenzoline metabolite. Abstract 3629. Federation Proceedings 42: 912, 1983

    Google Scholar 

  • Lorenzo BJ, Drayer DE, Reidenberg MM, Kluger J, Nestor T, et al. Decline in renal clearance of cibenzoline per unit GFR with age. Abstract. Clinical Research 32: 481A, 1984

    Google Scholar 

  • Massarella JW, Blumenthal HP, Silvestri T, Lin A. Effect of food on cibenzoline bioavailability. European Journal of Clinical Pharmacology 30: 367–369, 1986

    PubMed  CAS  Google Scholar 

  • Massarella JW, Khoo K-C, Aogaichi K, Di Persio D, Smith M, et al. Effect of renal impairment on the pharmacokinetics of cibenzoline. Clinical Pharmacology and Therapeutics 43: 317–323, 1988

    PubMed  CAS  Google Scholar 

  • Massarella JW, Khoo K-C, Szuna AJ, Sandor DA, Morganroth J, et al. Pharmacokinetics of cibenzoline after single and repetitive dosing in healthy volunteers. Journal of Clinical Pharmacology 26: 125–130 1986

    PubMed  CAS  Google Scholar 

  • Massarella JW, Loh AC, Williams TH, Szuna AJ, Sandor D, et al. The disposition and metabolic fate of 14C-cibenzoline in man. Drug Metabolism and Disposition 14: 59–64, 1986

    PubMed  CAS  Google Scholar 

  • Massarella JW, Silvestri T, DeGrazia F, Miwa B, Keefe D. Effect of congestive heart failure on the pharmacokinetics of cibenzoline. Journal of Clinical Pharmacology 27: 187–192, 1987

    PubMed  CAS  Google Scholar 

  • Massarella J, Silvestri T, Lin A. Relative and absolute bioavailability of cibenzoline capsules and tablets in healthy subjects. Journal of Pharmaceutical Sciences 75: 894–900, 1986

    PubMed  CAS  Google Scholar 

  • Masse C, Cazes M, Sassine A. Effects of cibenzoline, a novel antiarrhythmic drug, on action potential and transmembrane currents in frog atrial muscle. Archives Internationales de Pharmacodynamie et de Therapie 269: 219–235, 1984

    PubMed  CAS  Google Scholar 

  • Matsuoka S, Nawada T, Hisatome I, Miyamoto J, Hasegawa J, et al. Comparison of Ca2+channel inhibitory effects of cibenzoline with verapamil on guinea-pig heart. General Pharmacology 22: 87–91, 1991

    PubMed  CAS  Google Scholar 

  • Meinertz T, Hofmann T, Zehender M. Can we predict sudden cardiac death? Drugs 41 (Suppl. 2): 9–15, 1991

    PubMed  Google Scholar 

  • Metz D, Chapoutot L, Laudinat JM, Ehrhard V, Taupin JM, et al. Étude comparative de la cibenzoline et flécaínide par voie intraveineuse dans la réduction des troubles du rythme auriculaire. Annales de Cardiologie et d’Angeiologie 39: 1–6, 1990

    PubMed  CAS  Google Scholar 

  • Millar JS, Vaughan Williams EM. Effects on rabbit nodal, atrial, ventricular and Purkinje cell potentials of a new antiarrhythmic drug, cibenzoline, which protects against action potential shortening in hypoxia. British Journal of Pharmacology 75: 469–478, 1982

    PubMed  CAS  Google Scholar 

  • Millar JS, Vaughan Williams EM. Pharmacological mapping of regional effects in the rabbit heart of some new antiarrhythmic drugs. British Journal of Pharmacology 79: 701–709, 1983

    PubMed  CAS  Google Scholar 

  • Min BH, Garland WA. Quantification of cibenzoline in human plasma by gas chromatography — negative-ion chemical-ionization mass spectrometry. Journal of Chromatography 336: 403–409, 1984

    PubMed  CAS  Google Scholar 

  • Miura DS, Keren G, Torres V, Butler B, Aogaichi K, et al. Antiarrhythmic effects of cibenzoline. American Heart Journal 109: 827–833, 1985

    PubMed  CAS  Google Scholar 

  • Miura D, Torres V, Butler B, Gottlieb S, Aogaichi K, et al. Effects of cibenzoline in patients with ventricular tachycardia. Abstract. Journal of Clinical Pharmacology 24: 413, 1984

    Google Scholar 

  • Mohiuddin SM, Esterbrooks D, Mooss AN, Butler ML, Stengel LA, et al. Efficacy, side effects, and plasma concentrations of cibenzoline in patients with ventricular arrhythmias. Abstract. Clinical Research 32: 190A, 1984

    Google Scholar 

  • Mohiuddin SM, Hee TT, Hilleman DE, Ryan TR, Sketch MH, et al. Loss of efficacy during long-term cifenline therapy: development of antiarrhythmic resistance? Abstract. Chest 98 (Suppl.): 5S, 1990

    Google Scholar 

  • Mohiuddin SM, Hilleman DE, Esterbrooks D, Mooss AN, Stengel LA. Long-term antiarrhythmic therapy with cibenzoline. Journal of Clinical Pharmacology 27: 400–406, 1987

    PubMed  CAS  Google Scholar 

  • Mohiuddin SM, Mooss AN, Esterbrooks D, Dhingra RK, Hilleman DE, et al. I.V. cibenzoline vs I.V. lidocaine in patients with suspected myocardial infarction. Abstract. Clinical Research 34: 403A, 1986

    Google Scholar 

  • Mohiuddin SM, Woodruff MP, ESterbrooks DJ, Mooss AN, Hansen JM, et al. Crossover comparison of cibenzoline and quinidine in ambulatory patients with chronic ventricular arrhythmias. Journal of Cardiovascular Pharmacology 13: 525–529, 1989

    PubMed  CAS  Google Scholar 

  • Moriya S, Iwanaga S, Ikeda F, Yoshikawa T, Akaishi M, et al. A case of cibenzoline-induced hypoglycemia in the possible presence of excess insulin secretion. Shinzo 22: 1111–1116, 1990

    Google Scholar 

  • Ohmi H, Hino T, Yamamoto K, Kamigaki M, Nakamura K, et al. Effect of cibenzoline on myocardial ischemia. Folia Pharmacologica Japonica 92: 325–335, 1988

    PubMed  CAS  Google Scholar 

  • Ohta M, Sugi K, McCullen A, Mandel WJ, Peter T, et al. Electrophysiologic effects of cibenzoline, a new antiarrhythmic drug, on isolated cardiac tissue. Abstract 879. Circulation 68 (Suppl. III): 220, 1983

    Google Scholar 

  • O’Mailia JJ, Sander GE, Rice JC, Giles TD. Suppression of complex ventricular ectopy by oral cibenzoline: a 12 month study. Abstract. Clinical Research 32: 831 A, 1984

    Google Scholar 

  • Noury JF, Delvaux JC. Hypoglycémies dues à la cibenzoline. A propos d’un nouveau cas. Annales de Cardiologie et d’Angéiologie 38: 7–8, 1989

    PubMed  CAS  Google Scholar 

  • Palakurthy PR, Maldonado C, Sohi G, Flowers NC. Cibenzoline for high-frequency ventricular arrhythmias: a short-term comparison with quinidine and a long-term follow-up. Journal of Clinical Pharmacology 27: 283–287, 1987

    PubMed  CAS  Google Scholar 

  • Reidenberg MM, Lorenzo BJ, Drayer DE, Kluger J, Nestor T, et al. A nonradioactive iothalamate method for measuring glomerular filtration rate and its use to study the renal handling of cibenzoline. Therapeutic Drug Monitoring 10: 434–437, 1988

    PubMed  CAS  Google Scholar 

  • Rigaud M, Jouret G, Canal M, Bardet J, Flouvat B, et al. Hemodynamic effects of a new antiarrhythmic agent: cibenzoline. Journal de Pharmacologie 16: 247–257, 1985

    PubMed  CAS  Google Scholar 

  • Rothbart ST, Saksena S. Clinical electrophysiology, efficacy and safety of chronic oral cibenzoline therapy in refractory ventricular tachycardia. American Journal of Cardiology 57: 941–946, 1986

    PubMed  CAS  Google Scholar 

  • Salerno Dm, Gillingham KJ, Berry DA, Hodges M. A comparison of antiarrhythmic drugs for the suppression of ventricular ectopic depolarizations: a meta-analysis. American Heart Journal 120: 340–352, 1990

    PubMed  CAS  Google Scholar 

  • Sassine A, Massé C, Dufour A, Hirsch JL, Cazes M, et al. Cardiac electrophysiological effects of cibenzoline by acute and chronic administration in the anesthetized dog. Archives Internationales de Pharmacodynamie et de Therapie 269: 201–218, 1984

    PubMed  CAS  Google Scholar 

  • Satoh H, Ishii M, Hashimoto K. Effect of cibenzoline, a Class I antiarrhythmic drug, on action potential in canine ventricular smooth muscle. Japanese Journal of Pharmacology 44: 113–119, 1987

    PubMed  CAS  Google Scholar 

  • Seals AA, Haider R, Leon C, Francis M, Young JB, et al. Antiarrhythmic efficacy and hemodynamic effects of cibenzoline in patients with nonsustained ventricular tachycardia and left ventricular dysfunction. Circulation 75: 800–808, 1987

    PubMed  CAS  Google Scholar 

  • Steinbeck G. Vorzeitiger Abbruch Der Cast-II-Studie: Qou Vadis, Antiarrhythmische Therapie? Munchener Medizinische Wochenschrift 133: 37, 1991

    Google Scholar 

  • Strom JA, Miura D, Jordan A, Loor S. Effects of cibenzoline on left ventricular pewrformance in patients with coronary artery disease. Abstract. Journal of the American College of Cardiology 5: 451, 1985

    Google Scholar 

  • Sugai J, Miyake Y, Watanabe N, Nando K, Mineki H. Clinical experience of cibenzoline in arrhythmias. In Japanese. Shinryo to Shinyaku 25: 2185–2193, 1988

    Google Scholar 

  • Taki K, Sugiyama S, Hieda N, Hanaki Y, Sano T, et al. The effect of cibenzoline on myocardial damages in dogs. Arzneimittel-Forschung 39: 325–328, 1989

    PubMed  CAS  Google Scholar 

  • Tanabe T, Yoshikawa H, Furuya H, Goto Y. Therapeutic effectiveness and plasma levels of single or combination use of Class I antiarrhythmic agents for ventricular arrhythmias. Japanese Circulation Journal 52: 298–305, 1988

    PubMed  CAS  Google Scholar 

  • Thebaut JF, Achard F, de Langenhagen B. Etude electrophysiologiquechez l’homme d’un nouvel antiarythmique, la cibenzoline, dans le syndrome de Wolff-Parkinson-White. L’Information Cardiologique 4: 393–402, 1980

    Google Scholar 

  • Tilley JW, Clader JW, Wirkus M, Blount JF. Metabolites of cibenzoline: synthesis of hydroxylated 1,1-diphenyl-2-imidazolylcyclo-propanes and 5,5-diphenyl-2H-pyrrolo[1,2-α]imidazolines. Journal of Organic Chemistry 50: 2220–2224, 1985

    CAS  Google Scholar 

  • Timour Q, Aupetit J-F, Loufoua-Moundanga J, Bertrix L, Freysz M, et al. Ventricular and atrial electrophysiological effects of a IC antiarrhythmic drug, cibenzoline, in the innervated dog heart. Role of sodium and calcium channels. Naunyn-Schmiedeberg’s Archives of Pharmacology 340: 338–344, 1989

    PubMed  CAS  Google Scholar 

  • Timour Q, Aupetit J-F, Loufoua-Moundanga J, Gerentes-Chassagne I, Kiouch I, et al. Class Icantiarrhythmic drugs and myocardial ischaemia: study in the pig heart in situ. Naunyn-Schmiedeberg’s Archives of Pharmacology 343: 645–651, 1991

    PubMed  CAS  Google Scholar 

  • Torres V, Flowers D, Somberg JC. The arrhythmogenicity of antiarrhythmic agents. American Heart Journal 109: 1090–1097, 1985

    PubMed  CAS  Google Scholar 

  • Touboul P, Atallah G, Kirkorian G, de Zuloaga C, Dufour A, et al. Electrophysiologic effects of cibenzoline in humans related to dose and plasma concentration. American Heart Journal 112: 333–339, 1986

    PubMed  CAS  Google Scholar 

  • van den Brand M, Serruys P, de Roon Y, Aymard MF, Dufour A. Haemodynamic effects of intravenous cibenzoline in patients with coronary heart disease. European Journal of Clinical Pharmacology 26: 297–302, 1984

    PubMed  Google Scholar 

  • Verdouw PD, Hartog JM, Scheffer MG, van Bremen RH, Dufour A. The effects of cibenzoline, an imidazoline derivative with antiarrhythmic properties, on systemic hemodynamics and regional myocardial performance. Drug Development Research 2: 519–532, 1982

    CAS  Google Scholar 

  • Waleffe A, Dufour A, Aymard M-F, Kulbertus H. Electrophysiologic effects, antiarrhythmic activity and pharmacokinetics of cibenzoline studied with programmed stimulation of the heart in patients with supraventricular reentrant tachycardias. European Heart Journal 6: 253–260, 1985

    PubMed  CAS  Google Scholar 

  • Wasty N, Saksena S, Barr MJ. Comparative efficacy and safety of oral cibenzoline and quinidine in ventricular arrhythmias: a randomized crossover study. American Heart Journal 110: 1181–1188, 1985

    PubMed  CAS  Google Scholar 

  • Wyss E, Karp P, Mons P, Leflon M, Wolf C. Choc cardiogénique résistant au lactate de sodium au cours d’un surdosage par cibenzoline. Therapie 45: 453, 1990

    Google Scholar 

  • Yokoyama S, Kaburagi K, Kosono R, Noda N, Yamada T. Efficacy and safety of long-term oral cibenzoline therapy for arrhythmias. In Japanese. Vakuri to Chiryo 16: 3343–3354, 1988

    Google Scholar 

  • Zehender M, Hohnloser S, Just H. QT-interval prolonging drugs: mechanisms and clinical relevance of their arrhythmogenic hazards. Cardiovascular Drugs and Therapy 5: 515–530, 1991

    PubMed  CAS  Google Scholar 

  • Zempol P, Aogaichi K, Butler B, Tepper D, Somberg JC. Evaluation of dosing interval and optimum dose of cibenzoline. Journal of Clinical Pharmacology 27: 666–672, 1987

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Various sections of the manuscript reviewed by: M. Andrejak, Centre Hospitalier Regional et Universitaire D’Amiens, Amiens, France; H. Atarashi, First Department of Internal Medicine, Nippon Medical School, Tokyo, Japan; F. Burkart, Departement Innere Medizin, Universitätskliniken, Kantonsspital Basel, Basel, Switzerland; M. Cooper, Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia; B. Flouvat, Laboratoire de Toxicologie, Hopital Ambroise-Pare, Boulogne, France; H. Hayakawa, First Department of Internal Medicine, Nippon Medical School, Tokyo, Japan; J.J. Heger, Krannert Institute of Cardiology, Indianapolis, Indiana, USA; D.E. Hilleman, The Cardiac Center of Creighton University, Omaha, Nebraska, USA; K. Kato, The Cardiovascular Institute, Tokyo, Japan; R. Kato, Department of Cardiology, Nagoya National Hospital, Nagoya, Japan; T. Katoh, First Department of Internal Medicine, Nippon Medical School, Tokyo, Japan; R.C. Klein, Veterans Administration Medical Center, Albuquerque, New Mexico, USA; V. Kühlkamp, Medizinische Klinik Abteilung III, Eberhard-Karls-Universität, Tübingen, Germany; S.M. Mohiuddin, The Cardiac Center of Creighton University, Omaha, Nebraska, USA; J. Morganroth, Center of Excellence for Cardiovascular Studies, Philadelphia, Pennsylvania, USA; T. Ozawa, Department of Biomedical Chemistry, University of Nagoya, Nagoya, Japan; A.C. Rankin, Department of Medical Cardiology, Royal Infirmary, University of Glasgow, Glasgow, Scotland; S. Saksena, Arrhythmia and Pacemaker Service, Eastern Heart Institute, New Jersey Medical School, Newark, New Jersey, USA; G. Schmidt, First Department of Medicine, Technische Universität München, München, Federal Republic of Germany; R.G. Shanks, Department of Therapeutics and Pharmacology, The Queen’s University of Belfast, Belfast, Northern Ireland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harron, D.W.G., Brogden, R.N., Faulds, D. et al. Cibenzoline. Drugs 43, 734–759 (1992). https://doi.org/10.2165/00003495-199243050-00008

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199243050-00008

Keywords

Navigation