Skip to main content
Log in

The Potential Role of Thromboxane Inhibitors in Preventing Myocardial Ischaemic Injury

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aiken JW, Shebuski RJ, Miller OV, Gorman RR. Endogenous prostacyclin contributes to the efficacy of a thromboxane synthetase inhibitor for preventing coronary artery thrombosis. Journal of Pharmacology and Experimental Therapeutics 219: 299–308, 1981

    PubMed  CAS  Google Scholar 

  • Ashton J, Schmidtz JM, Campbell WB, Ogletree ML, Raheja S, et al. Inhibition of cyclic flow variations in stenosed canine coronary arteries by thromboxane A2/prostaglandin H2receptor agonists. Circulation Research 59: 569–578, 1986

    Article  Google Scholar 

  • Brezinski ME, Yanagisawa A, Darius H, Lefer AM. Anti-ischemic actions of a new thromboxane receptor antagonist during acute myocardial ischemia in cats. American Heart Journal 110: 1161–1168, 1985

    Article  PubMed  CAS  Google Scholar 

  • Burke SE, Lefer AM, Smith GM, Smith JB. Prevention of extension of ischaemic damage following acute myocardial ischaemia by dazoxiben, a new thromboxane synthetase inhibitor. British Journal of Clinical Pharmacology 15: 97S-101S, 1983

    Article  CAS  Google Scholar 

  • Catella F, Healy D, Lawson JA, FitzGerald GA. 11-dehydro-thromboxane B2: a novel index of thromboxane A2formation in the human circulation. Proceedings of the National Academy of the Sciences USA 83: 5861–5866, 1986

    Article  CAS  Google Scholar 

  • Coker SJ, Parratt JR. AH-23848, a thromboxane antagonist, suppresses ischaemia and reperfusion-induced arrhythmias in anaesthetized greyhounds. British Journal of Pharmacology 86: 259–264, 1985

    Article  PubMed  CAS  Google Scholar 

  • Coker SJ, Parratt JR, Ledingham IM, Zeitlin IJ. Thromboxane and prostacyclin release from ischaemic myocardium in relation to arrhythmias. Nature 91: 323–324, 1981

    Article  Google Scholar 

  • Debono DP, Lumley P, Been M, Keery R, Ince SE, et al. Effect of the specific thromboxane receptor blocking drug AH-23848 in patients with angina pectoris. British Heart Journal 56: 509–517, 1986

    Article  CAS  Google Scholar 

  • Finci L, Höflins B, Ludwig B, Bulitta M, Steffenino G, et al. Sultroban during and after coronary angioplasty: a double-blind placebo controlled study. Zeitschrift für Kardiologie 78 (Suppl.3): 50–54, 1989

    PubMed  Google Scholar 

  • Fitzgerald DJ, Doran J, Jackson E, FitzGerald GA. Coronary vascular occlusion mediated via thromboxane A2-prostaglandin endoperoxide receptor activation in vivo. Journal of Clinical Investigation 77: 496–502, 1986

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald DJ, Roy L, Catella F, FitzGerald GA. Platelet activation in unstable coronary disease. New England Journal of Medicine 315: 983–990, 1986

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald DJ, Wright F, FitzGerald GA. Increased thromboxane biosynthesis during coronary thrombolysis: evidence that platelet activation and thromboxane A2modulate the response to tissue-type plasminogen activator in vivo. Circulation Research 65: 83–94, 1989

    Article  PubMed  CAS  Google Scholar 

  • FitzGerald GA, Brash AR, Oates JA, Pederson AK. Endogenous prostacyclin biosynthesis and platelet function during selective inhibition of thromboxane synthetase in man. Journal of Clinical Investigation 71: 1336–1346, 1983

    Article  Google Scholar 

  • Folger WH, Lawson DL, Wilcox CS, Welch WS, Mehta JL. Endogenous thromboxane release mediates renal vasoconstriction evoked by thromboxane mimetic. Abstract. Clinical Research 37: 581 A, 1989

    Google Scholar 

  • Frishman WH, Christodoulou J, Weksler B, et al. Aspirin therapy in angina pectoris: effects on platelet aggregation, exercise tolerance and electrocardiographic manifestations of ischemia. American Heart Journal 92: 3–10, 1976

    Article  PubMed  CAS  Google Scholar 

  • Golino P, Buja LM, Ashton JH, Kulkarni P, Taylor AL, et al. Effect of thromboxane and serotonin receptor antagonists on intracoronary platelet deposition in dogs with experimentally stenosed coronary arteries. Circulation 78: 701–711, 1988

    Article  PubMed  CAS  Google Scholar 

  • Grover GJ, Schumacher WA. Effect of thromboxane A2receptor antagonist SQ 30,741 on ultimate myocardial infarct size, reperfusion injury and coronary flow reserve. Journal of Pharmacology and Experimental Therapeutics 248: 484–491, 1989

    PubMed  CAS  Google Scholar 

  • Halushka PV, Mais DE, Mayoux PR, Morinelli TA. Thromboxane, prostaglandin and leukotriene receptors. Annual Review of Pharmacology and Toxicology 10: 213–239, 1989

    Google Scholar 

  • Hamberg M, Svensson J, Samuelsson B. Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proceedings of the National Academy of the Sciences USA 72: 2994–2998, 1975

    Article  CAS  Google Scholar 

  • Houston DS, Shepherd JT, Vanhoutte PM. Aggregating human platelets cause direct contraction and endothelium-dependent relaxation of isolated canine coronary arteries. Journal of Clinical Investigation 78: 539–544, 1986

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Yamanishi J, Furuta Y, Kaibuchi K, Takai Y, et al. Elevation of cytoplasmic free calcium concentration by stable thromboxane A2analogue in human platelets. Biochemical and Biophysical Research Communications 117: 663–669, 1983

    Article  PubMed  CAS  Google Scholar 

  • Kitzen JM, Lynch JJ, Upricharol ACG, Venkatesh N, Lucchesi BR. Failure of thromboxane synthetase inhibition to protect the post-infarcted heart against the induction of ventricular tachycardia and ventricular fibrillation in a conscious canine model of sudden coronary death. Pharmacology 37: 171–186, 1988

    Article  PubMed  CAS  Google Scholar 

  • Kondo K, Seo R, Maka M, Kitagawa T, Wakitani K, et al. Effects of ONO-3708, an antagonist of the thromboxane A2/prostaglandin endoperoxide receptor, on platelet aggregation and thrombosis. European Journal of Pharmacology 163: 253–261, 1989

    Article  PubMed  CAS  Google Scholar 

  • Kramer J, Davis A, Dean R, McCluskey E, Needleman P, et al. Thromboxane A2does not contribute to arrhythmogenesis during evolving myocardial infarction. Journal of Cardiovascular Pharmacology 7: 1069–1075, 1985

    Article  PubMed  CAS  Google Scholar 

  • Kyrie PA, Eichler HG, Jager U, Lechner K. Inhibition of prostacyclin and thromboxane A2generation by low-dose aspirin at the site of plug formation in man in vivo. Circulation 75: 1025–1030, 1987

    Article  Google Scholar 

  • Lefer AM, Messenger M, Okamatsu S. Salutary actions of thromboxane synthetase inhibition during global myocardial ischemia. Naunyn-Schmiedeberg’s Archives of Pharmacology 321: 130–134, 1982

    Article  PubMed  CAS  Google Scholar 

  • Lewy RI, Wiener L, Walinsky P, Lefer AM, Silver MJ, et al. Thromboxane release during pacing-induced angina pectoris: possible vasoconstrictor influence on the coronary vasculature. Circulation 61: 1165–1171, 1980

    Article  PubMed  CAS  Google Scholar 

  • Mais D, Saussy D, Chaikhouni A, Kochel P, Hamanaka N, et al. Pharmacologic characterization of human and canine thromboxane A2/prostaglandin H2receptors in platelets and blood vessels: evidence for different receptors. Journal of Pharmacology and Experimental Therapeutics 233: 424–428, 1985

    Google Scholar 

  • Marcus AJ, Weksler BB, Jaffe EA, Brockman MJ. Synthesis of prostacyclin from platelet-derived endoperoxides by cultured human endothelial cells. Journal of Clinical Investigation 66: 979–986, 1980

    Article  PubMed  CAS  Google Scholar 

  • Mehta JL, Conti CR. Aspirin in myocardial ischemia: why, when, and how much? Clinical Cardiology 12: 179–184, 1989

    Article  PubMed  CAS  Google Scholar 

  • Mehta JL, Feldman RL, MacDonald RG, Letts G. Effects of human coronary occlusion on thromboxane A2and leukotriene C4 release. Abstract. Journal of the American College of Cardiology 7: 106A, 1986

    Google Scholar 

  • Mehta JL, Lawson DL, Mehta P. Modulation of human neutrophil Superoxide production by selective thromboxane synthetase inhibitor U63,557A. Life Sciences 43: 923–928, 1988

    Article  PubMed  CAS  Google Scholar 

  • Mehta JL, Mehta P, Feldman RL. Severe intracoronary thromboxane release preceding acute coronary occlusion. Prostaglandins, Leukotrienes and Medicine 8: 599–605, 1982

    CAS  Google Scholar 

  • Mehta JL, Mehta P, Feldman RL, Horalek C. Thromboxane release in coronary artery disease: spontaneous versus pacing-induced angina. American Heart Journal 107: 859–869, 1984

    Article  PubMed  CAS  Google Scholar 

  • Mehta JL, Mehta P, Horalek C. The significance of platelet vessel wall prostaglandin equilibrium during exercise-induced stress. American Heart Journal 105: 895–900, 1983

    Article  PubMed  CAS  Google Scholar 

  • Mehta JL, Mehta P, Lawson DL, Ostrowski N, Brigmon L. Influence of selective thromboxane synthetase blocker CGS-13080 on thromboxane and prostacyclin biosynthesis in whole blood: evidence for synthesis of prostacyclin by leukocytes from platelet-derived endoperoxides. Journal of Laboratory and Clinical Medicine 106: 246–252, 1985

    PubMed  CAS  Google Scholar 

  • Mehta JL, Mehta P, Lopez LM, Ostrowski N, Aguila E. Platelet function and biosynthesis of prostacyclin and thromboxane A2in whole blood upon aspirin administration in man. Journal of the American College of Cardiology 4: 806–811, 1984

    Article  PubMed  CAS  Google Scholar 

  • Mehta JL, Nichols WW, Goldman R. Prostacyclin release following endoperoxide analog infusion in the intact dog. American Journal of Physiology 246: R205–R210, 1984

    PubMed  CAS  Google Scholar 

  • Mehta JL, Nichols WW, Schofield R, Donnelly WH, Chandna VK. TxA2inhibition and ischemia-induced loss of myocardial function and reactive hyperemia. American Journal of Physiology 258: H1402–H1408, 1990

    PubMed  CAS  Google Scholar 

  • Mehta JL, Roberts A. Human vascular tissues produce thromboxane as well as prostacyclin. American Journal of Physiology 244: R839–R844, 1983

    PubMed  CAS  Google Scholar 

  • Mickelson JK, Simpson PJ, Gallas MT, Lucchesi BR. Thromboxane synthetase inhibition with CGS 13080 improves coronary blood flow after streptokinase-induced thrombolysis. American Heart Journal 113: 1345–1352, 1987

    Article  PubMed  CAS  Google Scholar 

  • Miller OV, Johnson RA, Gorman RR. Inhibition of PGE1-stimulated cAMP accumulation in human platelets by thromboxane A2 Prostaglandins 13: 599–609, 1977

    Article  PubMed  CAS  Google Scholar 

  • Moncada S, Gryglewski R, Bunting S, et al. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263: 663–665, 1976

    Article  PubMed  CAS  Google Scholar 

  • Mullane KM, Fornabio D. Thromboxane synthetase inhibitors reduce infarct size by a platelet-dependent, aspirin-sensitive mechanism. Circulation Research 62: 668–678, 1988

    Article  PubMed  CAS  Google Scholar 

  • Needleman P, Raz A, Ferrendelli JA, Minkes M. Application of imidazole as a selective inhibitor of thromboxane synthetase in human platelets. Proceedings of the National Academy of the Sciences USA 74: 1716–1720, 1977

    Article  CAS  Google Scholar 

  • Nichols WW, Mehta JL, Thompson L, Donnelly WH. Synergistic effects of LTC4 and TxA2on coronary flow and myocardial function. American Journal of Physiology 255: H153–H159, 1988

    PubMed  CAS  Google Scholar 

  • Nichols WW, Mehta JL, Wargovich TJ, Franzini D, Ward MB, et al. Similar reduction in myocardial neutrophil accumulation and extension of myocardial infarct size following administration of thromboxane synthetase inhibitor or thromboxane receptor antagonist. Angiology 40: 209–221, 1989

    Article  PubMed  CAS  Google Scholar 

  • Osborne JA, Lefer AM. Cardioprotective actions of thromboxane receptor antagonism in ischemic atherosclerotic rabbits. American Journal of Physiology 255: H318–H324, 1988

    PubMed  CAS  Google Scholar 

  • Owen NE, LeBreton GC. Ca2+mobilization in blood platelets as visualized by chlortetracycline fluorescence. American Journal of Physiology 241: H613–H619, 1981

    PubMed  CAS  Google Scholar 

  • Reuben SR, Kuan P, Cairns J, Gyde OH. Effects of dazoxiben on exercise performance in chronic stable angina. British Journal of Clinical Pharmacology 15S: 835–865, 1983

    Google Scholar 

  • Roy L, Mehta JL, Mehta P. Increased plasma concentrations of prostacyclin metabolite, 6-keto-PGF1ain essential hypertension: influence of therapy with labetalol. American Journal of Cardiology 51: 464–467, 1983

    Article  PubMed  CAS  Google Scholar 

  • Rybicki JP, LeBreton GC. Prostaglandin H2directly lowers human platelet cAMP levels. Thrombosis Research 30: 407–414, 1983

    Article  PubMed  CAS  Google Scholar 

  • Shea MJ, Driscoll EM, Romson JL, Pitt B, Lucchesi BR. Effects of OKY-1581, a thromboxane synthetase inhibitor, on coronary thrombosis in the conscious dog. European Journal of Pharmacology 105: 285–291, 1984

    Article  PubMed  CAS  Google Scholar 

  • Simpson PJ, Smith CB, Rosenthal G, Lucchesi BR. Reduction in the incidence of thrombosis by the thromboxane synthetase inhibitor CGS-13080 in a canine model of coronary artery injury. Journal of Pharmacology and Experimental Therapeutics 238: 497–501, 1986

    PubMed  CAS  Google Scholar 

  • Tada M, Esumi K, Yamagishi M, Kuzuya T, Matsuda H, et al. Reduction of prostacyclin synthesis as a possible cause of transient flow reduction in a partially constricted canine coronary artery. Journal of Molecular and Cellular Cardiology 16: 1137–1149, 1984

    Article  PubMed  CAS  Google Scholar 

  • Tada M, Hoshida S, Kuzuya Y, Inoue M, Minamino T, et al. Augmented thromboxane A2generation and efficacy of its blockade in acute myocardial infarction. International Journal of Cardiology 8: 301–312, 1985

    Article  PubMed  CAS  Google Scholar 

  • Tada M, Kuzuya T, Inoue M, Kodama K, Mishima M, et al. Elevation of thromboxane B2levels in patients with classical and variant angina pectoris. Circulation 64: 1107–1115, 1981

    Article  PubMed  CAS  Google Scholar 

  • Tai H, Lee N, Tai C. Inhibition of thromboxane synthesis and platelet aggregation by pyridine and its derivatives. In Samuelsson B, Ramwell PW & Paoletti R (Eds) Advances in prostaglandin and thromboxane research, pp. 447–452, Raven Press, New York, 1980

    Google Scholar 

  • Thaulow E, Dale J, Myhre E. Effects of a selective thromboxane synthetase inhibitor, dazoxiben, and of acetylsalicylic acid in myocardial ischemia in patients with coronary artery disease. American Journal of Cardiology 53: 1255–1258, 1984

    Article  PubMed  CAS  Google Scholar 

  • Thiemermann C, Ney P, Schror K. The thromboxane receptor antagonist, daltrobin, protects the myocardium from ischemic injury resulting in suppression of leukocytosis. European Journal of Pharmacology 155: 57–67, 1988

    Article  PubMed  CAS  Google Scholar 

  • Torka MC, Hacker RW, Yukseltan I, Pohlmann V, Meier P, et al. Reduction of the vein graft occlusion rate after coronary artery bypass surgery by treatment with a thromboxane receptor antagonist. Proceedings of the European Society of Cardiology, Vienna, p. 325, 1989

  • Wainwright C, Parratt J. Antiarrhythmic effects of the thromboxane antagonist BM 13.177. European Journal of Pharmacology 133: 257–264, 1987

    Article  PubMed  CAS  Google Scholar 

  • Walinsky P, Smith JB, Lefer AM, Lebenthal M, Urban P, et al. Thromboxane A2in acute myocardial infarction. American Heart Journal 108: 868–872, 1984

    Article  PubMed  CAS  Google Scholar 

  • Wargovich TJ, Mehta JL, Nichols WW, Ward MB, Lawson DL, et al. Reduction in myocardial neutrophil accumulation and infarct size following administration of thromboxane inhibitor U63,557A. American Heart Journal 114: 1078–1085, 1987

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, J.L., Nichols, W.W. The Potential Role of Thromboxane Inhibitors in Preventing Myocardial Ischaemic Injury. Drugs 40, 657–665 (1990). https://doi.org/10.2165/00003495-199040050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199040050-00002

Keywords

Navigation