Skip to main content
Log in

Can Pharmacological Agents Be Used Effectively in the Alleviation of Jet-Lag?

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Arendt J, Aldhous M. Further evaluation of the treatment of jetlag with melatonin: a double blind crossover study. Annual Review of Chronopharmacology 5: 53–55, 1988

    Google Scholar 

  • Arendt J, Aldhous M, English, Marks V. Some effects of jet-lag and their alleviation by melatonin. Ergonomics 30: 1379–1393, 1987

    Article  Google Scholar 

  • Arendt J, Aldhous M, Wright J. Synchronisation of disturbed sleepwake cycle in a blind subject by melatonin. Lancet 1: 772–773, 1988

    Article  PubMed  CAS  Google Scholar 

  • Aschoff J, Hoffmann K, Pohl H, Wever R. Re-entrainment of circadian rhythms after phase-shifts of the Zeitgeber. Chronobiologia 2: 23–28, 1975

    PubMed  CAS  Google Scholar 

  • Azmitia EC, Segal M. An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. Journal of Comparative Neurology 179: 641–668, 1978

    Article  PubMed  CAS  Google Scholar 

  • Cabanac M, Hildebrandt GI, Massonet B, Strempel H. A study of the nychthemeral cycle on behavioural temperature regulation in man. Journal of Physiology 257: 275–291, 1976

    PubMed  CAS  Google Scholar 

  • Card JP, Moore RY. Ventral lateral geniculate nucleus efferents to the rat suprachiasmatic nucleus exhibit avian pancreatic polypeptide-like immunoreactivity. Journal of Comparative Neurology 206: 390–396, 1982

    Article  PubMed  CAS  Google Scholar 

  • Cassone VM, Chesworth MJ, Armstrong SM. Dose-dependent entrainment of rat circadian rhythms by daily injection of melatonin. Journal of Biological Rhythms 1: 219–229, 1986a

    Article  PubMed  CAS  Google Scholar 

  • Cassone VM, Chesworth MJ, Armstrong SM. Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei. Physiology and Behavior 36: 1111–1121, 1986b

    Article  PubMed  CAS  Google Scholar 

  • Davies JA, Navaratnam V, Redfern PH. The effect of phase-shift on the passive avoidance response in rats and the modifying effect of chlordiazepoxide. British Journal of Pharmacology 51: 447–451, 1974

    Article  PubMed  CAS  Google Scholar 

  • Fuchs JL, Hoppens KS. α-Bungarotoxin binding in relation to functional organisation of the rat suprachiasmatic nucleus. Brain Research 407: 9–16, 1987

    Article  PubMed  CAS  Google Scholar 

  • Harrington ME, Nance DM, Rusak B. Double-labelling of the neuropeptide Y-immunoreactive neurones which project from the geniculate to the suprachiasmatic nuclei. Brain Research 410: 275–82, 1987

    Article  PubMed  CAS  Google Scholar 

  • Hauty GT, Adams T. Phase-shifts of the human circadian system and performance deficit during the periods of transition. III. North-south flight. Aerospace Medicine 37: 1257–1262, 1966

    PubMed  CAS  Google Scholar 

  • Healy D, Williams JMG. Dysrhythmia, dysphoria and depression: the interaction of learned helplessness and circadian dysrhythmia in the pathogenesis of depression. Psychological Bulletin 103: 163–178, 1988

    Article  PubMed  CAS  Google Scholar 

  • Honma K, Watanabe K, Hiroshige T. Effects of parachlorophenylalanine and 5,6-dihydroxytryptamine on the free-running rhythms of locomotor activity and plasma corticosterone in the rat exposed to continuous light. Brain Research 169: 531–544, 1979

    Article  PubMed  CAS  Google Scholar 

  • Inouye S-IT, Kawamura H. Persistence of circadian rhythmicity in a mammalian hypothalamic island containing the suprachiasmatic nucleus. Proceedings of the National Academy of Science 76: 5962–5699, 1979

    Article  CAS  Google Scholar 

  • Jenni-Eiermann S, von Hahn HP, Honnegger CG. Diurnal rhythms in neurotransmitter receptor binding and CAT activity: different patterns in two rat lines of Wistar origin. Brain Research 370: 54–60, 1986

    Article  PubMed  CAS  Google Scholar 

  • Klein KE, Wegman HM. The effect of transmeridian and transequatorial air travel on psychological well being and performance. In Scheving & Halberg (Eds) Chronobiology: principles and applications to shifts and schedules, pp. 339–352, Sijthoff & Noordhoff, Netherlands, 1980

    Google Scholar 

  • Lemmer B, Witte K. Circadian variation of the in vitro stimulation of adenylate cyclase in rat heart tissue. European Journal of Pharmacology 159: 311–315, 1989

    Article  PubMed  CAS  Google Scholar 

  • Levine JD, Rosenwasser AM, Yanouski JA, Adler NT. Circadian acitivity rhythms in rats with mid-brain raphe lesions. Brain Research 384: 240–249, 1986

    Article  PubMed  CAS  Google Scholar 

  • Lewy AJ, Sack RL, Latham JM. Melatonin and the suppressant effect of light may help regulate circadian rhythms in humans. In Arendt J, Pevet P (Eds) Advances in pineal research, Vol. 5, pp. 285–294, John Libby and Co. Ltd, London, 1991

    Google Scholar 

  • Lion SY, Shibuta S, Iwasaki K, Ueki S. Optic nerve stimulation induced increase of release of 3 H-glutamate and 3 H-aspartate but not 3 H-GABA from the suprachiasmatic nucleus in slices of rat hypothalamus. Brain Research Bulletin 16: 527–531, 1986

    Article  Google Scholar 

  • Mantyh PW, Kemp JA. The distribution of putative neurotransmitters in the lateral geniculate nucleus of the rat. Brain Research 288: 344–348, 1983

    Article  PubMed  CAS  Google Scholar 

  • Meijer JH, Rietveld WJ. Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiological Reviews 69: 671–701, 1989

    PubMed  CAS  Google Scholar 

  • Meijer JH, van der Zee EA, Dietz M. The effects of intraventricular carbachol injections on the freerunning activity rhythm of the hamster. Journal of Biological Rhythms 4: 1–16, 1988

    Google Scholar 

  • Miller-Craig MW, Bishop CM, Raftery EB. Circadian variation of blood pressure. Lancet 1: 795–797, 1978

    Article  Google Scholar 

  • Minors DS, Scott AR, Waterhouse DM. Circadian arrhythmia: shiftwork, travel and health. Journal of the Society of Occupational Medicine 36: 39–44, 1986

    PubMed  CAS  Google Scholar 

  • Moffet JR, Nambomdiri MAA, Neale JH. Identification of Nacetylaspartylgutamate-like immunoreactivity in the anterior hypothalamus of the rat. Society for Neuroscience Abstracts 13: 860, 1987

    Google Scholar 

  • Moore-Ede MC. The circadian timing system in mammals: two pacemakers preside over many secondary oscillators. Federation Proceedings 42: 2802–2808, 1983

    PubMed  CAS  Google Scholar 

  • Moore-Ede MC. Physiology of the circadian timing system: predictive versus reactive homeostasis. American Journal of Physiology 250: R737–R752, 1986

    PubMed  CAS  Google Scholar 

  • Mrosovsky N, Salmon PA. A behavioural method for accelerating re-entrainment of rhythms to new light-dark cycles. Nature 330: 372–373, 1987

    Article  PubMed  CAS  Google Scholar 

  • Nicholson AN, Roth T, Stone BM. Hypnotics and air crew. Aviation, Space and Environmental Medicine 56: 299, 1985

    CAS  Google Scholar 

  • O’Connor PJ, Morgan WP. Athletic performances following rapid traversal of multiple time zones. A review. Sports Medicine 10: 20–30, 1990

    Article  PubMed  Google Scholar 

  • Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science 247: 975–978, 1990

    Article  PubMed  CAS  Google Scholar 

  • Ralph MR, Menaker M. Effects of diazepam on circadian phase advances and delays. Brain Research 372: 405–408, 1986

    Article  PubMed  CAS  Google Scholar 

  • Redfern PH. ‘Jet-lag’: strategies for prevention and cure. Human Psychopharmacology 4: 159–168, 1989

    Article  Google Scholar 

  • Redfern PH, Waterhouse JM, Minors DS. Circadian rhythms: principles and measurement. Pharmacology and Therapeutics 49: 311–328, 1991

    Article  PubMed  CAS  Google Scholar 

  • Redman J, Armstrong S, Ng NT. Free running activity in the rat entrainment by melatonin. Science 219: 1089–1091, 1983

    Article  PubMed  CAS  Google Scholar 

  • Rusak B, Bina KG. Neurotransmitters in the mammalian circadian system. Annual Review of Neuroscience 13: 387–401, 1990

    Article  PubMed  CAS  Google Scholar 

  • Rusak B, Meijer JH, Harrington ME. Hamster circadian rhythms are phase-shifted by electrical stimulation of the geniculohypothalamic tract. Brain Research 493: 283–291, 1989

    Article  PubMed  CAS  Google Scholar 

  • Rusak B, Zucker I. Neural regulation of circadian rhythms. Physiological Reviews 59: 449–526, 1979

    PubMed  CAS  Google Scholar 

  • Shephard RJ. Sleep, biorhythms and human performance. Sports Medicine 1: 11–37, 1984

    Article  Google Scholar 

  • Sinei K, Redfern PH. 24-Hour variation in synaptosomal tryptophan-5-hydroxylase. In Redfern et al. (Eds) Circadian rhythms in the central nervous system, pp. 193–198, MacMillan, London, 1985

    Google Scholar 

  • Smale L, Michaels KM, Moore RY, Morin LP. Destruction of the hamster serotonergic system by 5,7-DHT: effects on circadian rhythm phase, entrainment and response to triazolam. Brain Research 515: 9–19, 1990

    Article  PubMed  CAS  Google Scholar 

  • Takatsaji K, Miguel-Hidalgo J-J, Tohyama M. Retinal fibres make synaptic contact with neuropeptide Y and encephalin immunoreactive neurons in the intergeniculate leaflet of the rat. Neuroscience Letters 125: 73–76, 1991

    Article  Google Scholar 

  • Turek FW. Manipulation of a central circadian clock regulating behavioral and endocrine rhythms with a short-acting benzo-diazepine used in the treatment of insomnia. Psychoneuroendocinology 13: 217–232, 1988

    Article  CAS  Google Scholar 

  • Turek FW, Losee-Olsen S. A benzodiazepine used in the treatment of insomnia phase-shifts the mammalian circadian clock. Nature 321: 167–168, 1986

    Article  PubMed  CAS  Google Scholar 

  • Turek FW, Losee-Olsen S. Dose response curve for the phase-shifting of triazolam on the mammalian circadian clock. Life Science 40: 1033–1038, 1987

    Article  CAS  Google Scholar 

  • Turek F.W. Effects of stimulated physical activity on the circadian pacemaker of vertebrates. Journal of Biological Rhythms 4: 135–147, 1989

    Article  PubMed  CAS  Google Scholar 

  • Van Reeth O, Turek FW. Adaptation of circadian rhythmicity to shift in light-dark cycle accelerated by a benzodiazepine. American Journal of Physiology 253: R204–R207, 1987a

    PubMed  Google Scholar 

  • Van Reeth O, Turek FW. Phase shifting effect of triazolam in blind and pinealectomized hamsters. Neuroscience Letters 80: 185–190, 1987b

    Article  PubMed  Google Scholar 

  • Van Reeth O, Turek FW. Stimulated activity mediates phase shifts in the hamster circadian clock induced by dark pulses or benzodiazepines. Nature 339: 49–51, 1989

    Article  PubMed  CAS  Google Scholar 

  • Van Reeth O, Vanderhaeghen JJ, Turek FW. A benzodiazepine antagonist, RO 15-1788, can block the phase-shifting effects of triazolan on the mammalian circadian clock. Brain Research 444: 333–339, 1988

    Article  PubMed  Google Scholar 

  • Weaver DR, Rivkess SA, Reppert SM. Autoradiographic localization of melatonin receptors in rodent brain by in vitro autoradiography. Journal of Neuroscience 9: 2581–2590, 1989

    PubMed  CAS  Google Scholar 

  • Wee BEF, Turk FW. Midazolam, a short-acting benzodiazepine resets the circadian clock of the hamster. Pharmacology Biochemistry and Behavior 32: 901–906, 1989 aui]Wever RA. The circadian system of man; results of experiments under temporal isolation, Springer-Verlag, Berlin, 1979

    Article  CAS  Google Scholar 

  • Williams LM, Morgan PJ, Hastings MH, Lawson W, Davidson G, et al. Melatonin receptor sites in the Syrian hamster brain and pituitary: localisation and characterization using [125I] iodomelatonin. Journal of Neuroendocrinology 1: 1–4, 1989

    Article  PubMed  Google Scholar 

  • Zatz M, Brownstein MJ. Intraventricular carbachol mimics the effects of light on the circadian rhythm in the rat pineal gland. Science 203: 358–60, 1979

    Article  PubMed  CAS  Google Scholar 

  • Zatz M, Brownstein MJ. Injection of alpha-bungarotoxin near the suprachiasmatic nucleus blocks the effects of light on nocturnal pineal enzyme activity. Brain Research 213: 438–442, 1981

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redfern, P.H. Can Pharmacological Agents Be Used Effectively in the Alleviation of Jet-Lag?. Drugs 43, 146–153 (1992). https://doi.org/10.2165/00003495-199243020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199243020-00002

Keywords

Navigation