Skip to main content
Log in

Current Concepts in the Pathogenesis of Leprosy

Clinical, Pathological, Immunological and Chemotherapeutic Aspects

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Summary

In recent years there have been notable advances in the laboratory investigation and field management of leprosy. Progress, however, continues to be hindered by the lack of efficient methods for early diagnosis and implementation of control and treatment measures. Diagnosis is still made on the same principles as a century ago (clinical and histopathological findings), and only 1 in 3 known patients worldwide receives optimal chemotherapy. In 1988, nearly 1 in 10 newly diagnosed patients already had debilitating deformities. Contributing factors are operational, administrative and financial difficulties in implementing multidrug therapeutic regimens, inadequately trained personnel, and lack of priority and political commitment to leprosy control.

The formulation and implementation of multidrug therapy is the most important development in leprosy in the past 10 years. Dapsone monotherapy was the mainstay for treatment and control for approximately 40 years, but secondary dapsone-resistant strains, first noted in 1964, now infect as many as 50% of all new patients. Multidrug regimens recommended by the WHO consist of various combinations of therapy using dapsone, rifampicin, clofazimine and a thionamide. Duration of therapy is limited to 6 months for paucibacillary and 2 years or more for multibacillary patients; relapse rates thus far are low. The average cost of treatment worldwide, including the cost of drugs, is estimated at $US150 per patient. The recent annual drop of nearly 8% in newly registered patients may be due to the implementation of these therapeutic regimens. Newer drugs that may be introduced into these regimens include fluoroquinolones, minocycline and clarithromycin.

While knowledge of the microbiology of the leprosy bacillus and host response has advanced remarkably, there is little improvement in the understanding or amelioration of social aspects of leprosy. Better treatment and control reduces the stigma, but improvements in the attitudes of patients and society towards leprosy are as importantes advances in medical science in achieving ultimate eradication of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe M, Minagawa F, Yoshino Y, Ozawa T, Saikawa K, et-al. Fluorescent leprosy antibody absorption (FLA-ABS) for detecting subclinical infection with Mycobacterium leprae.International Journal of Leprosy 48: 109–119, 1980

    CAS  Google Scholar 

  • Anderson R. The immunopharmacology of antileprosy agents. Leprosy Review 54 (Suppl.): 61–67, 1983

    Google Scholar 

  • Babior BM. Oxygen-dependent microbial killing by phagocytes. New England Journal of Medicine 298: 659–668, 1978

    CAS  PubMed  Google Scholar 

  • Babior BM. The respiratory burst of phagocytes. Journal of Clinical Investigation 73: 599–601, 1984

    CAS  PubMed  Google Scholar 

  • Baohong J, Jiakun C, Xizhen L, Shiyu W, Guoxing N, et al. Antimycobacterial activities of two newer ansamycins, R-76-1 and DL 473. International Journal of Leprosy 54: 563–577, 1986

    Google Scholar 

  • Barry BC. Synthetic phenazine derivatives and mycobacterial disease: a 25 year investigation. Boyle Medal lecture. Scientific Proceedings of the Royal Dublin Society, Series A, 3: 153–170, 1969

    CAS  Google Scholar 

  • Becx-Bleuminck M. Operational aspects of multidrug therapy. International Journal of Leprosy 57: 540–551, 1989

    CAS  Google Scholar 

  • Binford CH. Comprehensive program for inoculation of human leprosy into laboratory animals. Public Health Reports 71: 955–956, 1956

    Google Scholar 

  • Binford CH, Meyers WM, Walsh GP. Leprosy, state of the art. Journal of the American Medical Association 247: 2283–2292, 1982

    CAS  PubMed  Google Scholar 

  • Birdi TJ, Antia NH. The macrophage in leprosy: a review on the current status. International Journal of Leprosy 57: 511–525, 1989

    CAS  Google Scholar 

  • Birdi TJ, Mistry NF, Mahadevan PR, Antia NH. Alterations in the membrane of macrophages from leprosy patients. Infection and Immunity 41: 121–127, 1983

    CAS  PubMed  Google Scholar 

  • Bloom BR. The 13th Kellersberger Memorial Lecture, 1987: a view of vaccines against leprosy and a reflection on ‘appropriate science’ and the third world. Ethiopian Medical Journal 26: 45–57, 1988

    CAS  PubMed  Google Scholar 

  • Brennan PJ, Barrow WW. Evidence for species-specific lipid antigens in Mycobacterium leprae.International Journal of Leprosy 48: 382–387, 1980

    CAS  Google Scholar 

  • Brown LM, Mshana R, Hastings RC. The effect of clofazimine in cell mediated immunity: interference with antigen processing and presentation by macrophages. International Journal of Leprosy 57 (Suppl.): 315–316, 1989

    Google Scholar 

  • Browne SG. The history of leprosy. In Hastings (Ed.) Leprosy (Medicine in the Tropics series), pp. 1–14, Churchill Livingstone, Edinburgh, 1985

    Google Scholar 

  • Browne SG, Hogerzeil LM. B663 in the treatment of leprosy: preliminary report of a pilot trial. Leprosy Review 33: 6–10, 1962

    CAS  PubMed  Google Scholar 

  • Brubaker ML, Meyers WM, Bourland J. Leprosy in children one year of age and under. International Journal of Leprosy 52: 517–523, 1985

    Google Scholar 

  • Cem-Mat M, Yazici H, Ozbakir F, Tuzun Y. The HLA association of lepromatous leprosy and borderline lepromatous leprosy in Turkey. International Journal of Dermatology 27: 246–247, 1988

    CAS  PubMed  Google Scholar 

  • Clark-Curtiss JE, Docherty MA. A species-specific repetitive sequence in Mycobacterium lepraeDNA. Journal of Infectious Diseases 159: 7–15, 1989

    CAS  PubMed  Google Scholar 

  • Clark-Curtiss JE, Jacobs WR, Docherty MA, Ritchie LR, Curtiss R III: Molecular analysis of DNA and construction of genomic libraries of Mycobacterium leprae. Journal of Bacteriology 161: 1093–1102, 1985

    CAS  PubMed  Google Scholar 

  • Collings LA, Waters MFR, Poulter LW. The involvement of dendritic cells in the cutaneous lesions associated with tuberculoid and lepromatous leprosy. Clinical and Experimental Immunology 62: 458–467, 1985

    CAS  PubMed  Google Scholar 

  • Conalty ML, Morrison NE, O’Sullivan JF. Clofazimine analogues active against a clofazimine resistant organism: Presented at the fourth European Leprosy Symposium in 1986. Health Cooperation Papers No. 7: 271–276, 1988

  • Convit J, Aranzazu N, Pinardi ME, Ulrich M. Immunological changes observed in indeterminate and lepromatous leprosy patients and Mitsuda-negative contacts after the inoculation of a mixture of Mycobacterium lepraeand BCG. Clinical and Experimental Immunology 36: 214–220, 1979

    CAS  PubMed  Google Scholar 

  • Cree IA, Rance S, Smith WC, Beck JS. Mucosal immunity in leprosy. International Journal of Leprosy 57 (Suppl.): 318, 1989

    Google Scholar 

  • D’arcy Hart P, Young MR, Gordon AH, Sullivan KH. Inhibition of phagosome-lysosome fusion in macrophages by certain mycobacteria can be explained by inhibition of lysosomal movements observed after phagocytosis. Journal of Experimental Medicine 166: 933–946, 1987

    Google Scholar 

  • Dharmendra. History of the spread and decline of leprosy, 2nd ed., Ministry of Health, India, 1967. Cited by Browne SG. The history of leprosy. In Hastings (Ed.) Leprosy (Medicine in the Tropics series), p. 1, Churchill Livingstone, Edinburgh, 1985

    Google Scholar 

  • Donham KJ, Leininger JR. Spontaneous leprosy-like disease in a chimpanzee. Journal of Infectious Diseases 136: 132–136, 1977

    CAS  PubMed  Google Scholar 

  • Draper P. Cell walls of Mycobacterium leprae. International Journal of Leprosy 44: 95–98, 1976

    CAS  Google Scholar 

  • Duncan ME. Babies of mothers with leprosy have small placentae, low birth weights and grow slowly. British Journal of Obstetrics and Gynaecology 87: 471–479, 1980

    CAS  PubMed  Google Scholar 

  • Ell SR. Plague and leprosy in the Middle Ages: a paradoxical cross-immunity? International Journal of Leprosy 55: 345–350, 1987

    CAS  Google Scholar 

  • Faget GH, Pogge RC, Johansen FA, Dinan JF, Prejean BM, et al. The Promin treatment of leprosy: a progress report. Public Health Reports 58: 1729–1741, 1943

    CAS  Google Scholar 

  • Fleury RN, Bacchi CE. S-100 protein and immunoperoxidase technique as an aid in the histopathologic diagnosis of leprosy. International Journal of Leprosy 55: 338–344, 1987

    CAS  Google Scholar 

  • Franzblau SG. Oxidation of palmitic acid by Mycobacterium lepraein an axenic medium. Journal of Clinical Microbiology 26: 18–21, 1988

    CAS  PubMed  Google Scholar 

  • Franzblau SG, Hastings RC. Rapid in vitro metabolic screen for anti-leprosy compounds. Antimicrobial Agents and Chemotherapy 31: 780–783, 1987

    CAS  PubMed  Google Scholar 

  • Franzblau SG, Ramasesh N, Harris EB, Hastings RC. In vitroand in vivoactivity of macrolides against Mycobacterium leprae: transactions of the Thirteenth International Leprosy Congress. International Journal of Leprosy 57: 316, 1989

    Google Scholar 

  • Franzblau SG, White KE. Comparative in vitroactivity of fluoroquinolones against Mycobacterium leprae.International Journal of Leprosy 58: 187, 1990

    Google Scholar 

  • Freerksen E. Criteria for the termination of treatment. In Pritze (Ed.) Criteria to determine the exact end of multidrug therapy in leprosy (proceedings of workshop), pp. 5–10, Armauer Hansen Institut, Wurzburg, 1988

    Google Scholar 

  • Frehel C, Rastogi N. Mycobacterium lepraesurface components intervene in the early phagosome-lysosome fusion inhibition event. Infection and Immunity 55: 2916–2921, 1987

    CAS  PubMed  Google Scholar 

  • Frey HM, Gershon AA, Borkowsky W, Ward EB. Fatal reaction to dapsone during treatment of leprosy. Annals of Internal Medicine 94: 777–779, 1981

    CAS  PubMed  Google Scholar 

  • Fujiwara T. Chemical synthesis of disaccharides of the specific phenolic glycolipid antigens from Mycobacterium lepraeand of related sugars. Carbohydrate Research 148: 287–298, 1986

    CAS  PubMed  Google Scholar 

  • Garsia RJ, Hellqvist L, Booth RJ, Radford AJ, Britton WJ, et al. Homology of the 70-kilodalton antigens from Mycobacterium lepraeand Mycobacterium boviswith the Mycobacterium tuberculosis71-kilodalton antigen and with the conserved heat shock protein 70 of eucaryotes. Infection and Immunity 57: 204–212, 1989

    CAS  PubMed  Google Scholar 

  • Gaylord H, Brennan PJ. Leprosy and the leprosy bacillus: recent developments in characterization of antigens and immunology of the disease. Annual Review of Microbiology 41: 645–675, 1987

    CAS  PubMed  Google Scholar 

  • Gelber RH. Activity of minocycline in Mycobacteriumleprae-infected mice. Journal of Infectious Diseases 156: 236–239, 1987

    CAS  PubMed  Google Scholar 

  • Gelber RH, Brennan PJ, Hunter SW, Munn MW, Monson JM, et al. Effective vaccination of mice against leprosy bacilli with subunits of Mycobacterium leprae. Infection and Immunity 58: 711–718, 1990

    CAS  PubMed  Google Scholar 

  • Gillis TP, Buchanan TM. Production and partial characterization of monoclonal antibodies to Mycobacterium leprae.Infection and Immunology 37: 172–178, 1982

    CAS  Google Scholar 

  • Gormus BJ, Murphey-Corb M, Martin LN, Zhang JY, Baskin GB, et al. Interactions between simian immunodeficiency virus and Mycobacterium lepraein experimentally inoculated rhesus monkeys. Journal of Infectious Diseases 160: 405–413, 1989

    CAS  PubMed  Google Scholar 

  • Gormus BJ, Ohashi DK, Ohkawa S, Walsh GP, Meyers WM, et al. Serologic responses to Mycobacteriumleprae-specific phenolic glycolipid-I antigen in sooty mangabey monkeys with experimental leprosy. International Journal of Leprosy 56: 537–545, 1988

    CAS  Google Scholar 

  • Grosset JH, Ji B, Guelpa-Lauras CC, Perani EG, N’Deli LN. Clinical trial of pefloxacin and ofloxacin in the treatment of lepromatous leprosy. International Journal of Leprosy 58: 281–295, 1990

    CAS  Google Scholar 

  • Guelpa-Lauras CC, Grosset JH, Constant-Desportes M, Brucker G. Nine cases of rifampin-resistant leprosy. International Journal of Leprosy 52: 101–102, 1984

    CAS  Google Scholar 

  • Guelpa-Lauras CC, Perani EG, Giroir AM, Grosset JH. Activities of pefloxacin and ciprofloxacin against Mycobacterium lepraein the mouse. International Journal of Leprosy 55: 70–77, 1987

    CAS  Google Scholar 

  • Harboe M. Armauer Hansen: the man and his work. International Journal of Leprosy 41: 417–424, 1973

    CAS  Google Scholar 

  • Harboe M. The immunology of leprosy: In Hastings (Ed.) Leprosy (Medicine in the Tropics series), pp. 53–87, Churchill Livingstone, Edinburgh, 1985

    Google Scholar 

  • Hastings RC, Franzblau SG. Chemotherapy of leprosy. Annual Review of Pharmacology and Toxicology 28: 231–245, 1988

    CAS  PubMed  Google Scholar 

  • Hastings RC, Gillis TP, Krahenbuhl JL, Franzblau SG. Leprosy. Clinical Microbiology Reviews 1: 330–348, 1988

    CAS  PubMed  Google Scholar 

  • Hokama Y, Dayaon E, Iwamoto L, Yanagisawa R, Riechert E, et al. Significant enhanced Superoxide anion (O−2) production in-vitroby peripheral blood monocytes of lepromatous leprosy patients stimulated with liposome and suppression by C-reactive protein (CRP). Journal of Medicine; Clinical, Experimental and Theoretical 17: 299–311, 1986

    CAS  Google Scholar 

  • Holzer TJ, Arnold JJ, Vachula M, Andersen BR. PGL-I of M. lepraeinduces altered monocyte oxidative responses in-vitro.International Journal of Leprosy 55: 784–785, 1987

    Google Scholar 

  • Imaeda T, Kirchheimer WF, Barksdale L. DNA isolated from Mycobacterium leprae: genome size, base ratio, and homology with other related bacteria determined by optical DNA-DNA reassociation. Journal of Bacteriology 150: 414–417, 1982

    CAS  PubMed  Google Scholar 

  • Imkamp FMJH. Clofazimine (Lamprene or B663) in lepra reactions. Leprosy Review 52: 135–140, 1981

    CAS  PubMed  Google Scholar 

  • Itty BM, Mukherjee R, Talwar GP. An enzyme immunoassay (EIA) based on antibodies against human nerve antigen for diagnosis of all categories of leprosy patients. International Journal of Leprosy 57 (Suppl.): 304, 1989

    Google Scholar 

  • Izumi S, Sugiyama K, Fujiwara T, Ikeda M, Nishimura Y. Gelatin particle agglutination tests for serodiagnosis of leprosy — a new simple test useful for field application. International Journal of Leprosy 57 (Suppl.): 304, 1989

    Google Scholar 

  • Janssen F, Wallach D, Khuong MA, Pennec J, Pradinaud R, et al. Association de maladie de Hansen et d’infection par le virus de I’immunodéficience humaine: deux observations. Presse Médicale 17: 1652–1653, 1988

    CAS  Google Scholar 

  • Jayaraman KS. India carries out large-scale tests of antileprosy vaccine. Nature 328: 660, 1987

    CAS  PubMed  Google Scholar 

  • Jesudasan K, Vijayakumaran P, Pannikar VK, Christian M. Impact of MDT on leprosy as measured by selective indicators. Leprosy Review 59: 215–223, 1988

    CAS  PubMed  Google Scholar 

  • Job CK, Jacobson RR, Hastings RC. Simultaneous upgrading reaction and erythema nodosum leprosum in a patient with lepromatous leprosy. International Journal of Leprosy 56: 437–442, 1988

    CAS  Google Scholar 

  • Job CK, Sanchez RM, Hastings RC. Lepromatous placentitis and intrauterine fetal infection in lepromatous nine-banded armadillos (Dasypus novemcinctus). Laboratory Investigation 56: 44–48, 1987

    CAS  PubMed  Google Scholar 

  • Johnstone PAS. The search for animal models of leprosy. International Journal of Leprosy 55: 535–547, 1987

    CAS  Google Scholar 

  • Jopling WH. Book Reviews. Goloschapov NM (Ed.) Diuciphon: experimental and clinical data. Leprosy Review 52: 104–108, 1981

    Google Scholar 

  • Kaplan G, Sampaio EP, Walsh GP, Burkhardt RA, Fajardo TT, et al. Influence of Mycobacterium lepraeand its soluble products on the cutaneous responsiveness of leprosy patients to antigen and recombinant interleukin 2. Proceedings of the National Academy of Science 86: 6269–6273, 1989

    CAS  Google Scholar 

  • Kar HK, Bhatia VN, Harikrishnan S. Combined clofazimine-arid dapsone-resistant leprosy: a case report. International Journal of Leprosy 54: 389–391, 1986

    CAS  Google Scholar 

  • Kirchheimer WF, Storrs EE. An attempt to establish the armadillo (Dasypus novemcinctus, Linn) as a model for the study of leprosy. I. Report of lepromatoid leprosy in an experimentally infected armadillo. International Journal of Leprosy 39: 693–702, 1971

    CAS  Google Scholar 

  • Klatser PR, De Wit MYL, Fajardo TT, Cellona RV, Abalos RM, et al. Evaluation of Mycobacterium lepraeantigens in the monitoring of a dapsone-based chemotherapy of previously untreated lepromatous patients in Cebu, Philippines. Leprosy Review 60: 178–186, 1989

    CAS  PubMed  Google Scholar 

  • Lad SJ, Mahadevan PR. Adherence of Mycobacterium lepraeto macrophage as an indicator of pathogen induced membrane changes. Indian Journal of Medical Research 76: 804–813, 1982

    CAS  PubMed  Google Scholar 

  • Lamfers EJP, Bastiaans AH, Mravunac M, Rampen FHJ. Leprosy in the acquired immunodeficiency syndrome. Annals of Internal Medicine 107: 111–112, 1987

    CAS  PubMed  Google Scholar 

  • Latapi F, Zamora AC. The ‘spotted’ leprosy of Lucio. International Journal of Leprosy 16: 421–430, 1948

    Google Scholar 

  • Lee SP, Stoker NG, Grant KA, Handzel ZT, Hussain R, et al. Cellular immune responses of leprosy contacts to fractionated Mycobacterium lepraeantigens. Infection and Immunity 57: 2475–2480, 1989

    CAS  PubMed  Google Scholar 

  • Lehrer RI, Barton A, Daher KA, Harwig SS, Ganz T, et al. Interaction of human defensins with Escherichiacoli: mechanism of bactericidal activity. Journal of Clinical Investigation 84: 553–561, 1989

    CAS  PubMed  Google Scholar 

  • Lumpkin LR, Cox GF, Wolf JE. Leprosy in five armadillo handlers. Journal of the American Academy of Dermatologists 9: 899–903, 1983

    Google Scholar 

  • Manual of Procedures. Multiple drug therapy for leprosy. Department of Health Leprosy Control Service, Manila, Philippines, June 1987

  • McAdam KP, Anders RF, Smith SR, Russell DA, Price MA. Association of amyloidosis with erythema nodosum leprosum reactions and recurrent neutrophil leucocytosis. Lancet 2: 572–575, 1975

    CAS  PubMed  Google Scholar 

  • McCoy GW. Chaulmoogra oil in the treatment of leprosy. Public Health Reports 57: 1727–1733, 1942

    Google Scholar 

  • McDermott-Lancaster RD, Hilson GRF. Rifampicin-resistant strains of Mycobacterium lepraemay have reduced virulence. Journal of Medical Microbiology 24: 13–15, 1987

    Google Scholar 

  • McNeill WH. Plaques and peoples, Anchor Books Press/Double-day, Garden City, New York, 1976

    Google Scholar 

  • Meeran K. Prevalence of HIV infection among patients with leprosy and tuberculosis in rural Zambia. British Medical Journal 298: 364–365, 1989

    CAS  PubMed  Google Scholar 

  • Mehra V, Brennan PJ, Rada E, Convit J, Bloom BR. Lymphocyte suppression in leprosy induced by unique M. lepraeglycolipid. Nature 308: 194–196, 1984

    CAS  PubMed  Google Scholar 

  • Melancon-Kaplan J, Hunter SW, McNeil M, Stewart C, Modlin RL, et al. Immunological significance of Mycobacterium lepraecell walls. Proceedings of the National Academy of Science 85: 1917–1921, 1988

    CAS  Google Scholar 

  • Melsom R, Harboe M, Duncan ME. IgA, IgM, and IgG anti-M. lepraeantibodies in babies of leprosy mothers during the first two years of life. Clinical and Experimental Immunology 49: 532–542, 1982

    CAS  PubMed  Google Scholar 

  • Metzger Z, Hoffeld JT, Oppenheim JJ. Macrophage-mediated suppression: I. Evidence for participation of both hydrogen peroxide and prostaglandins in suppression of murine lymphocyte. Journal of Immunology 124: 983–988, 1980

    CAS  Google Scholar 

  • Meyers WM, Binford CH, Walsh GP, Wolf RH, Gormus BJ, et al. Animal models of leprosy. Microbiology 1984: 307–311, 1984

    Google Scholar 

  • Meyers WM, McDougall AC, Fleury RH, Neves R, Reyes O, et al. Histologic responses in sixty multibacillary leprosy patients inoculated with autoclaved Mycobacterium lepraeand live BCG. International Journal of Leprosy 56: 302–309, 1988

    CAS  Google Scholar 

  • Meyers WM, Walsh GP, Brown HL, Binford CH, Imes Jr GD, et al. Leprosy in a mangabey monkey — naturally acquired infection. International Journal of Leprosy 53: 1–14, 1985

    CAS  Google Scholar 

  • Mittal A, Seshadri PS, Conalty ML, O’Sullivan JF, Nath I. Rapid, radiometric in vitro assay for the evaluation of the anti-leprosy activity of clofazimine and its analogues. Leprosy Review 56: 99–108,1985

    CAS  PubMed  Google Scholar 

  • Modlin RL, Hofman FM, Taylor CR, Rea TH. T-lymphocyte subsets in the skin lesions of patients with leprosy. Journal of the American Academy of Dermatology 8: 181–189, 1983

    Google Scholar 

  • Modlin RL, Mehra V, Jordan R, Bloom BR, Rea TH. In situand in vitrocharacterization of the cellular immune response in erythema nodosum leprosum. Journal of Immunology 136: 883–886, 1986

    CAS  Google Scholar 

  • Mohagheghpour N, Gelber RR, Engleman EG. T-cell defect in lepromatous leprosy is reversible in vitroin the absence of exogenous growth factors. Journal of Immunology 138: 570–574, 1987

    CAS  Google Scholar 

  • Morrison NE, Marley GM. The mode of action of clofazimine DNA binding studies. International Journal of of Leprosy 44: 133–134, 1976

    CAS  Google Scholar 

  • Munro CS, Campbell DA, Collings LA, Poulter LW. Monoclonal antibodies distinguish macrophages and epithelioid cells in sarcoidosis and leprosy. Clinical and Experimental Immunology 68: 282–287, 1987

    CAS  PubMed  Google Scholar 

  • Niwa Y, Sakane T, Miyachi Y, Ozaki M. Oxygen metabolism in phagocytes of leprotic patients: enhanced endogenous superoxide dismutase activity and hydroxyl radical generation by clofazimine. Journal of Clinical Microbiology 20: 837–842, 1984

    CAS  PubMed  Google Scholar 

  • Nunn PP, McAdam KPWJ. Mycobacterial infections and AIDS. British Medical Bulletin 44: 801–813, 1988

    CAS  PubMed  Google Scholar 

  • Ottenhoff THM, Converse PJ, Bjune G, de Vries RRP. HLA antigens and neural reversal reactions in Ethiopian borderline tuberculoid leprosy patients. International Journal of Leprosy 55: 261–266, 1987

    CAS  Google Scholar 

  • Ottenhoff THM, Neuteboom S, Elferink DG, de Vries RRP. Molecular localization and polymorphism of HLA Class II restriction determinants defined by Mycobacteriumleprae-reactive helper T cell clones from leprosy patients. Journal of Experimental Medicine 164: 1923–1939, 1986

    CAS  PubMed  Google Scholar 

  • Pattyn SR, Bourland J, Grillone S, Groenen G, Ghys P. Combined regimens of one year duration in the treatment of multibacillary leprosy: I. Combined regimens with rifampicin administered during one year. Leprosy Review 60: 109–117, 1989

    CAS  PubMed  Google Scholar 

  • Pattyn SR, Janssens L, Bourland J, Saylan T, Davies EM, et al. Hepatotoxicity of the combination of rifampin-ethionamide in the treatment of multibacillary leprosy. International Journal of Leprosy 52: 1–6, 1984

    CAS  Google Scholar 

  • Pean C, Pape JW, Deschamps MM, Dambreville M, Johnson Jr WD. Natural history of M. lepraeand HIV co-infection: abstracts of the V International Conference on AIDS: The Scientific and Social Challenge, Montreal, Quebec, Canada, June 1989, p. 427, International Development Research Centre, Ottawa, 1989

    Google Scholar 

  • Pedley JC. The presence of M. lepraein human milk. Leprosy Review 38: 239–242, 1967

    CAS  PubMed  Google Scholar 

  • Pettit JHS, Rees RJW. Sulphone resistance in leprosy: an experimental and clinical study. Lancet 2: 673–674, 1964

    CAS  PubMed  Google Scholar 

  • Pfaltzgraff RE, Bryceson A. Clinical leprosy. In Hastings (Ed.) Leprosy (Medicine in the Tropics series), pp. 134–176, Churchill Livingstone, Edinburgh, 1985

    Google Scholar 

  • Prabhakaran K. Biochemistry of Mycobacterium leprae: its implications in culture of the bacillus and chemotherapy of leprosy. Indian Journal of Leprosy 61: 1–9, 1989

    CAS  PubMed  Google Scholar 

  • Prasad HK, Mishra RS, Nath I. Phenolic glycolipid-I of Mycobacterium lepraeinduces general suppression of in vitroconcanavalin A responses unrelated to leprosy type. Journal of Experimental Medicine 165: 239–244, 1987

    CAS  PubMed  Google Scholar 

  • Qinxue W, Xinyu L, Huiwen S, Qi L, Zhiyong X, et al. Evaluation of FLA-ABS, T/PGL ELISA and their uses in immunoepidemiologic studies on leprosy. International Journal of Leprosy 57 (Suppl.): 305, 1989

    Google Scholar 

  • Ramasesh N, Hastings RC, Krahenbuhl JL. The metabolism of Mycobacterium lepraein macrophages. Infection and Immunology 55: 1203–1206, 1987

    CAS  Google Scholar 

  • Rangdaeng S, Scollard DM, Suriyanon V, Smith T, Thamprasert K, et al. Studies of human leprosy lesions in situusing suction-induced blisters. I. Cellular components of new, uncomplicated lesions. International Journal of Leprosy 57: 492–498, 1989

    CAS  Google Scholar 

  • Rees RJW. The dosage of anti-leprosy drugs for children. Leprosy Review 55: 309, 1984

    Google Scholar 

  • Rees RJW, McDougall AC. Airborne infection with Mycobacterium lepraein mice. Journal of Medical Microbiology 10: 63–68, 1977

    CAS  PubMed  Google Scholar 

  • Revankar CR, Sorensen BH. Blister calendar packs for the treatment of patients in leprosy control programmes with multiple drug therapy (MDT). Correspondence. Leprosy Review 59: 84, 1989

    Google Scholar 

  • Richardus JH, Smith TC. Increased incidence in leprosy of hypersensitivity reactions to dapsone after introduction of multidrug therapy. Leprosy Review 60: 267–273, 1989

    CAS  PubMed  Google Scholar 

  • Ridley DS, Jopling WH. Classification of leprosy according to immunity: a five group system. International Journal of Leprosy 34: 255–273, 1966

    CAS  Google Scholar 

  • Ridley MJ, Ridley DS. Histoid leprosy: an ultrastructural observation. International Journal of Leprosy 48: 135–139, 1980

    CAS  Google Scholar 

  • Roitt I, Brostoff J, Male D. Immunology, 2nd ed., C.V. Mosby Company, St Louis, 1989

  • Rojas-Espinosa O. Macrophages, myeloperoxidase, and Mycobacterium lepraemurium. Journal of Leukocyte Biology 43: 468–479, 1988

    CAS  PubMed  Google Scholar 

  • Salgame PR, Mahadevan PR, Antia NH. Mechanism of immunosuppression in leprosy. Presence of suppressor factor(s) from macrophages of lepromatous patients. Infection and Immunity 40: 1119–1126, 1983

    CAS  PubMed  Google Scholar 

  • Sangaré A, Verdier M, Sorro B, Gershy-Damet GM, Léonard G, et al. Haute prévalence de l’HTVL-1 et faible prévalence du HIV chez les lépreux de Côte D’Ivoire. Abstracts of the V International Conference on AIDS: The scientific and social challenge, Montreal, Quebec, 1989

  • Sankaran K, Hoffeld JT, Chaparas SD, Oppenheim JJ. Genetic resistance of mice to persistent infection with Mycobacterium lepraemurium in vitro: association with macrophage bactericidal responsiveness to lymphocytes and dissociation from production of hydrogen peroxide by macrophages. Journal of Immunopharmacology 6: 277–290, 1984

    CAS  PubMed  Google Scholar 

  • Schlesinger LS, Horwitz MA. Complement receptors and complement C3 mediate phagocytosis of Mycobacterium tuberculosisand Mycobacterium leprae.International Journal of Leprosy 58: 200–201, 1990

    Google Scholar 

  • Shepard CC. The experimental disease that follows the injection of human leprosy bacilli into footpads of mice. Journal of Experimental Medicine 112: 445–454, 1960

    CAS  PubMed  Google Scholar 

  • Shields ED, Russell DA, Pericak-Vance MA. Genetic epidemiology of the susceptibility to leprosy. Journal of Clinical Investigation 79: 1139–1143, 1987

    CAS  PubMed  Google Scholar 

  • ShivRaj L, Patil SA, Girdhar A, Sengupta U, Desikan KV, et al. Antibodies to HIV-1 in sera from patients with mycobacterial infections. International Journal of Leprosy 56: 546–551, 1988

    CAS  Google Scholar 

  • Sibley LD, Krahenbuhl JL. Induction of unresponsiveness to gamma interferon in macrophages infected with Mycobacterium leprae. Infection and Immunology 56: 1912–1919, 1988

    CAS  Google Scholar 

  • Smida J, Kazda J, Stackebrandt E. Molecular-genetic evidence for the relationship of Mycobacterium lepraeto slow-growing pathogenic mycobacteria. International Journal of Leprosy 56: 449–454, 1988

    CAS  Google Scholar 

  • Smith JH, Folse DS, Long EG, Christie JD, Crouse DT, et al. Leprosy in wild armadillos (Dasypus novemcinctus)of the Texas Gulf Coast: epidemiology and mycobacteriology. Journal of the Reticuloendothelial Society 34: 75–88, 1983

    CAS  PubMed  Google Scholar 

  • Storrs EE. The nine-banded armadillo: a model for leprosy and other biomedical research. International Journal of Leprosy 39: 703–714, 1971

    CAS  Google Scholar 

  • Talwar GP. Toward the development of a vaccine against leprosy. Leprosy in India 50: 492, 1978

    CAS  PubMed  Google Scholar 

  • Tepper BS (rapporteur). Workshop on cultivation of M. leprae, Ninth International Leprosy Congess. International Journal of Leprosy 36: 559, 1968

    Google Scholar 

  • Thomas A, Balakrishnan A, Nagarajan M, Prabhakar R, Tripathy SP, et al. Controlled clinical trial of two multidrug regimens with and without rifampin in highly bacilliferous BL/LL South Indian patients: a five-year report. International Journal of Leprosy 58: 273–280, 1990

    CAS  Google Scholar 

  • Turk JL, Rees RJ. AIDS and leprosy. Leprosy Review 59: 193–194, 1988

    CAS  PubMed  Google Scholar 

  • Uyemura K, Dixon JFP, Wong L, Rea TH, Modlin RL. Effect of cyclosporine A in erythema nodosum leprosum. Journal of Immunology 137: 3620–3623, 1986

    CAS  Google Scholar 

  • Valla MC. Lèpre et grossesse, Thèse de Médecine, Lyon, 1976

  • Van Brakel W, Kist P, Noble S, O’Toole L; Relapses after multidrug therapy for leprosy: a preliminary report of 22 cases in West Nepal. Leprosy Review 60: 45–50, 1989

    PubMed  Google Scholar 

  • Verdier M, Sangaré A, Sassou-Guesseau E, Gaye A, Al-Qubate Y, Denis F, et al. Étude comparée des prévalences HIV-1, HIV-2 et HTLV-1 chez les lépreux de 4 pays: Côte D’Ivoire, Congo, Sénégal, Yémen. Abstracts of the V International Conference on AIDS: The Scientific and Social Challenge, Montreal, June 1989, p. 197, International Development Research Centre, Ottawa, 1989

    Google Scholar 

  • Wabitsch KR, Meyers WM. Histopathologic observations on the persistence of Mycobacterium lepraein the skin of multibacillary leprosy patients under chemotherapy. Leprosy Review 59: 341–346, 1988

    CAS  PubMed  Google Scholar 

  • Wade HW. The histoid variety of lepromatous leprosy. International Journal of Leprosy 31: 129–142, 1963

    CAS  PubMed  Google Scholar 

  • Walsh GP, Storrs EE, Burchfield HP, Cottrell EH, Vidrine MF, et al. Leprosy-like disease occurring naturally in armadillos. Journal of the Reticuloendothelial Society 18: 347–351, 1975

    CAS  PubMed  Google Scholar 

  • Walsh GP, Storrs EE, Meyers WM, Binford CH. Naturally-acquired leprosy-like disease in the nine-banded armadillo (Dasypus novemcinctus): recent epizootiologic findings. Journal of the Reticuloendothelial Society 22: 363–367, 1977

    CAS  PubMed  Google Scholar 

  • Warndorff Van Diepen T. Clofazimine-resistant leprosy, a case report. International Journal of Leprosy 50: 139–142, 1982

    CAS  Google Scholar 

  • Waters MFR. Concepts behind the development of multiple drug therapy regimens in leprosy. Ethiopian Medical Journal 24: 61–67, 1986

    PubMed  Google Scholar 

  • Watson JD, Boothe RJ. The potential role of DNA technology in leprosy. Leprosy Review 58: 201–206, 1987

    CAS  PubMed  Google Scholar 

  • Weiss J, Victor M, Stendhal O, Elsbach P. Killing of Gram-negative bacteria by polymorphonuclear leukocytes: role of an O2-independent bactericidal system. Journal of Clinical Investigation 69: 959–970, 1982

    CAS  PubMed  Google Scholar 

  • West BC, Todd JR, Lary CH, Blake LA, Fowler ME, et al. Leprosy in six isolated residents of Northern Louisiana. Time-clustered cases in an essentially nonendemic area. Archives of Internal Medicine 148: 1987–1992, 1988

    CAS  PubMed  Google Scholar 

  • Wheeler PR. Metabolism in Mycobacterium leprae: possible targets for drug action. Leprosy Review 57 (Suppl. 3): 171–181, 1986

    PubMed  Google Scholar 

  • WHO Expert Committee on Leprosy: Sixth report, WHO Technical Report, Series # 768, p. 10, Geneva, 1988

  • WHO Tropical Diseases. Progress in international research, 1987–1988: (3). The disease: leprosy. UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases, Ninth Programme Report, 1989

  • Williams DL, Gillis TP, Booth RJ, Looker D, Watson JD. Application of polymerase chain reaction amplification technology for the detection of Mycobacterium leprae. International Journal of Leprosy 58: 192, 1990

    Google Scholar 

  • Young DB, Buchanan TM. A serological test for leprosy with a glycolipid specific for Mycobacterium leprae. Science 221: 105.7-1059, 1983

    Google Scholar 

  • Young RA, Mehra V, Sweetser D, Buchanan TM, Clark-Curtiss JE, et al. Genes for the major protein antigens of Mycobacterium leprae. Nature 316: 450–452, 1985

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The opinions or assertions contained in this article are the private views of the authors and are not to be construed as being official or as representing the views of the Department of the Navy or the Department of Defense (US).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyers, W.M., Marty, A.M. Current Concepts in the Pathogenesis of Leprosy. Drugs 41, 832–856 (1991). https://doi.org/10.2165/00003495-199141060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199141060-00003

Keywords

Navigation