Skip to main content
Log in

Clozapine

A Review of its Pharmacological Properties, and Therapeutic Use in Schizophrenia

  • Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Synopsis

Clozapine, an antipsychotic agent of the dibenzodiazepine class, is characterised by relatively weak central dopaminergic activity and displays atypical pharmacological and clinical properties in relation to the classic antipsychotics. Clinical studies have shown clozapine to be effective in suppressing both the positive and negative symptoms of schizophrenia and to be associated with an extremely low incidence of extrapyramidal side effects. Clozapine has been shown to be of comparable, or on some criteria superior, therapeutic efficacy to perphenazine, levomepromazine, haloperidol and chlorpromazine in several short term comparative studies in patients with schizophrenia of predominantly acute symptomatology. Moreover, clozapine is effective in a substantial proportion (30 to 50%) of schizophrenic patients who are refractory to or intolerant of classic antipsychotic therapy. Despite its promising therapeutic potential, the relatively high incidence of clozapine-induced agranulocytosis (1 to 2% of patients) is a major factor restricting the drug’s wider use in psychiatric practice. In accordance with current guidelines, clozapine therapy, performed in conjunction with close haematological monitoring, is indicated for the management of severe and chronic schizophrenia refractory to classic antipsychotic therapy, and in those unable to tolerate such therapy. In such appropriately selected patients, clozapine represents an important alternative to the classic antipsychotics.

Pharmacodynamic Properties

In comparison with the classic antipsychotics, clozapine is a relatively weak antagonist at striatal dopamine D2-receptors, and produces a more potent blockade of central dopamine D1-, cholinergic, serotonergic S2-, histamine H1, and α1 - and α2-adrenergic receptors. In patients with schizophrenia, clozapine appears to induce a comparable in vivo blockade of striatal dopamine D1- and D2-receptors; at clinically effective doses central dopamine D2-receptor blockade is less pronounced with clozapine than with classic antipsychotics. On long term administration clozapine selectively enhances central dopamine D1-receptor function and produces down-regulation of serotonergic S2-receptors in rodents. Biochemical and neurophysiological studies indicate that clozapine may act preferentially on mesolimbic and amygdaloid rather than neostriatal dopaminergic pathways, and that this site specificity may underlie the dissociation between clozapine’s marked antipsychotic activity and its relative absence of extrapyramidal side effects. Clozapine is only marginally effective in several animal behavioural models (e.g. induction of catalepsy, inhibition of dopamine-induced stereotypy) mediated via neostriatal dopaminergic pathways which are considered predictive of antipsychotic activity, but antagonises those behaviours (e.g. dopamine-induced locomotion) mediated via mesolimbic dopaminergic pathways. In contrast to the prolonged stimulation of prolactin secretion observed with the classic antipsychotics, clozapine has minimal effects on plasma prolactin levels in humans.

Pharmacokinetic Properties

Peak plasma concentrations of clozapine are reached at 1 to 4 hours after oral administration, before declining in a biphasic manner (terminal elimination half-life 6 to 30 hours). Orally administered clozapine undergoes moderate hepatic first-pass metabolism; systemic bioavailability is approximately 50%. The pharmacokinetics of clozapine are consistent with a model of first-order absorption and are linear over plasma concentrations of 10 to 1000 μg/L (corresponding to daily doses of ≈ 0.5 to 12.0 mg/kg). Maximum and minimum plasma clozapine concentrations and AUC values at steady-state are positively correlated with dosage over the range 75 to 300 mg/day. Large intersubject variation in steady-state plasma clozapine concentrations is attributable to factors of age, sex, bodyweight and smoking behaviour. Clozapine is approximately 95% bound to plasma proteins in vitro. In humans, clozapine undergoes extensive metabolism via TV-oxidation, N-demethylation and dehalogenation, with unchanged clozapine accounting for 2 to 5% of the excreted drug. Excretion is predominantly by the urinary route (≈ 50% of administered dose) and the faecal route (35% of administered dose).

Therapeutic Use

Noncomparative studies in hospitalised patients with schizophrenia have indicated that clozapine produces symptomatic improvement in 60 to 80% of cases, with the benefit being most evident in those with acute schizophrenia. Typically, the response to clozapine is characterised by an initial sedative/anxiolytic effect which is followed after 1 to 2 weeks of therapy by the development of an antipsychotic action and a subsequent gradual alleviation of behavioural disturbances leading to restoration of social skills. Long term clozapine maintenance therapy (≤ 6.5 years) has been associated with a sustained therapeutic effect in 50 to 80% of patients with chronic schizophrenia.

Short to medium term (3 to 12 weeks) comparative studies in small groups of patients with schizophrenia of predominantly acute symptomatology have demonstrated that the antipsychotic efficacy of clozapine (≤ 1000 mg/day) is at least equal to, and on some criteria greater than, that of classic antipsychotics such as perphenazine (mean 18 to 64 mg/day), levomepromazine (mean 135 to 220 mg/day), chlorpromazine (≤ 1600 mg/day) and haloperidol (3 to 40 mg/day). In comparison with chlorpromazine, clozapine displayed more pronounced sedation, a broader spectrum of antipsychotic effects, greater improvement in the ‘psychomotor plus’ symptoms of schizophrenia (tension, hostility and excitement) and a more rapid onset of action, thereby allowing a higher proportion of patients to meet hospital discharge criteria and experience disease remission. Similarly, in this group of patients with schizophrenia, clozapine proved superior to haloperidol on short to medium term (6 to 12 weeks) therapy, displaying a broader antipsychotic spectrum and more marked antidelusional, anxiolytic/sedative and contact-promoting effects. The antipsychotic superiority of clozapine was particularly evident in severely disturbed patients with additional symptoms of anxiety, tension and psychomotor agitation, and those with prominent negative symptoms.

Retrospective and prospective noncomparative studies have indicated that clozapine is of benefit in a substantial proportion (30 to 50%) of patients with treatment-resistant schizophrenia (those refractory to or intolerant of classic antipsychotics), producing improvements in both florid and autistic symptoms and the quality of disease remission after 1.5 to 6 months of therapy, and promoting social adaptation and integration on maintenance therapy (≥ 2.5 years). The aetiological/clinical factors predictive of therapeutic benefit with clozapine in this subgroup of schizophrenic patients remain to be elucidated. Short to medium term (6 to 8 weeks) comparative studies in patients with treatment-resistant schizophrenia have demonstrated the superior antipsychotic efficacy of clozapine (≤ 900 mg/day) versus that of chlorpromazine (≤ 1800 mg/day) in terms of physicians’ and ward nurses’ ratings of symptoms, the rapidity of onset of clinical response, and the proportion of patients showing clinical improvement.

Adverse Effects

Sedation, hypersalivation, tachycardia, postural hypotension and dizziness constitute the most frequently reported adverse effects of clozapine, occurring in up to 40% of patients. These effects are generally dose related, arise on initiation of therapy and tend to subside as tolerance develops, although tachycardia, hypersalivation and sedation may be persistent. Less frequent adverse effects include constipation (14%), nausea/vomiting (11%), hyperthermia (5%) and seizures (3%). Serious adverse effects attributable to clozapine and necessitating its withdrawal (predominantly toxic delirium and sedation) occurred in 6% of 959 treatment-resistant schizophrenics prospectively monitored over a 10-year period.

Agranulocytosis is the most serious adverse effect of clozapine, occurring in 1 to 2% of patients and requiring immediate discontinuation of the drug once it is detected. Onset is gradual, with the period of maximum risk occurring during the initial 18 weeks of clozapine therapy. The phenomenon does not appear to be dose related, and predisposing factors are unknown.

Clozapine is distinguished from the traditional antipsychotics by its relatively low propensity to induce extrapyramidal symptoms (0 to 20% of patients), among which akathisia, akinesia and tremor appear to predominate over dystonia. There have been no confirmed cases of induction of tardive dyskinesia on long term clozapine therapy.

Dosage and Administration

Clozapine may be administered orally or intramuscularly. The manufacturer recommends initiation of clozapine therapy with 25 to 75 mg/day administered in 2 or 3 divided doses, followed by titration in 25 to 50 mg/day increments to achieve a target dose of 300 to 450 mg/day after 2 weeks. Subsequent dosage increases of ≤ 100 mg/day should be performed no more than twice weekly, to a maximum dose of 900 mg/day. After initial titration, the dose should be progressively reduced to the minimum level necessary to maintain clinical remission. In view of the continuing risk of agranulocytosis, weekly haematological surveillance is essential during the initial 18 weeks of clozapine administration; thereafter monthly monitoring is considered satisfactory. Clozapine is contraindicated in conjunction with drugs with the potential to depress bone marrow function/induce agranulocytosis, as well as in patients with severe CNS depression, myeloproliferative disorders or a history of drug-induced agranulocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackenheil M. Clozapine — pharmacokinetic investigations and biochemical effects in man. Psychopharmacology 99: S32–S37, 1989

    PubMed  Google Scholar 

  • Ackenheil M, Bräu H, Burkhard A, Franke A, Pacha W. Antipsychotische Wirksamkeit im Verhältnis zum Plasmaspiegel von Clozapin. Arzneimittel-Forschung 26: 1156–1158, 1976

    PubMed  CAS  Google Scholar 

  • Altar CA, Boyar WC, Wasley A, Gerhardt SC, Liebman JM, et al. Dopamine neurochemical profile of atypical antipsychotics resembles that of D-l antagonists. Naunyn-Schmiedeberg’s Archives of Pharmacology 338: 162–168, 1988

    PubMed  CAS  Google Scholar 

  • Altar CA, Wasley AM, Neale RF, Stone GA. Typical and atypical antipsychotic occupancy of D2and S2receptors: an autoradiographic analysis in rat brain. Brain Research Bulletin 16: 517–525, 1986

    PubMed  CAS  Google Scholar 

  • Amsler HA, Teerehovi L, Barth E, Harjula K, Vuopio P. Agranulocytosis in patients treated with clozapine. A study of the Finnish epidemic. Acta Psychiatrica Scandinavica 56(4): 241–248, 1977

    CAS  Google Scholar 

  • Anden N-E, Stock G. Effect of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system. Journal of Pharmacy and Pharmacology 25: 346–348, 1973

    PubMed  CAS  Google Scholar 

  • Anderman B, Griffith RW. Clozapine-induced agranulocytosis: a situation report up to August 1976. European Journal of Clinical Pharmacology 11: 199–201, 1977

    PubMed  CAS  Google Scholar 

  • Andersen PH, Braestrup C. Evidence for different states of the dopamine D1 receptor: clozapine and fluperlapine may preferentially label an adenylate cyclase-coupled state of the Dl receptor. Journal of Neurochemistry 47: 1822–1831, 1986

    PubMed  CAS  Google Scholar 

  • Andersen PH, Grønvald FC, Jansen JA. A comparison between dopamine-stimulated adenylate cyclase and 3H-SCH 23390 binding in rat striatum. Life Sciences 37: 1971–1983, 1985

    PubMed  CAS  Google Scholar 

  • Andersen PH, Nielsen EB, Grønvald FC, Braestrup C. Some atypical neuroleptics inhibit [3H]SCH 23390 binding in vivo. European Journal of Pharmacology 120: 143–144, 1986

    PubMed  CAS  Google Scholar 

  • Anderson GD, Rebec GV. Differential response of amygdaloid neurons to clozapine and haloperidol: effects of repeated administration. Pharmacology, Biochemistry and Behavior 24: 1561–1566, 1986

    CAS  Google Scholar 

  • Angst J, Jaenicke U, Padrutt A, Schafotter Ch. Results of a double-blind study of HF 1854 (8-chloro-l l-(4-methyl-l-piperazinyl)-5H-dibenzo (b,e) (l,4)-diazepine compared to levomepromazine. Pharmacopsychiatry 4: 192–200, 1971

    CAS  Google Scholar 

  • Ashby CR, Edwards E, Harkins KL, Wang R. Differential effect of typical and atypical antipsychotic drugs on the suppressant action of 2-methyl serotonin on medial prefrontal cortical cells: a microiontophoretic study. European Journal of Pharmacology 166: 583–584, 1989

    PubMed  CAS  Google Scholar 

  • Atrens DM, Ljungberg T, Understedt U. Modulation of reward and aversion processes in the rat diencephalon by neuroleptics: differential effects of clozapine and haloperidol. Psychopharmacology 49: 97–100, 1976

    PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Cohen BM, Teicher MH. Significance of neuroleptic dose and plasma level in the pharmacologic treatment of psychoses. Archives of General Psychiatry 45: 79–91, 1988

    PubMed  CAS  Google Scholar 

  • Bartholini G. Differential effect of neuroleptic drugs on dopamine turnover in the extrapyramidal and limbic system. Journal of Pharmacy and Pharmacology 28: 429–433, 1976

    PubMed  CAS  Google Scholar 

  • Bartholini G, Haefely W, Jalfre M, Keller HH, Pletscher A. Effects of clozapine on cerebral catecholaminergic neurone systems. British Journal of Pharmacology 46: 736–740, 1972

    PubMed  CAS  Google Scholar 

  • Bartholini G, Keller HH, Pletscher A. Effect of neuroleptics on endogenous norepinephrine in rat brain. Neuropharmacology 12: 751–756, 1973

    PubMed  CAS  Google Scholar 

  • Bartholini G, Keller H H, Pletscher A. Drug-induced changes of dopamine turnover in striatum and limbic system of the rat. Journal of Pharmacy and Pharmacology 27: 439–442, 1975

    PubMed  CAS  Google Scholar 

  • Battegay R, Cotar B, Fleischhauer J, Rauchfleisch U. Results and side effects of treatment with clozapine (Leponex R). Comprehensive Psychiatry 18: 423–428, 1977

    PubMed  CAS  Google Scholar 

  • Blaha CD, Lane RF. Chronic treatment with classical and atypical antipsychotic drugs differentially decreases dopamine release in striatum and nucleus accumbens in vivo. Neuroscience Letters 78: 199–204, 1987

    PubMed  CAS  Google Scholar 

  • Blumberg JB, Vetulani J, Stawarz RJ, Sulser F. The noradrenergicyclic AMP generating system in the limbic forebrain: pharmacological characterization in vitro and possible role of limbic noradrenergic mechanisms in the mode of action of antipsychotics. European Journal of Pharmacology 37: 357–366, 1976

    PubMed  CAS  Google Scholar 

  • Bondesson U, Lindström LH. Determination of clozapine and its N-demethylated metabolite in plasma by use of gas chromatography-mass spectrometry with single ion detection. Psycho-pharmacology 95: 472–475, 1988

    CAS  Google Scholar 

  • Borison RL, Diamond BI. Regional selectivity of neuroleptic drugs: an argument for site specificity. Brain Research Bulletin 11: 215–218, 1983

    PubMed  CAS  Google Scholar 

  • Borison RL, Diamond BI, Sinha D, Gupta RP, Ajiboye PA. Clozapine withdrawal rebound psychosis. Psychopharmacology Bulletin 24: 260–263, 1988

    PubMed  CAS  Google Scholar 

  • Bowers MB, Rozitis A. Regional differences in homovanillic acid concentrations after acute and chronic administration of antipsychotic drugs. Journal of Pharmacy and Pharmacology 26: 743–745, 1974

    PubMed  CAS  Google Scholar 

  • Bowers MB, Rozitis A. Brain homovanillic acid: regional changes over time with antipsychotic drugs. European Journal of Pharmacology 39: 109–115, 1976

    PubMed  CAS  Google Scholar 

  • Bürki HR. Binding of psychoactive drugs to rat brain amine receptors, measured ex vivo, and their effects on the metabolism of biogenic amines. Naunyn-Schmiedeberg’s Archives of Pharmacology 332: 258–266, 1986

    PubMed  Google Scholar 

  • Bürki HR, Eichenberger E, Sayers AC, White TG. Clozapine and the dopamine hypothesis of schizophrenia, a critical appraisal. Pharmacopsychiatry 8: 115–121, 1975

    Google Scholar 

  • Bürki HR, Ruch W, Asper H. Effects of clozapine, thioridazine, perlapine and haloperidol on the metabolism of the biogenic amines in the brain of the rat. Psychopharmacology 41: 27–33, 1975

    Google Scholar 

  • Canon JG, Lippa AS. Effects of clozapine, chlorpromazine and diazepam upon adjunctive and schedule controlled behaviors. Pharmacology, Biochemistry and Behavior 6: 581–587, 1977

    CAS  Google Scholar 

  • Carlsson A. Antipsychotic drugs, neurotransmitters, and schizophrenia. American Journal of Psychiatry 135: 164–173, 1978

    CAS  Google Scholar 

  • Casey DE. Clozapine: neuroleptic-induced EPS and tardive dyskinesia. Psychopharmacology 99: S47–S53, 1989

    PubMed  Google Scholar 

  • Ceulemans DL, Gelders YG, Hoppenbrouwers M-L, Reyntjens AJM, Janssen PAJ. Effect of serotonin antagonism in schizophrenia: a pilot study with setoperone. Psychopharmacology 85: 329–332, 1985

    PubMed  CAS  Google Scholar 

  • Cheng YF, Lundberg T, Bondesson U, Lindström L, Gabrielsson J. Clinical pharmacokinetics of clozapine in chronic schizophrenic patients. European Journal of Clinical Pharmacology 34: 445–449, 1988

    PubMed  CAS  Google Scholar 

  • Chiodo LA, Bunney BS. Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. Journal of Neuroscience 3: 1607–1619, 1983

    PubMed  CAS  Google Scholar 

  • Chiu E, Burrows G, Stevenson J. Double-blind comparison of clozapine with chlorpromazine in acute schizophrenic illness. Australian and New Zealand Journal of Psychiatry 10: 343–347, 1976

    PubMed  CAS  Google Scholar 

  • Choc MG, Lehr RG, Hsuan F, Honigfeld G, Smith HT, et al. Multiple-dose pharmacokinetics of clozapine in patients. Pharmaceutical Research 4: 402–405, 1987

    PubMed  CAS  Google Scholar 

  • Chouinard G, Jones BD, Annable L. Neuroleptic-induced supersensitivity psychosis. American Journal of Psychiatry 135: 1409–1410, 1978

    PubMed  CAS  Google Scholar 

  • Claghorn J, Honigfeld G, Abuzzahab FS, Wang R, Steinbook R, et al. The risks and benefits of clozapine versus chlorpromazine. Journal of Clinical Psychopharmacology 7: 377–384, 1987

    PubMed  CAS  Google Scholar 

  • Clark D, White FJ. Review: D1 dopamine receptor — the search for a function: a critical evaluation of the D1/D2 dopamine receptor classification and its functional implications. Synapse 1: 347–388, 1987

    PubMed  CAS  Google Scholar 

  • Cohen BM, Benes FM, Baldessarini RJ. Atypical neuroleptics, dose-response relationships, and treatment-resistant psychosis. Archives of General Psychiatry 46: 381–383, 1989

    PubMed  CAS  Google Scholar 

  • Cohen S, Chiles J, MacNaughton A. Weight gain associated with clozapine. American Journal of Psychiatry 147: 503–504, 1990

    PubMed  CAS  Google Scholar 

  • Conley RR, Schulz SC, Baker RW, Collins JF, Bell JA. Clozapine efficacy in schizophrenic nonresponders. Psychopharmacology Bulletin 24: 269–274, 1988

    PubMed  CAS  Google Scholar 

  • Costall B, Naylor RJ. A comparison of the abilities of typical neuroleptic agents and of thioridazine, clozapine, sulpiride and metoclopramide to antagonise the hyperactivity induced by dopamine applied intracerebrally to areas of the extrapyramidal and mesolimbic systems. European Journal of Pharmacology 40: 9–19, 1976

    PubMed  CAS  Google Scholar 

  • Coward DM, Imperato A, Urwyler S, White TG. Biochemical and behavioural properties of clozapine. Psychopharmacology 99: S6–S12, 1989

    PubMed  Google Scholar 

  • Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192: 481–483, 1976

    PubMed  CAS  Google Scholar 

  • Crismon ML, Ereshefsky L, Saklad SR. A comparison of clozapine absorption in the postprandial versus fasting states. Abstract. Pharmaceutical Research 5: S–171, 1988

    Google Scholar 

  • Criswell HE, Mueller RA, Breese GA. Clozapine antagonism of D-1 and D-2 dopamine receptor-mediated behaviors. European Journal of Pharmacology 159: 141–147, 1989

    PubMed  CAS  Google Scholar 

  • Davidson AB, Weidley E. Differential effects of neuroleptic and other psychotropic agents on acquisition of avoidance in rats. Life Sciences 18: 1279–1284, 1976

    PubMed  CAS  Google Scholar 

  • Davis JM, Casper R. Antipsychotic drugs: clinical pharmacology and therapeutic use. Drugs 14: 260–282, 1977

    PubMed  CAS  Google Scholar 

  • Davis KL, Rosenberg GS. Is there a limbic system equivalent of tardive dyskinesia? Biological Psychiatry 14: 699–703, 1979

    PubMed  CAS  Google Scholar 

  • Davis JM, Schaffer CB, Killian GA, Kinard C, Chan C. Important issues in the drug treatment of schizophrenia. Schizophrenia Bulletin 6: 70–87, 1980

    PubMed  CAS  Google Scholar 

  • De la Chapelle A, Kari C, Nurminen M, Hernberg S. Clozapine-induced agranulocytosis. Human Genetics 37: 183–194, 1977

    PubMed  Google Scholar 

  • Delini-Stula A. Neuroanatomical, neuropharmacological and neurobiochemical target systems for antipsychotic activity of neuroleptics. Pharmacopsychiatry 19: 134–139, 1986

    PubMed  CAS  Google Scholar 

  • De Maio D. Clozapine, a novel major tranquilizer. Arzneimittel-Forschung 22: 919–923, 1972

    PubMed  Google Scholar 

  • Doepp S, Buddeberg C. Extrapyramidale Symptome unter Clozapin. Nervenarzt 46:. 589–590, 1975

    PubMed  CAS  Google Scholar 

  • Eichenberger E. Pharmacology of fluperlapine compared with clozapine. Arzneimittel-Forschung 34: 110–113, 1984

    PubMed  CAS  Google Scholar 

  • Ekblom B, Eriksson K, Lindström LH. Supersensitivity psychosis in schizophrenic patients after sudden clozapine withdrawal. Psychopharmacology 83: 293–294, 1984

    PubMed  CAS  Google Scholar 

  • Ekblom B, Haggstrom JE. Clozapine compared with chlorpromazine: a double-blind evaluation of pharmacological and clinical properties. Current Therapeutic Research 16: 945–957, 1974

    PubMed  CAS  Google Scholar 

  • Eklund K. Supersensitivity and clozapine withdrawal. Psychopharmacology 91: 135, 1987

    PubMed  CAS  Google Scholar 

  • Ereshefsky L, Watanabe MD, Tran-Johnson TK. Clozapine: an atypical antipsychotic agent. Clinical Pharmacy 8: 691–709, 1989

    PubMed  CAS  Google Scholar 

  • Faltus F. Clozapine in the maintenance therapy of schizophrenia. Activitas Nervosa Superior (Praha) 16: 205–206, 1974

    CAS  Google Scholar 

  • Farde L, Wiesel FA, Halldin C, Sedvall G. Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Archives of General Psychiatry 45: 71, 1988

    PubMed  CAS  Google Scholar 

  • Farde L, Wiesel FA, Nordström A-L, Sedvall G. D1- and D2-dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology 99: S28–S31, 1989

    PubMed  Google Scholar 

  • Fink H, Morgenstern R, Oelssner W. Clozapine — a serotonin antagonist? Pharmacology, Biochemistry and Behavior 20: 513–517, 1984

    CAS  Google Scholar 

  • Gardiner TH, Lewis JM, Shore PA. Distribution of clozapine in the rat: localization in lung. Journal of Pharmacology and Experimental Therapeutics 206: 151–157, 1978

    PubMed  CAS  Google Scholar 

  • Gauch R, Michaelis W. The metabolism of 8-chloro-l l-(4-methyl-4-piperazinyl)-5H-dibenzo [b,c][l,4] diazepine (clozapine) in mice, dogs and human subjects. Farmaco 26: 667–681, 1971

    CAS  Google Scholar 

  • Gerlach J, Koppelhus P, Helweg E, Monrad A. Clozapine and haloperidol in a single-blind cross-over trial: therapeutic and biochemical aspects in the treatment of schizophrenia. Acta Psychiatrica Scandinavica 50: 410–424, 1974

    PubMed  CAS  Google Scholar 

  • Grohmann R, Rüther E, Sassim N, Schmidt LG. Adverse effects of clozapine. Psychopharmacology 99: S101–S104, 1989

    PubMed  Google Scholar 

  • Gross H, Langer E, Pfolz H. Clozapin in der Langzeittherapie der chronischen Schizophrenie. Arzneimittel-Forschung 24: 987–989, 1974

    PubMed  CAS  Google Scholar 

  • Groves PM, Rebec GV. Biochemistry and behavior: some central actions of amphetamine and antipsychotic drugs. Annual Review of Psychology 27: 91–127, 1976

    PubMed  CAS  Google Scholar 

  • Gudelsky GA. Tuberoinfundibular dopamine neurons and the regulation of prolactin secretion. Psychoneuroendocrinology 6: 3–16, 1981

    PubMed  CAS  Google Scholar 

  • Gudelsky GA, Koenig JI, Simonovic M, Koyama T, Ohmori T, et al. Differential effects of haloperidol, clozapine, and fluperlapine on tuberoinfundibular dopamine neurons and prolactin secretion in the rat. Journal of Neural Transmission 68: 227–240, 1987

    PubMed  CAS  Google Scholar 

  • Gudelsky GA, Nash JF, Koenig JI, Meltzer HY. Neuroendocrine effects of typical and atypical antipsychotics in the rat. Psychopharmacology Bulletin 23: 483–486, 1987

    CAS  Google Scholar 

  • Guirguis E, Voineskos G, Gray J, Schlieman E. Clozapine (Leponex) vs chlorpromazine (Largactil) in acute schizophrenia (a double-blind controlled study). Current Therapeutic Research 21: 707–719, 1977

    Google Scholar 

  • Gunne L-M, Bárány S. A monitoring test for the liability of neuroleptic drugs to induce tardive dyskinesia. Psychopharmacology 63: 195–198, 1979

    PubMed  CAS  Google Scholar 

  • Haller E, Binder RL. Clozapine and seizures. American Journal of Psychiatry 147: 1069–1071, 1990

    PubMed  CAS  Google Scholar 

  • Halperin R, Guerin JJ, Davis KL. Regional differences in the induction of behavioral supersensitivity by prolonged treatment with atypical neuroleptics. Psychopharmacology 98: 386–391, 1989

    PubMed  CAS  Google Scholar 

  • Hand TH, Hu X-T, Wang RY. Differential effects of acute clozapine and haloperidol on the activity of ventral tegmental (A10) and nigrostriatal (A9) dopamine neurons. Brain Research 415: 257–269, 1987

    PubMed  CAS  Google Scholar 

  • Hanus H, Zapletálek M, Kucera V, Kuba M. Results of the long-term treatment with clozapine. Clinical and electroencephalographic study. Abstract. Psychopharmacology 96 (Suppl.): 345, 1988

    Google Scholar 

  • Haring C, Fleischhacker WW, Schelt P, Humpel C, Barnas C, et al. Influence of patient-related variables on clozapine plasma levels. American Journal of Psychiatry, in press, 1990

  • Haring C, Humpel C, Auer B, Saria A, Barnas C, et al. Clozapine plasma levels determined by high performance liquid chromatography with ultraviolet detection. Journal of Chromatography and Biomedical Applications 428: 160–166, 1988

    CAS  Google Scholar 

  • Haring C, Meise U, Humpel C, Saria A, Fleischhacker WW, et al. Dose-related plasma levels of clozapine: influence of smoking behaviour, sex and age. Psychopharmacology 99: S38–S40, 1989

    PubMed  Google Scholar 

  • Heh CW, Herrera J, De Met E, Potkin S, Costa J, et al. Neuroleptic-induced hypothermia associated with amelioration of psychosis in schizophrenia. Neuropsychopharmacology 1: 149–156, 1988

    PubMed  CAS  Google Scholar 

  • Heipertz R, Pilz H, Beckers W. Serum concentrations of clozapine determined by nitrogen selective gas chromatography. Archives of Toxicology 37: 313–318, 1977

    PubMed  CAS  Google Scholar 

  • Hemphill RE, Pascoe FD, Zabow T. An investigation of clozapine in the treatment of acute and chronic schizophrenia and gross behaviour disorders. South African Medical Journal 49: 2121–2126, 1975

    PubMed  CAS  Google Scholar 

  • Herrera JM, Costa J, Sramek J, Heh C. Clozapine in refractory schizophrenia. Schizophrenia Research 1: 305–306, 1988

    PubMed  CAS  Google Scholar 

  • Honma T, Fukushima H. Effects of bilateral lesions in the striatum or nucleus accumbens on the cataleptogenic activity of neuroleptics in rats. Japanese Journal of Pharmacology 28: 231–238, 1978

    PubMed  CAS  Google Scholar 

  • Hornykiewicz O. Psychopharmacological implications of dopamine and dopamine antagonists: a critical evaluation of current evidence. Annual Review of Pharmacology and Toxicology 17: 545–549, 1977

    PubMed  CAS  Google Scholar 

  • Huff RM, Adams RN. Dopamine release in n. accumbens and striatum by clozapine: simultaneous monitoring by in vivo electrochemistry. Neuropharmacology 19: 587–590, 1980

    CAS  Google Scholar 

  • Idänpään-Heikkilä J, Alhava E, Olkinuora M, Palva IP. Agranulocytosis during treatment with clozapine. European Journal of Clinical Pharmacology 11: 193–198, 1977

    PubMed  Google Scholar 

  • Imperato A, Angelucci L. Effects of the atypical neuroleptics clozapine and fluperlapine on the invivoDA-release in the dorsal striatum and in the prefrontal cortex. Abstract.Psychopharmacology 96 (Suppl.): 79,1988

    Google Scholar 

  • Inui M, Kitamura H, Tanaka S, Nagai J, Tanimukai H. Clinical experiences of a new neuroleptic ‘clozapine’ in schizophrenia. Journal of Remedies and Clinics 19: 1493–1501, 1970

    Google Scholar 

  • Iorio LC, Barnett A, Leitz FH, Houser VP, Korduba CA. SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. Journal of Pharmacology and Experimental Therapeutics 226: 462–468, 1983

    PubMed  CAS  Google Scholar 

  • Itoh H, Miura S, Yagi G, Sakurai S, Ohtsuka N. Some methodological considerations for the clinical evaluation of neuroleptics — comparative effects of clozapine and haloperidol on schizophrenics. Folia Psychiatrica et Neurologica 31: 17–24, 1977

    CAS  Google Scholar 

  • Iversen SD, Koob GF. Behavioral implications of dopaminergic neurons in the mesolimbic system. In Costa E, Gessa GL (Eds) Nonstriatal dopaminergic neurons. Advances in biochemical psychopharmacology. Raven, New York, pp. 209–214, 1977

    Google Scholar 

  • Jenner P, Rupniak NM, Marsden CD. Differential alteration of striatal D1and D2receptors induced by the long-term administration of haloperidol, sulpiride or clozapine to rats. Psychopharmacology 2: S174–S181, 1985

    Google Scholar 

  • Johansson P, Casey DE, Gunne LM. Dose-dependent increases in spontaneous chewing rates during long-term administration of haloperidol but not clozapine. Psychopharmacology Bulletin 22: 1017–1019, 1986

    CAS  Google Scholar 

  • Jeste DV, Wyatt RJ. Changing epidemiology of tardive dyskinesia: an overview. American Journal of Psychiatry 138: 297–309, 1981

    PubMed  CAS  Google Scholar 

  • Kane JM, Cooper TB, Sachar EJ, Halpern FS, Bailine S. Clozapine: plasma levels and prolactin response. Psychopharmacology 73: 184–187, 1981

    PubMed  CAS  Google Scholar 

  • Kane J, Honigfeld G, Singer J, Meltzer H. Clozapine for the treatment-resistant schizophrenic. Archives of General Psychiatry 45: 789–796, 1988

    PubMed  CAS  Google Scholar 

  • Kane JM, Lieberman JA. Maintenance pharmacotherapy in schizophrenia. In Meltzer HY (Ed.) Psychopharmacology, the third generation of progress: the emergence of molecular biology and biological psychiatry. Raven Press, New York, pp. 1103–1109, 1987

    Google Scholar 

  • Kane JM, Woerner M, Borenstein M, Wegner J, Lieberman J. Integrating incidence and prevalence of tardive dyskinesia. Psychopharmacology Bulletin 22: 254–258, 1986

    PubMed  CAS  Google Scholar 

  • Kelly PH, Iversen SD. Selective 6OHDA-induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant-induced locomotor activity in rats. European Journal of Pharmacology 40: 45–56, 1976

    PubMed  CAS  Google Scholar 

  • Klawans HL, Goetz CG, Perlik S. Tardive dyskinesia: review and update. American Journal of Psychiatry 137: 900–908, 1980

    PubMed  CAS  Google Scholar 

  • Klik J, Krausova J, Krizova A, Maresova H, Vencovsky E. Experiences with clozapine in practice at a psychiatric hospital. Ceskoslovenska Psychiatrie 72: 197–200, 1976

    PubMed  CAS  Google Scholar 

  • Kovacic B, Ruffing D, Stanley M. Effect of neuroleptics and of potential new antipsychotic agents (MJ13859-1 and MJ 13980-1) on a monkey model of tardive dyskinesia. Journal of Neural Transmission 65: 39–49, 1986

    PubMed  CAS  Google Scholar 

  • Krupp P, Barnes P. Leponex-associated granulocytopenia: a review of the situation. Psychopharmacology 99: S118–S121, 1989

    PubMed  Google Scholar 

  • Kuha S, Miettinen E. Long-term effect of clozapine in schizophrenia. A retrospective study of 108 chronic schizophrenics treated with clozapine for up to 7 years. Nordisk Psykiatrisk Tidsskrift 40: 225–230, 1986

    Google Scholar 

  • Kuribara H, Tadokoro S. Correlation between antiaversive activities of antipsychotic drugs in rats and daily clinical doses. Pharmacology, Biochemistry and Behavior 14: 181–192, 1981

    CAS  Google Scholar 

  • Lane RF, Blaha CD. Electrochemistry in vivo: application to CNS pharmacology. Annals of New York Academy of Sciences 473: 50–69, 1986

    CAS  Google Scholar 

  • Lane RF, Blaha CD, Rivet JM. Selective inhibition of mesolimbic dopamine release following chronic administration of clozapine: involvement of α1-noradrenergic receptors demonstrated by in vivo voltammetry. Brain Research 460: 398–401, 1988

    PubMed  CAS  Google Scholar 

  • Lapierre YD, Ghadirian A, St-Laurent J, Chaudhry RP. Clozapine in acute schizophrenia — efficacy and toxicity. Current Therapeutic Research 27: 391–400, 1980

    Google Scholar 

  • Lee T, Tang SW. Loxapine and clozapine decrease serotonin (S2) but do not elevate dopamine (D2) receptor numbers in the rat brain. Psychiatry Research 12: 277–285, 1984

    PubMed  CAS  Google Scholar 

  • León CA, Estrada H. Therapeutic effect of clozapine on psychotic symptoms (clinical evaluation using the double-blind method). Revista Colombiana de Psiquiatria 3: 309–320, 1974

    Google Scholar 

  • Leppig M, Bosch B, Naber D, Hippius H. Clozapine in the treatment of 121 outpatients. Psychopharmacology 99: S77–S79, 1989

    PubMed  Google Scholar 

  • Leysen JE, Niemegeers CJE, Tollenaere JP, Laduron PM. Serotonergic component of neuroleptic receptors. Nature 272: 168–171, 1978

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Johns CA, Kane JM, Rai K, Pisciotta AV, et al. Clozapine-induced agranulocytosis: non-cross-reactivity with other psychotropic drugs. Journal of Clinical Psychiatry 49: 271–277, 1988

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Kane JM, Johns CA. Clozapine: guidelines for clinical management. Journal of Clinical Psychiatry 50: 329–338, 1989

    PubMed  CAS  Google Scholar 

  • Liebman J, Neale R. Neuroleptic-induced acute dyskinesias in squirrel monkeys: correlation with propensity to cause extrapyramidal side effects. Psychopharmacology 68: 25–29, 1980

    PubMed  CAS  Google Scholar 

  • Lindstrom LH. The effect of long-term treatment with clozapine in schizophrenia: a retrospective study in 96 patients treated with clozapine for up to 13 years. Acta Psychiatrica Scandinavica 77: 524–529, 1988

    PubMed  CAS  Google Scholar 

  • Ljungberg T, Ungerstedt U. Classification of neuroleptic drugs according to their ability to inhibit apomorphine-induced locomotion and gnawing: evidence for two different mechanisms of action. Psychopharmacology 56: 239–247, 1978

    PubMed  CAS  Google Scholar 

  • Marder SR, Van Putten T. Who should receive clozapine? Archives of General Psychiatry 45: 865–867, 1988

    PubMed  CAS  Google Scholar 

  • Mattes JA. Clozapine for refractory schizophrenia: an open study of 14 patients treated up to 2 years. Journal of Clinical Psychiatry 50: 389–391, 1989

    PubMed  CAS  Google Scholar 

  • Meier J. Bioanalytical assay of clozapine and its N-oxide metabolite and the determination of their blood levels in the dog. British Journal of Pharmacology 53: 440P, 1975

    Google Scholar 

  • Meltzer HY. Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology 99: S18–S27, 1989

    PubMed  Google Scholar 

  • Meltzer HY, Alphs L, Bastani B, Kwon KY, Ramirez LF. One year outcome of study of clozapine in treatment-resistant schizophrenia. 8th World Congress of Psychiatry, Athens, October 13–19, 1989, pp. 19–27, 1989

  • Meltzer HY, Bastani B, Kwon KY, Ramirez LF, Burnett S, et al. A prospective study of clozapine in treatment-resistant schizophrenic patients I. Preliminary report. Psychopharmacology 99: S68–S72, 1989

    PubMed  Google Scholar 

  • Meltzer HY, Fang VS. The effect of neuroleptics on serum prolactin in schizophrenic patients. Archives of General Psychiatry 33: 279–286, 1976

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Goode DJ, Schyve PM, Young M, Fang VS. Effect of clozapine on human serum prolactin levels. American Journal of Psychiatry 136: 1550–1555, 1979

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Matsubara S, Lee J-C. Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2pkivalues. Journal of Pharmacology and Experimental Therapeutics 251: 238–246, 1989

    PubMed  CAS  Google Scholar 

  • Miller RJ, Hiley CR. Anti-muscarinic properties of neuroleptics and drug-induced Parkinsonism. Nature 248: 596–597, 1974

    PubMed  CAS  Google Scholar 

  • Miller RJ, Hiley CR. Anti-dopaminergic and anti-muscarinic effects of dibenzodiazepines. Naunyn-Schmiedeberg’s Archives of Pharmacology 292: 289–293, 1976

    PubMed  CAS  Google Scholar 

  • Naber D, Leppig M, Grohmann R, Hippius H. Efficacy and adverse effects of clozapine in the treatment of schizophrenia and tardive dyskinesia — a retrospective study of 387 patients. Psychopharmacology 99: S73–S76, 1989

    PubMed  Google Scholar 

  • Nair NPV, Lal S, Cervantes P, Yassa R, Guyda H. Effect of clozapine on apomorphine-induced growth hormone secretion and serum prolactin concentrations in schizophrenia. Neuropsychobiology 5: 136–142, 1979

    PubMed  CAS  Google Scholar 

  • Nair NPV, Zicherman V, Schwartz G. Dopamine and schizophrenia. A reappraisal in the light of clinical studies with clozapine. Canadian Psychiatric Association Journal 22: 285–293, 1977

    CAS  Google Scholar 

  • Niemegeers CJE, Janssen PAJ. A systematic study of the pharmacological activities of dopamine antagonists. Life Sciences 24: 2201–2216, 1979

    PubMed  CAS  Google Scholar 

  • Niemegeers CJE, Verbruggen FJ, Janssen PAJ. The influence of various neuroleptic drugs on shock avoidance responding in rats. Psychopharmacology 16: 161–174, 1969

    CAS  Google Scholar 

  • Niskanen P, Achté K, Jaskari M, Karesoja M, Melsted B, et al. Results of a comparative double-blind study with clozapine and chlorpromazine in the treatment of schizophrenic patients. Eripainos Psychiatria Fennica 307–313, 1974

  • Nurowska K, Poluba M, Welbel L. Effect of clozapine on mental and physical state of patients. Psychiatria Polska 9: 423–429, 1975

    PubMed  CAS  Google Scholar 

  • Owen RR, Beake BJ, Marby D, Dessain EC, Cole JO. Response to clozapine in chronic psychotic patients. Psychopharmacology Bulletin 25: 253–256, 1989

    PubMed  Google Scholar 

  • Panteleeva GP, Tsutsul’kovskaya MY, Belyaev BS, Minsker EI. Clozapine in the treatment of schizophrenic patients: an international multicenter trial. Clinical Therapeutics 10: 57–68, 1987

    PubMed  CAS  Google Scholar 

  • Panteleeva GP, Tsutsul’kovskaya MY, Mazurskii MB, Danilenko YM. Prolonged treatment of schizophrenic patients with Leponex (clozapine). Zhurnal Nevropatologii i Psikhiatrii 78: 1247–1256, 1978

    CAS  Google Scholar 

  • Paunovic VR, Jasovic-Casic MM, Bogdanovic MR, Totic SD. Clozapine in the treatment of negative symptoms in schizophrenia. Abstract. Psychopharmacology 96 (Suppl.): 344, 1988

    Google Scholar 

  • Perényi A, Kuncz E, Bagdy G. Early relapse after sudden withdrawal or dose reduction of clozapine. Psychopharmacology 86: 244, 1985

    PubMed  Google Scholar 

  • Peroutka SJ, Snyder SH. Relationship of neuroleptic drug effects at brain dopamine, serotonin, α-adrenergic, and histamine receptors to clinical potency. American Journal of Psychiatry 137: 1518–1522, 1980

    PubMed  CAS  Google Scholar 

  • Pijnenburg AJJ, Honig WMM, Van Der Heyden JAM, Van Rossum JM. Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity. European Journal of Pharmacology 35: 45–58, 1976

    PubMed  CAS  Google Scholar 

  • Pisciotta AV, Cronkite CE, Lieberman JA, Rai K. The cytoimmune mechanism and predictability of clozapine-induced agranulocytosis. Abstract. Blood 72: 150, 1988

    Google Scholar 

  • Pope HG, Cole JO, Choras PT, Fulwiler CE. Apparent neuroleptic malignant syndrome with clozapine and lithium. Journal of Nervous and Mental Disease 174: 493–495, 1986

    PubMed  Google Scholar 

  • Povlsen UJ, Noring U, Fog R, Gerlach J. Tolerability and therapeutic effect of clozapine. A retrospective investigation of 216 patients treated with clozapine for up to 12 years. Acta Psychiatrica Scandinavica 71: 176–185, 1985

    Google Scholar 

  • Rebec GV, Alloway KD, Bashore T. Differential actions of classical and atypical antipsychotic drugs on spontaneous neuronal activity in the amygdaloid complex. Pharmacology, Biochemistry and Behavior 14: 49–56, 1981

    CAS  Google Scholar 

  • Rebec GV, Anderson GD. Regional neuropharmacology of the antipsychotic drugs: implications for the dopamine hypothesis of schizophrenia. Behavioral Assessment 8: 11–29, 1986

    Google Scholar 

  • Rebec GV, Bashore TR, Zimmerman KS, Alloway KD. ‘Classical’ and ‘atypical’ antipsychotic drugs: differential antagonism of amphetamine- and apomorphine-induced alterations of spontaneous neuronal activity in the neostriatum and nucleus accumbens. Pharmacology, Biochemistry and Behavior 11: 529–538, 1979

    CAS  Google Scholar 

  • Rebec GV, Bashore TR, Zimmerman KS, Alloway KD. Neostriatal and mesolimbic neurons: dose-dependent effects of clozapine. Neuropharmacology 19: 281–288, 1980

    PubMed  CAS  Google Scholar 

  • Rebec GV, Gelman J, Alloway KD, Bashore TR. Cataleptogenic potency of the antipsychotic drugs is inversely correlated with neuronal activity in the amygdaloid complex of the rat. Pharmacology, Biochemistry and Behavior 19: 759–763, 1983

    CAS  Google Scholar 

  • Reynolds GP, Garrett NJ, Rupniak N, Jenner P, Marsden CD. Chronic clozapine treatment of rats down-regulates cortical 5-HT2 receptors. European Journal of Pharmacology 89: 325–326, 1983

    PubMed  CAS  Google Scholar 

  • Richelson E. Neuroleptic affinities for human brain receptors and their use in predicting adverse effects. Journal of Clinical Psychiatry 45: 331–336, 1984

    PubMed  CAS  Google Scholar 

  • Richter K. Determination of clozapine in human serum by capillary gas chromatography. Journal of Chromatography and Biomedical Applications 434: 465–468, 1988

    CAS  Google Scholar 

  • Rodová A, Svestka J, Nâhunek K, Ce>sková E. A blind comparison of clozapine and perphenazine in schizophrenics. Activitas Nervosa Superior (Praha) 15: 94–95, 1973

    Google Scholar 

  • Roubicek J, Major I. EEG profile and behavioral changes after a single dose of clozapine in normals and schizophrenics. Biological Psychiatry 12: 613–633, 1977

    PubMed  CAS  Google Scholar 

  • Rupniak NMJ, Hall MD, Mann S, Fleminger S, Kilpatrick G, et al. Chronic treatment with clozapine, unlike haloperidol, does not induce changes in striatal D-2 receptor function in the rat. Biochemical Pharmacology 34: 2755–2763, 1985

    PubMed  CAS  Google Scholar 

  • Salzman NP, Brodie BB. Physiological disposition and fate of chlorpromazine and a method for its estimation in biological material. Journal of Pharmacology and Experimental Therapeutics 118: 46–54, 1956

    PubMed  CAS  Google Scholar 

  • Sanger DJ. The effects of clozapine on shuttle-box avoidance responding in rats: comparisons with haloperidol and chlordiazepoxide. Pharmacology, Biochemistry and Behavior 23: 231–236, 1985

    CAS  Google Scholar 

  • Schmauss M, Wolff R, Erfurth A, Rüther E. Tolerability of long term clozapine treatment. Psychopharmacology 99: S105–S108, 1989

    PubMed  Google Scholar 

  • Schönell H, Klieser E. Comparison of the effects of standardized doses of haloperidol and clozapine on systematic delusions of chronic schizophrenics. Abstract. Psychopharmacology 96 (Suppl.): 186, 1988

    Google Scholar 

  • Schuster P, Gabriel E, Küfferle B, Strobl G, Karobath M. Reversal by physostigmine of clozapine-induced delirium. Clinical Toxicology 10: 437–441, 1977

    PubMed  CAS  Google Scholar 

  • See RE, Ellison G. Comparison of chronic administration of haloperidol and the atypical neuroleptics, clozapine and raclopride, in an animal model of tardive dyskinesia. European Journal of Pharmacology 181: 175–186, 1990

    PubMed  CAS  Google Scholar 

  • Seeman P, Lee T, Chau-Wong M, Wong K. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261: 717–719, 1976

    PubMed  CAS  Google Scholar 

  • Setyonegoro RK, Karnadi J, Darmabrata W. Clinical trial of clozapine (Leponex®, Sandoz) on Indonesian schizophrenic patients. ‘Jiwa’ Indonesian Psychiatric Quarterly 8: 61–71, 1975

    Google Scholar 

  • Shopsin B, Feiner NF. Letter to the Editor. Psychopharmacology Bulletin 19: 563–564, 1983

    PubMed  CAS  Google Scholar 

  • Shopsin B, Klein H, Aaronsom M, Collora M. Clozapine, chlorpromazine, and placebo in newly hospitalized, acutely schizophrenic patients. A controlled, double-blind comparison. Archives of General Psychiatry 36: 657–664, 1979

    CAS  Google Scholar 

  • Simpson GM, Cooper TA. Clozapine plasma levels and convulsions. American Journal of Psychiatry 135: 99–100, 1978

    PubMed  CAS  Google Scholar 

  • Simpson GM, Lee JH, Shrivastava RK. Clozapine in tardive dyskinesia. Psychopharmacology 56: 75–80, 1978

    PubMed  CAS  Google Scholar 

  • Singer K, Lam CM. Evaluation of Leponex (clozapine) in schozophrenia with acute symptomatology. Journal of International Medical Research 1: 627–629, 1973

    Google Scholar 

  • Singer K, Law SK. A double-blind comparison of clozapine (Leponex) and chlorpromazine in schizophrenia of acute symptomatology. Journal of International Medical Research 2: 433–435, 1974

    Google Scholar 

  • Small JG, Milstein V, Marhenke JD, Hall DD, Kellams JJ. Treatment outcome with clozapine in tardive dyskinesia, neuroleptic sensitivity, and treatment-resistant psychosis. Journal of Clinical Psychiatry 48: 263–267, 1987

    PubMed  CAS  Google Scholar 

  • Snyder S, Greenberg D, Yamamura HI. Antischizophrenic drugs and brain cholinergic receptors. Affinity for muscarinic sites predicts extrapyramidal effects. Archives of General Psychiatry 31: 58–61, 1974

    CAS  Google Scholar 

  • Souto M, Monti JM, Altier H. Effects of clozapine on the activity of central dopaminergic and noradrenergic neurons. Pharmacology, Biochemistry and Behavior 10: 5–9, 1979

    CAS  Google Scholar 

  • Spealman RD, Kelleher RT, Goldberg SR, DeWeese J, Goldberg DM. Behavioral effects of clozapine: comparison with thioridazine, chlorpromazine, haloperidol and chlordiazepoxide in squirrel monkeys. Journal of Pharmacology and Experimental Therapeutics 224: 127–134, 1983

    PubMed  CAS  Google Scholar 

  • Stawarz RJ, Hill H, Robinson SE, Setler P, Dingell JV, et al. On the significance of the increase in homovanillic acid (HVA) caused by antipsychotic drugs in corpus striatum and limbic forebrain. Psychopharmacology 43: 125–130, 1975

    CAS  Google Scholar 

  • Stevens JR, Livermore A. Kindling of the mesolimbic dopamine system: animal model of psychosis. Neurology 28: 36–46, 1978

    PubMed  CAS  Google Scholar 

  • Stock B, Spiteller G, Heipertz R. Austausch aromatisch gebundenen Halogens gegen OH- und SCH3-bei der metabolisierung des Clozapins im menschlichen Körper. Arzneimittel-Forschung 27: 982–990, 1977

    PubMed  CAS  Google Scholar 

  • Thorup M, Fog R. Clozapine treatment of schizophrenic patients. Plasma concentration and coagulation factors. Acta Psychiatrica Scandinavica 55: 123–126, 1977

    CAS  Google Scholar 

  • Vencovsky E, Peterova E, Baudis P. A comparison of the therapeutic effects of clozapine and chlorpromazine. Ceskoslovenska Psychiatrie 71: 21–26, 1975

    PubMed  CAS  Google Scholar 

  • Vincent PC. Drug-induced aplastic anaemia and agranulocytosis: incidence and mechanisms. Drugs 31: 52–63, 1986

    PubMed  CAS  Google Scholar 

  • Vincent SH, Shambhu MB, Digenis GA. Synthesis of [82Br] bromperidol and preliminary tissue distribution studies in the rat. Journal of Medicinal Chemistry 23: 75–79, 1980

    PubMed  CAS  Google Scholar 

  • Volavka J, Abrams R, Taylor MA. Hemispheric lateralization of fast EEG activity in schizophrenia and endogenous depression. Advances in Biological Psychiatry 6: 72–75, 1981

    Google Scholar 

  • Walters JR, Roth RH. Dopaminergic neurons: an in vivo system for measuring drug interactions with presynaptic receptors. Naunyn-Schmiedeberg’s Archives of Pharmacology 296: 5–14, 1976

    PubMed  CAS  Google Scholar 

  • Watling KJ, Beer MS, Stanton JA, Newberry NR. Interaction of the atypical neuroleptic clozapine with 5-HT3receptors in the cerebral cortex and superior cervical ganglion of the rat. European Journal of Pharmacology 182: 465–472, 1990

    PubMed  CAS  Google Scholar 

  • Wenger GR. Effects of clozapine, chlorpromazine and haloperidol on schedule-controlled behavior. Pharmacology, Biochemistry and Behavior 11: 661–667, 1979

    CAS  Google Scholar 

  • Westerink BHC, Korf J. Influence of drugs on striatal and limbic homovanillic acid concentration in the rat brain. European Journal of Pharmacology 33: 31–40, 1975

    PubMed  CAS  Google Scholar 

  • Westerink BHC, Korf J. Regional rat brain levels of 3,4-dihy-droxyphenylacetic acid and homovanillic acid: concurrent fluorometric measurement and influence of drugs. European Journal of Pharmacology 38: 281–291, 1976

    PubMed  CAS  Google Scholar 

  • Westerink BHC, Lejeune B, Korf J, Van Praag HM. On the significance of regional dopamine metabolism in the rat brain for the classification of centrally acting drugs. European Journal of Pharmacology 42: 179–190, 1977

    PubMed  CAS  Google Scholar 

  • White FJ, Wang RY. Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons. Science 221: 1054–1057, 1983

    PubMed  CAS  Google Scholar 

  • Wilk S, Glick SD. Dopamine metabolism in the nucleus accumbens: the effect of clozapine. European Journal of Pharmacology 37: 203–206, 1976

    PubMed  CAS  Google Scholar 

  • Wilk S, Watson E, Stanley ME. Differential sensitivity of two dopaminergic structures in rat brain to haloperidol and to clozapine. Journal of Pharmacology and Experimental Therapeutics 195: 265–270, 1975

    PubMed  CAS  Google Scholar 

  • Wilmot CA, Szczepanik AM. Effects of acute and chronic treatments with clozapine and haloperidol on serotonin (5-HT2) and dopamine (D2) receptors in the rat brain. Brain Research 487: 288–298, 1989

    PubMed  CAS  Google Scholar 

  • Wojdyslawska I, Goraj A, Soczynska J. Clinical evaluation of clozapine taking into account catamnestic tests. Psychiatria Polska 10: 497–502, 1976

    PubMed  CAS  Google Scholar 

  • Zivkovic B, Guidotti A, Revuelta A, Costa E. Effect of thioridazine, clozapine and other antipsychotics on the kinetic state of tyrosine hydroxylase and on the turnover rate of dopamine in striatum and nucleus accumbens. Journal of Pharmacology and Experimental Therapeutics 194: 37–46, 1975

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Various sections of the manuscript reviewed by: M. Ackenheil, Psychiatric Hospital, University of Munich, Munich, Federal Republic of Germany; D.E. Casey, Psychiatric Service, Veterans Administration Medical Center, Portland, Oregon, USA; W.W. Fleischhacker, Department of Psychiatry, Innsbruck University Clinics, Innsbruck, Austria; J. Gerlach, St Hans Hospital, Roskilde, Denmark; G.A. Gudelsky, Department of Psychiatry, University Hospitals of Cleveland, Cleveland, Ohio, USA; H. Kaiya, Department of Neurology and Psychiatry, Gifu University School of Medicine, Gifu, Japan; M.H. Lader, Institute of Psychiatry, University of London, London, England; J.A. Lieberman, Hillside Hospital, Long Island Jewish Medical Center, Glen Oaks, New York, USA; L. Lindström, Psychiatric Research Center, University of Uppsala, Uppsala, Sweden; D.K. Luscombe, Welsh School of Pharmacy, University of Wales Institute of Science and Technology, Cardiff, Wales; H. Y. Meltzer, Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; R.R. Owen, National Institute of Mental Health, Bethesda, Maryland, USA; J.G. Small, Department of Psychiatry, Larue D. Carter Memorial Hospital, Indiana University School of Medicine, Indianapolis, Indiana, USA; P. Turner, Department of Clinical Pharmacology, St Bartholomew’s Hospital Medical College, University of London, London, England; J.A. Vale, West Midlands Poisons Unit, Dudley Road Hospital, Birmingham, England.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitton, A., Heel, R.C. Clozapine. Drugs 40, 722–747 (1990). https://doi.org/10.2165/00003495-199040050-00007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199040050-00007

Keywords

Navigation