Skip to main content
Log in

Cefotaxime

An Update of its Pharmacology and Therapeutic Use

  • Drag Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Synopsis

Cefotaxime was the first ‘third generation’ cephalosporin to be marketed and is administered intramuscularly or intravenously. Similar to other agents of this class, it has a broad spectrum of in vitro activity, particularly against Enterobacteriaceae, including β-lactamase-producing strains. Cefotaxime forms a metabolite, desacetylcefotaxime, which is antibacterially effective against many bacteria per se and acts additively or synergistically with cefotaxime against many strains. Since the first review of cefotaxime in the Journal, further studies have confirmed its value in the treatment of various infections: complicated urinary tract infections, lower respiratory tract infections, bacteraemia, meningitis, uncomplicated gonorrhoea, infections of skin and soft tissue and of bone and joints, and obstetric and gynaecological infections. Cefotaxime is effective as an empirical treatment of suspected infection due to susceptible organisms in immunocompromised patients and is of proven efficacy in serious, life-threatening infections in general. Cefotaxime reduces the incidence of postsurgical infection but the role of third generation cephalosporins in prophylaxis remains to be determined. The indications for which cefotaxime and other ‘third generation’ cephalosporins would be considered the most appropriate therapy remain largely dependent upon such factors as varied as cost, local medical custom, decisions of regulatory agencies and geographical patterns of bacterial resistance. Cefotaxime nevertheless represents a valuable ‘third generation’ cephalosporin of great clinical value in certain infectious conditions, in particular those which are serious and life-threatening and where resistance to therapies is creating a clinical problem.

Antibacterial Activity

Cefotaxime has a broad spectrum of activity in vitro which includes Gram-positive and Gram-negative aerobic and some anaerobic bacteria. Both penicillin-sensitive and penicillin-resistant strains of Staphylococcus aureus are sensitive to cefotaxime, but methicillin-resistant strains are often resistant. Staphylococcus epidermidis is usually moderately sensitive to cefotaxime although penicillinase-producing strains are usually resistant. Most Streptococcus species (S. pneumoniae, S. pyogenes, S. agalactiae) are sensitive to cefotaxime, but most strains of Streptococcus faecalis are resistant, as are Listeria monocytogenes and Nocardia asteroides. Cefotaxime is highly active against Gram-negative bacteria and in particular the Enterobacteriaceae, including penicillinase-producing strains. Notable exceptions where resistance may often be encountered include Pseudomonas and Enterobacter species. Cefotaxime is active against many anaerobic bacteria (e.g. Peptococcus, Peptostreptococcus and Veillonella species, and Clostridium perfringens) and some Bacteroides species, but Clostridium difficile is frequently resistant. Usually there is little difference between the bactericidal and inhibitory concentrations of cefotaxime for most bacteria.

Cefotaxime is partially metabolised to desacetylcefotaxime, which per se demonstrates significant antibacterial activity. In addition, antibacterial and bactericidal synergy between cefotaxime and desacetylcefotaxime is seen against a high percentage of clinical isolates of S. aureus, B. fragilis and Enterobacteriaeceae.

Cefotaxime and desacetylcefotaxime are stable to inactivation by β-lactamases produced by many bacteria, and while cefotaxime is hydrolysed by β-lactamases produced by Bacteroides fragilis and types IVc and Ic enzymes produced by some species of Klebsiella and Proteus vulgaris, respectively, desacetylcefotaxime is relatively stable. Both compounds are hydrolysed by a Morganella morganii β-lactamase (type Ia), whereas desacetylcefotaxime alone is inhibited by a Proteus penneri type Ic β-lactamase.

Based on inhibitory and bactericidal activity, significant synergy occurs between cefotaxime and many other antibacterial agents, most notably the aminoglycosides. Antagonism has rarely been encountered except with the β-lactamase inhibitor clavulanic acid.

The in vivo antibacterial activity of cefotaxime has been clearly demonstrated in animal models of systemic infection caused by susceptible Enterobacteriaceae and S. aureus, but the drug was ineffective in inhibiting the proliferation of E. faecalis in well established heart lesions in rabbits.

Pharmacokinetic Properties

The disposition of cefotaxime is usually described by an open, 2-compartment model, with dose-dependent linear pharmacokinetics for single intravenous doses up to 2g. Mean peak plasma concentrations of about 100, 40 and 20 mg/L are achieved after a single 1g dose of cefotaxime as a bolus, 30-minute infusion and intramuscular injection, respectively. The bioavailability of the intramuscular dose is about 90 to 95%. Steady-state is achieved after several doses, and trough concentrations of cefotaxime and desacetylcefotaxime exceed 10 and 5 mg/L, respectively, after usual dosages.

The apparent volume of distribution of cefotaxime is 20 to 30 L/1.73m2 and it is 25 to 40% bound to human protein in vitro. Following usual doses cefotaxime concentrations inhibitory for most susceptible organisms are achieved in most body tissues and fluids, although penetration is poor across noninflamed meninges, as with other β-lactam antibiotics. High concentrations of desacetylcefotaxime, the main metabolite, are also achieved in body tissues and fluids, sufficient to be antibacterially effective per se as well as acting additively or synergistically with cefotaxime. This may explain why cefotaxime is therapeutically effective when administered at longer dose intervals than would be theoretically predicted from the elimination pharmacokinetics of cefotaxime alone. Cefotaxime efficiently crosses the placenta, but penetration into breast milk is minimal.

Cefotaxime undergoes hepatic metabolism to form desacetylcefotaxime. The latter undergoes further metabolism to inactive opened β-lactam ring lactones. About 80% of a radiolabelled dose of cefotaxime is excreted in urine; about 50 to 60% as unchanged drug and the remainder as metabolites. About 20% of the dose is recovered in faeces, as a small degree of biliary excretion of cefotaxime and desacetylcefotaxime occurs. Approximate values for plasma clearance, renal clearance and elimination half-life, respectively, are 15 L/h, 9 L/h and 1.2 hours for cefotaxime, and 45 L/h, 13.2 L/h and 1.6 hours for desacetylcefotaxime in subjects with normal renal function.

The effects of age, disease and various other conditions on pharmacokinetics have been well studied. The main findings are that renal insufficiency or inadequate renal development in preterm and low birthweight neonates may decrease the clearance and increase the half-life of cefotaxime, and more particularly its metabolites. Dosage reduction (usually half the normal doses) is therefore required with severe renal insufficiency (creatinine clearance <5 to 10 ml/min) or in low birthweight neonates. Hepatic impairment from cirrhosis or hepatitis did not affect the pharmacokinetics to a clinically significant degree.

Therapeutic Efficacy

Since cefotaxime was first reviewed in the Journal, clinical trials have confirmed its therapeutic efficacy, in particular in comparisons with other standard treatments. Cefotaxime is as effective as other widely used antimicrobial agents in the treatment of mild uncomplicated urinary tract infection or upper respiratory tract infections, but the treatment of these common community-acquired infections is best achieved with more easily administered oral agents. Cefotaxime 2 to 6 g/day is highly effective in the treatment of complicated urinary tract infections, proving superior to usual dosages of cefoxitin, cefazolin, cefuroxime and gentamicin in some studies and equivalent to aztreonam, ampicillin plus netilmicin, ceftizoxime and ceftriaxone. The same dosage of cefotaxime is also highly effective in the treatment of lower respiratory tract infections, in particular pneumonia, proving equivalent to other first, second and third generation cephalosporins. In these areas as well as other conditions where Pseudomonas aeruginosa is proven or suspected, combination with a specific antipseudomonal β-lactam or an aminoglycoside is necessary because of the generally poor activity of cephalosporins against this organism.

Noncomparative studies in patients with bacteraemia indicate a high response rate with cefotaxime, particularly in infections caused by Enterobacteriaceae, but there are few comparative data. Cefotaxime is also effective in combination with an aminoglycoside or a quinolone in the empirical treatment of suspected infection in immunocom-promised patients. However, in one study in such patients a combination of azlocillin plus amikacin was more effective than cefotaxime or ticarcillin each combined with amikacin while in another, the cure rate with ceftazidime alone was higher than with cefotaxime plus gentamicin in granulocytopenic patients. It should be noted that in this study the dosage of gentamicin was not titrated and it is not known whether therapeutic concentrations were achieved. More studies of cefotaxime in these circumstances are needed.

Early clinical information on the use of cefotaxime in skin, soft tissue, bone and joint infections, intra-abdominal infections, and obstetric and gynaecological infections was largely from noncomparative data, but more recently comparative trials have confirmed the efficacy of cefotaxime. Cefotaxime 2g 8-hourly was similar in efficacy to the same dose of cefoxitin in acute salpingitis, to ceftizoxime 6g daily in pelvic inflammatory disease and to clindamycin plus gentamicin in patients with tubo-ovarian complex or abscess but tended to be less effective than ciprofloxacin in skin and soft tissue infections. Clinical and bacteriological response rates seem high, but at present there are insufficient comparative data to clearly define the place of cefotaxime in the treatment of these conditions. Certainly, in those conditions where Bacteroides species might be encountered cefotaxime should be used in combination with another agent such as clindamycin or metronidazole.

Cefotaxime has been particularly well studied in the treatment of meningitis, notably in paediatric patients. Its efficacy is at least equal to that of standard therapy with ampicillin plus chloramphenicol, and it may therefore be considered as suitable first-line agent when resistance to the latter is a clinical problem. Cefotaxime is highly effective against meningitis caused by Enterobacteriaceae and Streptococcus pneumoniae, although there were some failures when Pseudomonas, Enterobacter and Serratia species were pathogens. Cefotaxime should therefore be used in combination with another appropriate antimicrobial agent when the latter infections are suspected or proven and certainly when Listeria monocytogenes, Enterococcus faecalis or Staphylococcus epidermidis, or Staphylococcus aureus are suspected. High dosages of cefotaxime should be used in meningitis: 50 to 100 mg/kg/day in 2 divided doses in low birthweight and premature neonates, up to 200 mg/kg/day in 3 or 4 divided doses in other infants and children, and 6 to 8 g/day in 3 or 4 divided doses in adults. There is some indication that cefotaxime can reduce the incidence of neurological morbidity and the duration of hospitalisation compared with that found following the use of ampicillin plus chloramphenicol. If confirmed, cefotaxime would definitely be proved a first-line agent for this serious condition.

Cefotaxime has been well studied in the empirical treatment of severe life-threatening infections, proving equivalent to ceftazidime, ceftriaxone, imipenem/cilastatin and pefloxacin as monotherapy, and in combination with mezlocillin equivalent to the combination of gentamicin plus cefoxitin plus metronidazole. Cefotaxime monotherapy was clearly superior to a combination of an aminoglycoside and a penicillin, providing higher clinical and microbiological cure rates with a lower frequency of nephrotoxicity and superinfections.

Cefotaxime as a single intramuscular dose of 1 g is virtually 100% effective clinically and microbiologically in the treatment of uncomplicated gonorrhoea, being equally effective against non-penicillinase- and penicillinase-producing strains of Neisseria gonorrhoeae. Single intramuscular injections of cefotaxime 500mg and ceftriaxone 250mg were similarly effective, as were single 1g doses of cefotaxime and ceftimazole. In a large study, cefotaxime 1g produced significantly fewer treatment failures than cefuroxime 1.5g. Cefotaxime may therefore be considered a suitable first-line agent when resistance to penicillin or spectinomycin presents a clinical problem.

Cefotaxime 1 to 2g as a single preoperative dose or as a short course of 3 to 4 doses at 8-hourly intervals peri- and/or postoperatively has proven highly effective in the prevention of infection following a wide range of surgical procedures (urological, obstetrical and gynaecological, gastrointestinal, abdominal, and orthopaedic) with the notable exception of neurosurgery, as β-lactams in general show poor penetration across noninflamed meninges. Cefotaxime was at least as effective as other prophylactic regimens and in some studies superior to cefoxitin, ampicillin, metronidazole, neomycin plus erythromycin and benzylpenicillin plus cloxacillin and cefamandole. No clinical advantage has been clearly demonstrated during single-dose administration for those third-generation cephalosporins with a long elimination half-life, such as-ceftriaxone.

Cefotaxime for a few days in combination with ongoing selective digestive decontamination (SDD) with colistin (polymixin E), tobramycin and amphotericin B has been tested in the prevention of infection in intensive care patients. Cefotaxime reduced primary respiratory infection in selected patients and SDD was found to significantly reduce colonisation by aerobic Gram-negative bacilli and also the incidence of unit-acquired infection compared with no antibiotic prophylaxis.

Adverse Effects

Cefotaxime is generally well tolerated by adults and children following intravenous and intramuscular injection. The overall incidence of adverse events is about 5 to 8%, leading to discontinuation of treatment in about 1 to 2% of patients. The most commonly occurring adverse effects are typical of parenteral cephalosporins: gastrointestinal complaints (mostly diarrhoea, nausea and/or vomiting), dermatological reactions (rash and pruritus) and local reactions at the injection site such as pain and, less frequently, thrombophlebitis. More severe reactions have been reported in rare case reports involving only a few patients: Clostridium difficile pseudomembranous colitis, hypoprothrombinaemia, thrombocytopenia, encephalopathy, status epilepticus, eosinophilia, leucopenia and neutropenia. A causal relationship was not always clearly established in these isolated reports.

Dosage and Administration

The recommended dosage of cefotaxime is 1 to 6 g/day given in divided doses 2 to 3 times daily intravenously or intramuscularly. The usual dosage is 1 to 2 g/day for urinary tract infections, 3 g/day for other moderate to serious infections, with the higher dosages of 6 g/day being reserved for life-threatening infections. The most appropriate regimen was 0.5 to 2g every 8 to 12 hours for highly susceptible organisms. Paediatric dosages are usually 50 mg/kg/day in neonates, and 100 to 150 mg/kg/day in older infants and children. With serious infections such as meningitis 150 to 200 mg/kg/day is recommended for neonates up to 7 days of age and 200 mg/kg/day for older children. Dose frequency is usually 2 to 3 times daily. A single intramuscular dose of 1g is recommended for the treatment of uncomplicated gonorrhoea. For the prevention of surgical infection a single preoperative dose of 1 to 2g is recommended which may be followed by 1 to 3 doses postoperatively at 8-hour intervals. The dosage should be halved but the frequency maintained in patients whose creatinine clearance is less than 10 ml/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbate GF, Alagia I, Giaquinto E, Leonessa V, Savioli L, et al. Treatment of lower respiratory tract infections with ceftriaxone and cefotaxime. Respiration 49: 222–230, 1986

    PubMed  CAS  Google Scholar 

  • Adam D, Naber KG. Concentrations of ceftriaxone in prostate adenoma tissue. Chemotherapy (Basel) 30: 1–6, 1984

    CAS  Google Scholar 

  • Albin HC, Demotes-Mainard FM, Bouchet JL, Vincon GA, Martin-Dupont C. Pharmacokinetics of intravenous and intraperitoneal cefotaxime in chronic ambulatory peritoneal dialysis. Clinical Pharmacology and Therapeutics 38: 285–289, 1985

    PubMed  CAS  Google Scholar 

  • Alcock SR. Short term parenteral antibiotics used as a supplement to SDD regimens. In van Saene et al. (Eds) Update in intensive care and emergency medicine: 7. Infection control by selective decontamination, pp. 102–108, Springer Verlag, 1989

  • Alcock SR, Cole DS. Selective decontamination of the digestive tract, ICU-acquired pneumonia and selection of antibiotic resistant bacteria. Journal of Hospital Infection 15: 195–197, 1990

    PubMed  CAS  Google Scholar 

  • Aldridge KE. Comparison of the in vitro action and interaction of cefotaxime and desacetylcefotaxime against clinical isolates of Bacteroides species. Diagnostic Microbiology and Infectious Disease 12: 45–50, 1989

    PubMed  CAS  Google Scholar 

  • Aldridge KE, Sanders CV, Marier RL. In vitro synergy and potentiation between cefotaxime and desacetylcefotaxime against clinical isolates of Bacteroides. Diagnostic Microbiology and Infectious Disease 2 (Suppl.): 47–53, 1984

    CAS  Google Scholar 

  • Aldridge KE, Weeks LS, Stratton CW, Sanders CV. Comparison of the bactericidal activity of cefotaxime and desacetylcefotaxime alone and in combination against Bacteroides fragilis group organism. Diagnostic Microbiology and Infectious Disease 12: 165–170, 1989

    PubMed  CAS  Google Scholar 

  • Andrassy K, Koderisch J, Fritz S, Ritz E. New beta-lactam antibiotics and hemorrhagic diathesis: comparison of moxalactam and cefotaxime. Clinical Therapeutics 6: 34–42, 1983

    PubMed  CAS  Google Scholar 

  • Androulakis J, Diamantis T, Stravropoulos M, Milios G, Demertzis A, et al. The present status of efficacy of the combination of cefotaxime-metronidazole in the treatment of peritonitis. International Journal of Experimental and Clinical Chemotherapy 1: 51–54, 1988

    Google Scholar 

  • Arich C, Gouby A, Bengler C, Ardilouze JL, Dubois A, et al. Comparaison de l’efficacité du cefotaxime seul et de ’association céfazoline-tobramycine dans le traitement des septicémies à entérobacteréries. Pathologie Biologie 35: 613–615, 1987

    PubMed  CAS  Google Scholar 

  • Asahi S, Kagawa M. Penetration of cefotaxime into human cerebrospinal fluid. Japanese Journal of Antibiotics 38: 1680–1684, 1985

    PubMed  CAS  Google Scholar 

  • Asami K, Ohlashik, Ohmichi H. The influences of liver diseases on cefotaxime and cefoperazone drug movement. Japanese Journal of Clinical and Pharmacological Therapeutics 19: 37–38, 1988

    Google Scholar 

  • Asmar BI, Thirumoorthi MC, Buckley JA, Kobos DM, Dajani AS. Cefotaxime diffusion into cerebrospinal fluid of children with meningitis. Antimicrobial Agents and Chemotherapy 28: 138–140, 1985

    PubMed  CAS  Google Scholar 

  • Aujard Y, Brion F, Jacqz-Aigrain E, Kasse MC, Chretien P, et al. Pharmacokinetics of cefotaxime and deacetylcefotaxime in the newborn. Diagnostic Microbiology and Infectious Disease 12: 87–91, 1989

    PubMed  CAS  Google Scholar 

  • Baer DM, Jones RN, Mullooly JP, Horner W. Protocol for the study of drug interferences in laboratory tests: cefotaxime interference in 24 clinical tests. Clinical Chemistry 29: 1736–1740, 1983

    PubMed  CAS  Google Scholar 

  • Baird-Lambert J, Doyle PE, Thomas D, Cvejic M, Buchanan N. Pharmacokinetics of cefotaxime in neonates. Journal of Antimicrobial Chemotherapy 13: 471–477, 1984

    PubMed  CAS  Google Scholar 

  • Barlow D, Phillips I. Cefotaxime in the treatment of gonorrhoea caused by β-lactamase producing Neisseria gonorrhoeae. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 291–293, 1984

    PubMed  Google Scholar 

  • Barriere SL, Flaherty JF. Third-generation cephalosporins: a critical evaluation. Clinical Pharmacy 3: 351–373, 1984

    PubMed  CAS  Google Scholar 

  • Bassaris HP, Lianou PE, Volta EG, Papavassiliou JT. Effects on subinhibitory concentrations of cefotaxime on adhesion and polymorphonuclear leukocyte function with Gram-negative bacteria. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 91–96, 1984

    PubMed  CAS  Google Scholar 

  • Baumgartner JD, Glauser MP. Comparative study of imipenem in severe infections. Journal of Antimicrobial Chemotherapy 12 (Suppl. D): 141–148, 1983

    PubMed  Google Scholar 

  • Beale AS, Gisby J. Inactivation of cefuroxime and cefotaxime by Bacteroides fragilis in vitro, and its influence on the treatment of an experimental Escherichia coli/Bacteroides fragilis mixed infection. Journal of Antimicrobial Chemotherapy 24: 29–37, 1989

    PubMed  CAS  Google Scholar 

  • Bégué P, Floret D, Mallet E, Raynaud EJ, Safran C, et al. Pharmacokinetics and clinical evaluation of cefotaxime in children suffering with purulent meningitis. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 161–165, 1984a

    PubMed  Google Scholar 

  • Bégué P, Safron C, Quiniou F, Lasfargues G, Quinet B. Comparative pharmacokinetics of four new cephalosporins: moxa-lactam, cefotaxime, cefoperazone and ceftazidime in neonates. Developmental Pharmacology and Therapeutics 7 (Suppl. 1): 105–108, 1984b

    PubMed  Google Scholar 

  • Bellak CA, Helfrich HM, Nagle BT, Jacob LS. A study of ceftizoxime and cefotaxime in the treatment of pelvic inflammatory disease in patients free of chlamydia infection. Abstract 173. Journal of Clinical Pharmacology 28: 949, 1988

    Google Scholar 

  • Bellotti MG, Bossa R, Galatulus I. Interazione tra cefotaxima e adriamicina. Giornale Italiano di Chemioterapia 31: 73–75, 1984

    PubMed  CAS  Google Scholar 

  • Bentsi IK, Elton RA, Ritchie AWS, Smith G, Gould JC, et al. Antibiotic prophylaxis for prostatic surgery. Single-dose cephradine compared with single-dose cefotaxime. British Journal of Urology 59: 314–318, 1987

    CAS  Google Scholar 

  • Berger SA, Dan M, Serour F, Gorea A, Levenberg A, et al. Penetration of third-generation cephalosporins into human peritoneal tissue. Chemotherapy (Basel) 35: 326–329, 1989

    CAS  Google Scholar 

  • Bergeron MG, LeBel M, Charest A, Forcier J-F, Morin J, et al. Comparative study of serum bactericidal activity of cefotaxime alone or in combination with tobramycin. Antimicrobial Agents and Chemotherapy 29: 379–381, 1986

    PubMed  CAS  Google Scholar 

  • Bergogne-Berezin E, Joly-Guillou ML. Comparative activity of imipenem, ceftazidime and cefotaxime against Acinetobacter calcoaceticus. Journal of Antimicrobial Chemotherapy 18 (Suppl. E): 35–39, 1986

    PubMed  CAS  Google Scholar 

  • Beyssac E, Cardot J-M, Colnet G, Sirot J, Aiache J-M. Pharmacokinetics of cefotaxime and its desacetylmetabolite in plasma and in cerebrospinal fluid. European Journal of Drug Metabolism and Pharmacokinetics 12: 91–102, 1987

    PubMed  CAS  Google Scholar 

  • Bingen E, Lambert-Zechousky H, Guihaire E, Mariani P, Coache M, et al. Value of the minimal bactericidal time of serum for a choice of optimal therapy in neonatal sepsis. Pathologie Biologie 35: 599–602, 1987

    PubMed  CAS  Google Scholar 

  • Biron S, Legtes G, Girard R, Laverdiere M, Delorme F. Short-term antibiotic therapy for intra-abdominal sepsis: prospective randomised trial comparing metronidazole-cefotaxime and clindamycin-tobramycin. Current Therapeutic Research 43: 538–546, 1988

    Google Scholar 

  • Bivins BA, Crots L, Obeid FN, Sorensen VJ, Horst HM, et al. Antibiotics for penetrating abdominal trauma: a prospective comparative trial of single agent cephalosporin therapy versus combination therapy. Diagnostic Microbiology and Infectious Disease 12: 113–118, 1989

    PubMed  CAS  Google Scholar 

  • Blomer R, Bruch K. Review of the experience with cefotaxime in surgical prophylaxis. International Journal of Clinical Pharmacology Research 5: 185–191, 1985

    PubMed  CAS  Google Scholar 

  • Bourillon A, Brackman D, Boussougant Y, de Paillerets F. Cefotaxime effects on the intestinal flora of the newborn. Developmental Pharmacology and Therapeutics 7 (Suppl. 1): 144–149, 1984

    Google Scholar 

  • Bräutigam HH, Knothe H, Rangoonwala R. Impact of cefotaxime on the bowel and vaginal flora after single dose prophylaxis in vaginal hysterectomy. 15th International Congress of Chemotherapy, Istanbul, Turkey, July, 1987

  • Brooks GF, Barriere SL. Clinical use of the new betalactam antimicrobial drugs. Annals of Internal Medicine 98: 530–535, 1983

    PubMed  CAS  Google Scholar 

  • Brückner O, Collmann H, Borner K. Cefotaxime levels in ventricular cerebrospinal fluid, determined by bioassay and by high-performance liquid chromatography. Chemotherapy (Basel) 29: 237–243, 1983

    Google Scholar 

  • Bryan CS, John JF, Pai MS, Austin TL, Gentamicin vs cefotaxime for therapy of neonatal sepsis. American Journal of Diseases of Children 139: 1086–1089, 1985

    PubMed  CAS  Google Scholar 

  • Burckart GJ, Ptachcinski RJ, Jones DH, Howrie DL, Venkataramanan R, et al. Impaired clearance of ceftizoxime and cefotaxime after orthotopic liver transplantation. Antimicrobial Agents and Chemotherapy 31: 323–324, 1987

    PubMed  CAS  Google Scholar 

  • Burdon DW, Ambrose NS, Keighly MRB, Youngs D. The effect of a single intravenous dose of cefotaxime on the faecal flora. Infection 13 (Suppl. 1): 135–136, 1985

    Google Scholar 

  • Cabezudo I, Pfaller M, Bale M, Wenzel R. In vitro comparison of cefpirome and four other beta-lactam antibiotics alone and in combination with tobramycin against clinical isolates of Pseudomonas aeruginosa. Diagnostic Microbiology and Infectious Disease 12: 337–341, 1989

    PubMed  CAS  Google Scholar 

  • Cadranel JF, Bismuth E, Attali P, Buffet C, Ink O, et al. Cefotaxime-related hypoprothrombinaemia in a patient with acute pancreatitis: a case with a possible clue to the pathogenesis. American Journal of Gastroenterology 84: 686–688, 1989

    PubMed  CAS  Google Scholar 

  • Canawati HN. Comparative in vitro activity of cefoxitin, cefotaxime alone, and in combination with desacetylcefotaxime against the Bacteroides species. Diagnostic Microbiology and Infectious Disease 12: 33–37, 1989

    PubMed  CAS  Google Scholar 

  • Carlhant D, Bonissent JF, Guedes Y, Le Garrec J, Rakotoseheno JC, et al. Comparison du passage dans le corps vitré du céfotaxime et de la céfopérazone. Therapie 42: 267–271, 1987

    PubMed  CAS  Google Scholar 

  • Carmine AA, Brogden RN, Heel RC, Speight TM, Avery GS. Cefotaxime: a review of its antibacterial activity, pharmacological properties and therapeutic use. Drugs 25: 223–289, 1983

    PubMed  CAS  Google Scholar 

  • Carr B, Walsh JB, Coakley D, Mulvihill E, Keane C, et al. Twice daily cephalosporin therapy in the treatment of severe lower respiratory tract infection in the elderly. Abstract. Irish Journal of Medical Science 158: 199, 1989

    Google Scholar 

  • Charles D, Larsen B. Pharmacokinetics of cefotaxime, moxalactam, and cefoperazone in the early puerpenum. Antimicrobial Agents and Chemotherapy 29: 873–876, 1986

    PubMed  CAS  Google Scholar 

  • Cherubin CE, Eng RHK. Experience with the use of cefotaxime in the treatment of bacterial meningitis. American Journal of Medicine 80: 398–404, 1986

    PubMed  CAS  Google Scholar 

  • Childs SJ, deBessonet DA, Merlin AS. Antibiotic prophylaxis in elective genitourinary tract surgery: a comparison of single-dose pre-operative cefotaxime and multiple-dose cefoxitin. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 271–275, 1984

    PubMed  Google Scholar 

  • Childs SJ, Wells WG, Mirelman S. Perioperative mezlocillin vs cefotaxime to prevent infections after genitourinary surgery. Urology 25: 657–661, 1985

    PubMed  CAS  Google Scholar 

  • Chin N-X, Neu HC. Cefotaxime and desacetylcefotaxime: an example of advantageous antimicrobial metabolism. Diagnostic Microbiology of Infectious Disease 2 (Suppl.): 215–315, 1984

    Google Scholar 

  • Christensen MM, Nielsen KT, Knes J, Madsen PO. Brief report: single-dose preoperative prophylaxis in transurethral surgery. American Journal of Medicine 87 (Suppl. 5A): 258–259, 1989

    Google Scholar 

  • Cornick NA, Gorbach SL. Synergistic activity of cefotaxime and desacetylcefotaxime against the Bacteroides fragilis group. Diagnostic Microbiology and Infectious Disease 10: 81–84, 1988

    PubMed  CAS  Google Scholar 

  • Cox CE. Comparison of intravenous ciprofloxacin and intravenous cefotaxime for antimicrobial prophylaxis in transurethral surgery. American Journal of Medicine 87 (Suppl. 5A): 252–254, 1989

    Google Scholar 

  • Cristiano P, Ioverne MR, Di Sarno R, Boccardo G, Paradisi F. Studio clinica sulla efficacia e tolerabilitá dell’associazione netilmicina-cefotassima nel trattamento delle infezioni gravi. Giornale Italiano di Chemioterapia 31: 153–156, 1984

    PubMed  CAS  Google Scholar 

  • Crooks J, White LO, Burville LJ, Speidel BD, Reeves DS. Pharmacokinetics of cefotaxime and desacetyl-cefotaxime in neonates. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 97–101, 1984

    PubMed  Google Scholar 

  • Cuffini AM, Carlone NA, Tullio V, Longhi GP. Influence of cefotaxime on Staphylococcus aureus with respect to their interaction with macrophages. Microbios 58: 147–154, 1989

    PubMed  CAS  Google Scholar 

  • Danan G, Erlinger S. Hypoprothrombinemia and cefotaxime. Correspondence. American Journal of Gastroenterology 85: 763, 1990

    CAS  Google Scholar 

  • de Koning GAJ, Tio D, van der Hoek, van Klingeren B. Single 1g dose of cefotaxime in the treatment of infections due to penicillinase-producing strains of Neisseria gonorrhoeae. British Journal of Venereal Disease 59: 100–102, 1983

    Google Scholar 

  • de Pauw DE, Kauw F, Muytens H, Williams KJ, Bothof T. Randomized study of ceftazidine versus gentamicin plus cefotaxime for infections in severe granulocytopenic patients. Journal of Antimicrobial Chemotherapy 12 (Suppl. A): 93–99, 1983

    PubMed  Google Scholar 

  • de Simone C, Pugnaloni L, Cilli A, Forastieri EMA, Bernardini B, et al. Pharmacokinetic assessment of immunosuppressive activity of antibiotics in human plasma by a modification of the mixed lymphocyte reaction. Critical Care Medicine 12: 483–485, 1984

    PubMed  Google Scholar 

  • Demotes-Mainard F, Albin H, Ragnaud JM, Gin H, Vincon G, et al. Influence de l’hyperthermie sur la pharmacocinétique du céfotaxime. Pathologie Biologie 36: 155–158, 1988

    PubMed  CAS  Google Scholar 

  • Diaz-Mitoma F, Harding GKM, Louie TJ, Thomson M, James M, et al. Prospective randomized comparison of imipenem/ cilastatin and cefotaxime for treatment of lung, soft tissue, and renal infections. Reviews of Infectious Diseases 7 (Suppl. 3): 452–457, 1985

    Google Scholar 

  • El-Guinedy M, El Said W, Sabbour MS. Dialyzability of cefotaxime and mecillinam. Chemoterapia 5: 208–212, 1986

    CAS  Google Scholar 

  • Elliott AM, Karam GH, Cobbs CG. Interaction of cefotaxime and aminoglycosides against enterococci in vitro. Antimicrobial Agents and Chemotherapy 24: 847–850, 1983

    PubMed  CAS  Google Scholar 

  • Endo F, Matsui N, Watanabe T, Arai S, Saito M, et al. Penetration of cefotaxime into the human bone marrow blood. Japanese Journal of Antibiotics 39: 1273–1278, 1986

    PubMed  CAS  Google Scholar 

  • Eng RHK, Cherubin CE, Pechere J-C, Beam TR. Treatment failures of cefotaxime and latamoxef in meningitis caused by Enterobacter and Serratia spp. Journal of Antimicrobial Chemotherapy 20: 903–911, 1987

    PubMed  CAS  Google Scholar 

  • Faro S, Martens MG, Phillips LE, Lapread E, Riddle GD, et al. Ceftizoxime versus cefotaxime in the treatment of hospitalised patients with pelvic inflammatory disease. Current Therapeutic Research 43: 349–354, 1988

    Google Scholar 

  • Favre JP, Bouchet Y, Clotteau JE, Hypousteguy L, Marchai G, et al. Prophylactic use of cefotaxime in colonie and rectal surgery. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 247–253, 1984

    PubMed  Google Scholar 

  • Feldstein TJ, Uden DL, Larson TA. Cefotaxime for treatment of Gram-negative bacteriial meningitis in infants and children. Pediatric Infectious Disease Journal 6: 471–475, 1987

    PubMed  CAS  Google Scholar 

  • Felisart J, Rimola A, Arroyo V, Perez-Ayuso RM, Quintero E, et al. Cefotaxime is more effective than ampicillin-tobramycin in cirrhotics with severe infections. Hepatology 5: 457–462, 1985

    PubMed  CAS  Google Scholar 

  • Fick RB, Alexander MR, Prince RA, Kasik JE. Penetration of cefotaxime into respiratory secretions. Antimicrobial Agents and Chemotherapy 31: 815–817, 1987

    PubMed  CAS  Google Scholar 

  • Foster MC, Morris DL, Legan C, Kapila L, Slack RCB. Perioperative prophylaxis with sulbactam and ampicillin compared with metronidazole and cefotaxime in the prevention of wound infection in children undergoing appendectomy. Journal of Pediatric Surgery 22: 862–872, 1987

    Google Scholar 

  • Fraise AP, Meeks ACG, Richards JE. Meningitis due to Haemophilus influenzae resistant to ampicillin and chloramphenicof. Archives of Disease in Childhood 61: 1134–1135, 1986

    PubMed  CAS  Google Scholar 

  • Friis H. Antibacterial activity of cefotaxime, desacetylcefotaxime, and the combination of the two. Diagnostic Microbiology and Infectious Disease 12: 67–72, 1989

    PubMed  CAS  Google Scholar 

  • Frimodt-Moller N, Bentzon MW, Thomsen F. Experimental pneumococcus infection in mice: comparative in vitro and in vivo effect of cefuroxime, cefotaxime and ceftriaxone. Acta Pathologica Microbiologica et Immunologica Scandinavica 95: 261–267, 1987

    CAS  Google Scholar 

  • Fujii R. Experience with cefotaxime in infections caused by Gram-positive pathogens, especially Staphylococcus aureus. Infection 13 (Suppl. 1): 9–13, 1985

    Google Scholar 

  • Funada H, Ishizaki T, Kuroda T, Hattori K-I, Nakamura S. Cefotaxime-associated diarrhoea and Clostridium difficile. Japanese Journal of Antibiotics 37: 555–557, 1984

    PubMed  CAS  Google Scholar 

  • Garcia-Rodriguez JA, Gomez-Garcia AC. A comparison of cefotaxime and cefoperazone in respiratory tract infections. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 301–306, 1984

    PubMed  Google Scholar 

  • Garcia-Rodriguez JA, Puig-La Calle J, Arnau C, Porta Miguel M, Vallvé C. Antibiotic prophylaxis with cefotaxime in gastroduodenal and biliary surgery. American Journal of Surgery 158: 428–434, 1989

    PubMed  CAS  Google Scholar 

  • Garzone P, Lyon J, Yu VL. Third generation and investigational cephalosporins: II. Microbiological review and clinical summaries. Drug Intelligence and Clinical Pharmacy 17: 615–622, 1983

    CAS  Google Scholar 

  • Gentry LO, Ramirez-Ronda CH, Rodriguez-Noriega E, Thadepalli H, del Rosal PL, et al. Oral ciprofloxacin vs parenteral cefotaxime in the treatment of difficult skin and skin structure infections. Archives of Internal Medicine 149: 2579–2583, 1989

    PubMed  CAS  Google Scholar 

  • Giamarellou H, Evagelopoulou V, Lelekis M. Enhanced in vitro bactericidal activity of amikacin combined with latamoxef, cefotaxime and aztreonam against multi-resistant Enterobacter cloacae. Journal of Antimicrobial Chemotherapy 23: 537–545, 1989

    PubMed  CAS  Google Scholar 

  • Gillissen G, Melzer B. Influence des antibiotiques sur la production de l’interleukine-1 par des macrophages. Pathologie Biologie 33: 521–524, 1985

    PubMed  CAS  Google Scholar 

  • Givner LB, Abramson JS, Wasilauskas B. Meningitis due to Haemophilus influenzae type b resistant to ampicillin and chloramphenicol. Reviews of Infectious Diseases 11: 329–334, 1989

    PubMed  CAS  Google Scholar 

  • Golematis V, Balaroutsos CH, Delikatis P, Diamantis TH, Milios G. Treatment of peritonitis with a combination of cefotaxime and metronidazole: a comparison of two cefotaxime dosage regimens. Abstract. Presented at the 16th International Congress of Chemotherapy, Jerusalem, June 1989

  • Golledge CL, McKenzie T, Riley TV. Extended spectrum cephalosporins and Clostridium difficile. Journal of Antimicrobial Chemotherapy 23: 929–931, 1989

    PubMed  CAS  Google Scholar 

  • Gonik B. Single-versus three-dose cefotaxime prophylaxis for Cesarean section. Obstetrics and Gynecology 65: 189–193, 1985

    PubMed  CAS  Google Scholar 

  • Gonik B, Cotton DB, Feldman S, Cleary TG, Pickering LK. Pharmacokinetics of cefotaxime in the postpartum patient. American Journal of Perinatology 2: 114–117, 1985

    PubMed  CAS  Google Scholar 

  • Goodpasture HC, Gerlach EH, Jones RN, Peterie JD. Optimal cefotaxime dosing for Gram-negative bacteremia: effective trough serum bactericidal titers and drug concentrations 8 and 12hr after 1- or 2-gm infusions. Diagnostic Microbiology and Infectious Disease 9: 97–103, 1988

    PubMed  CAS  Google Scholar 

  • Goodpasture HC, Gerlach EH, Jones RN, Peterie JD. Optimal cefotaxime-dosing for Gram-negative bacteremia: effective trough serum bactericidal titer and drug concentrations 8 and 12 hours after 1- or 2-G infusions. Diagnostic Microbiology and Infectious Disease 12: 101–105, 1989

    Google Scholar 

  • Gouyon JB, Pechinot A, Safran C, Chretien P, Sandre D, et al. Pharmacokinetics of cefotaxime in preterm infants. Developmental Pharmacology and Therapeutics 14: 29–34, 1990

    PubMed  CAS  Google Scholar 

  • Grabe M, Forsgren A. Impact of short perioperative courses of cefotaxime on aerobic bacterial flora in patients undergoing transurethral prostatic resection. European Journal of Clinical Microbiology 4: 24–29, 1985

    PubMed  CAS  Google Scholar 

  • Graninger W, Kurz RW, Havel MP, Horcher E, Müller MM. Effect of cefotaxime, ceftriaxone and latamoxef on blood coagulation in patients on parenteral nutrition. Chemotherapy (Basel) 33: 452–458, 1987

    CAS  Google Scholar 

  • Graninger W, Uihlein M, Ferenci P, Moser C, Georgopoulos A. Cefotaxime and desacetylcefotaxime blood levels in hepatic dysfunction. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 143–146, 1984

    PubMed  Google Scholar 

  • Green ST, Natarajan S, Campbell JC. Erythema multiforme following cefotaxime therapy. Postgraduate Medical Journal 62: 415, 1986

    PubMed  CAS  Google Scholar 

  • Grimm H. Aktuelle Resistenz gegen cefotiam und andere cephalosporine bei isolaten von stationären und ambulanten patienten. Fortschritte der antimikrobiellen u antineoplastischen Chemotherapie Band 6-4: 583–593, 1987

    Google Scholar 

  • Guay DRP, Matzke GR, Heim KL, Halstenson CE, Abraham PA, et al. Influence of gender on the disposition of cefotaxime and desacetylcefotaxime. Therapeutic Drug Monitoring 9: 259–262, 1987

    PubMed  CAS  Google Scholar 

  • Guggenbichler JP, Allerberger FJ, Dierich M. Influence of cephalosporins III generation with varying biliary excretion on fecal flora and emergence of resistant bacteria during and after cessation of therapy. Paediatrie und Pädologie 21: 335–342, 1986

    CAS  Google Scholar 

  • Guy H, Caillot D, Solary A, Bielefeld P, Portier H, et al. Association d’ure céphalosporine de troisième génération (cefotaxime ou ceftazidime) et d’une nouvelle quinolone (péfloxacine) dans le traitaient des épisodes fébriles des malades neutropéniques (37 cas). Presse Médicale 16: 2172–2175, 1987

    CAS  Google Scholar 

  • Haffejee IE. A therapeutic trial of cefotaxime vs penicillin-gentamicin for severe infections in children. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 147–152, 1984

    PubMed  Google Scholar 

  • Haffejee IE. Cefotaxime versus penicillin-chloramphenicol in purulent meningitis: a controlled single-blind clinical trial. Annals of Tropic Paediatrics 8: 225–229, 1988

    CAS  Google Scholar 

  • Hägele D, Frühwirth O, Strehl E, Berg D. Konzentrationsbestimmung eines Antibiotikums (Cefotaxim) in der Vaginalhaut nach präoperativer intravenoser Gabe. Geburtschilfe und Frauenheilkunde 43: 217–219, 1983

    Google Scholar 

  • Hager WD, Sweet RL, Charles D, Larsen B. Comparative study of mezlocillin versus cefotaxime single-dose prophylaxis in patients undergoing vaginal hysterectomy. Current Therapeutic Research 45: 63–69, 1989

    Google Scholar 

  • Hall MA, Beech RC, Seal DV. The use of cefotaxime for treating suspected neonatal sepsis: 2 years’ experience. Journal of Hospital Infection 8: 57–63, 1986

    PubMed  CAS  Google Scholar 

  • Hargreave TB, Gould JC, Kinninmonth AWG, Jeffrey PR, Varma JS, et al. A randomized trial of 48 hours of prophylactic cefotaxime versus single dose in transurethral prostatic surgery. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 263–269, 1984

    PubMed  Google Scholar 

  • Hary L, Andrejak M, Leleu S, Orfila J, Capron JP. The pharmacokinetics of ceftriaxone and cefotaxime in cirrhotic patients with ascites. European Journal of Clinical Pharmacology 36: 613–616, 1989

    PubMed  CAS  Google Scholar 

  • Hasegawa H, Imada A, Horiuchi A, Nishi Y, Fukushima M, et al. Pharmacokinetics of cefotaxime in patients undergoing haemodialysis and continuous ambulatory peritoneal dialysis. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 135–142, 1984

    PubMed  Google Scholar 

  • Hassler D, Zöller L, Haude M, Hufnagel H-D, Heinrich F, et al Cefotaxime versus penicillin in the late stage of Lyme disease — prospective, randomised therapeutic study. Infection 18: 16–20, 1990

    PubMed  CAS  Google Scholar 

  • Heim KL, Halstenson CE, Comty CM, Affrime MB, Matzke GR. Disposition of cefotaxime and desacetylcefotaxime during continuous ambulatory peritoneal dialysis. Antimicrobial Agents and Chemotherapy 30: 15–19, 1986

    PubMed  CAS  Google Scholar 

  • Helwig HF. Cefotaxime monotherapy of bacterial meningitis caused by Gram-positive pathogens. Infection 13 (Suppl. 1): 62–67, 1985

    Google Scholar 

  • Helwig H, Schlegel P. Cefotaxim Monotherapie der bakterellen Meningitis in Kindesalter. Monatsschrift für Kinderheilkunde 134: 733–737, 1986

    CAS  Google Scholar 

  • Hemsell DL, Bawdon RE, Hemsell PG, Nobles BJ, Johnson ER, et al. Single-dose cephalosporin for prevention of major pelvic infection after vaginal hysterectomy: cefazolin versus cefoxitin versus cefotaxime. American Journal of Obstetrics and Gynaecology 156: 1201–1205, 1987

    CAS  Google Scholar 

  • Hemsell DL, Cunningham FG, DePalma RT, Nobles BJ, Heard M, et al. Cefotaxime sodium therapy for endomyometritis following Cesarean section: dose-finding and comparative studies. Obstetrics and Gynaecology 62: 489–497, 1983

    CAS  Google Scholar 

  • Hemsell DL, Martin JN, Pastorek JG, Nobles BJ, Hemsell PG, et al. Single-dose antimicrobial prophylaxis at abdominal hysterectomy: cefamandole vs cefotaxime. Journal of Reproductive Medicine 33: 939–944, 1988

    PubMed  CAS  Google Scholar 

  • Hemsell DL, Santos-Ramos R, Cunningham FG, Nobles BJ, Hemsell PG. Cefotaxime treatment for women with community-acquired pelvic abscesses. American Journal of Obstetrics and Gynecology 151: 771–777, 1985

    PubMed  CAS  Google Scholar 

  • Höffken G, Lode H, Koeppe P, Ruhnke. M, Borner K. Pharmacokinetics of cefotaxime and desacetyl-cefotaxime in cirrhosis of the liver. Chemotherapy (Basel) 30: 7–17, 1984

    Google Scholar 

  • Hoogkamp-Korstanje JAA. Activity of cefotaxime and ceftriaxone alone and in combination with penicillin, ampicillin and piperacillin against neonatal meningitis pathogens. Journal of Antimicrobial Chemotherapy 16: 327–334, 1985

    PubMed  CAS  Google Scholar 

  • Humbert G, Leroy A, Nair S, Cherubin CE. Concentrations of cefotaxime and the desacetyl metabolite in serum and CSF of patients with meningitis. Journal of Antimicrobial Chemotherapy 13: 487–494, 1984

    PubMed  CAS  Google Scholar 

  • Husson MO, Bryskier A, Izard D, Leclerc H. Ètude de l’activité bactériostatique in vitro de la cefménoxime (SCE 1365 ), du céfotaxime et du moxalactam. Pathologie Biologie 31: 347–350, 1983

    PubMed  CAS  Google Scholar 

  • Iannini PB. An overview of cefotaxime therapy in infections caused by Gram-positive pathogens. Infection 13 (Suppl. 1): 3–6, 1985

    Google Scholar 

  • Ichikizaki K, Izumi C, Nakamura Y, Nakano Y, Tamura K, et al. Effects of 10% glycerol on the migration of antibiotics into cerebrospinal fluid. Chemotherapy (Tokyo) 36: 793–797, 1988

    Google Scholar 

  • Ings RM, Fillastre J-P, Godin M, Leroy A, Humbert G. The pharmacokinetics of cefotaxime and its metabolites in subjects with normal and impaired renal function. Reviews of Infectious Diseases 4 (Suppl.): S379–S391, 1982

    PubMed  Google Scholar 

  • Ings RMJ, Reeves DS, White LO, Bax RP, Bywater MJ, et al. The human pharmacokinetics of cefotaxime and its metabolites and the role of renal tubular secretion on their elimination. Journal of Pharmacokinetics and Biopharmaceutics 13: 121–142, 1985

    PubMed  CAS  Google Scholar 

  • Iwamori H, Adachi N. Studies on transfer of cefotaxime into bone marrow blood. Japanese Journal of Antibiotics 39: 733–738, 1986

    PubMed  CAS  Google Scholar 

  • Jacobs RF, Kearns GL. Cefotaxime and desacetylcefotaxime in neonates and children: a review of microbiologic, pharmacokinetic, and clinical experience. Diagnostic Microbiology and Infectious Disease 12: 93–99, 1989

    PubMed  CAS  Google Scholar 

  • Jacobs RF, Wells TG, Steele RW, Yamauchi T. A prospective randomized comparison of cefotaxime vs ampicillin and chloramphenicol for bacterial meningitis in children. Journal of Pediatrics 107: 129–133, 1985

    PubMed  CAS  Google Scholar 

  • Jacoby GA, Carreras I. Activities of β-lactam antibiotics against Escherichia coli strains producing extended-spectrum β-lactamases. Antimicrobial Agents and Chemotherapy 34: 858–862, 1990

    PubMed  CAS  Google Scholar 

  • Jehl F, Peter JD, Picard A, Dupeyron JP, Marescaux J, et al. Investigation of the biliary clearances of cefotaxime and desacetylcefotaxime by an original procedure in cholecystectomised patients. Infection 15: 450–454, 1987

    PubMed  CAS  Google Scholar 

  • Jenkins SG. Activity of cefotaxime/desacetylcefotaxime with two aminoglycosides against Gram-negative pathogens: an example of interactive synergy. Diagnostic Microbiology and Infectious Disease 12: 51–55, 1989

    PubMed  CAS  Google Scholar 

  • Jenkinson SG. The use of cefotaxime in the treatment of Gram-positive pneumonias. Infection 13 (Suppl. 1): 14–17, 1985

    Google Scholar 

  • Johnson JT, Yu VL, Myers EN, Muder RR, Thearle PB, et al. Efficacy of two third-generation cephalosporins in prophylaxis for head and neck surgery. Archives of Otolaryngology 110: 224–227, 1984

    PubMed  CAS  Google Scholar 

  • Jones RN. The activity of cefotaxime and desacetylcefotaxime against Bacteroides species compared to 7-methoxy cephems and other anti-anaerobe drugs. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 39–43, 1984

    PubMed  CAS  Google Scholar 

  • Jones RN. Gram-positive superinfections following beta-lactam chemotherapy: the significance of the Enterococcus. Infection 13 (Suppl. 1): S81–S88, 1985

    PubMed  Google Scholar 

  • Jones RN, Barry AL. Activity of six contemporary antibacterial agents against 96 isolates from purulent meningitis: the contribution of desacetylcefotaxime to antimicrobial potency. Journal of Antimicrobial Chemotherapy 19: 843–844, 1987a

    PubMed  CAS  Google Scholar 

  • Jones RN, Barry AL. Antimicrobial activity of ceftriaxone, cefotaxime, desacetylcefotaxime, and cefotaxime-desacetylcefotaxime in the presence of human serum. Antimicrobial Agents and Chemotherapy 31: 818–820, 1987b

    PubMed  CAS  Google Scholar 

  • Jones RN, Barry AL, Packer RR. The activity of cefotaxime and desacetylcefotaxime and in combination against anaerobes and Staphylococci. Diagnostic Microbiology and Infectious Disease 2-(Suppl.): 37–46, 1984

    CAS  Google Scholar 

  • Jones RN, Wojeski WV. Single-dose cephalosporin prophylaxis of 929 surgical procedures in a prepared group practice: a prospective, randomized comparison of cefoperazone and cefotaxime. Diagnostic Microbiology and Infectious Disease 6: 323–334, 1987a

    PubMed  CAS  Google Scholar 

  • Jones RN, Wojeski WV. Single-dose surgical prophylaxis using ticarcillin/clavulanic acid (Timentin®): a prospective, randomized comparison with cefotaxime. Diagnostic Microbiology and Infectious Disease 7: 219–223, 1987b

    PubMed  CAS  Google Scholar 

  • Jones RN, Wojeski W, Bakke J, Porter C, Searles M. Antibiotic prophylaxis of 1,036 patients undergoing elective surgical procedures. American Journal of Surgery 153: 341–346, 1987

    PubMed  CAS  Google Scholar 

  • Jonsson M, Walder M. Pharmacokinetics of intravenous antibiotics in acutely ill elderly patients. European Journal of Clinical Microbiology 5: 629–633, 1986

    PubMed  CAS  Google Scholar 

  • Just H-M, Bassler M, Frank V, Spillner G, Schlosser V, et al. Penetration of cefotaxime into heart valves, subcutaneous and muscle tissue of patients undergoing open-heart surgery. Journal of Antimicrobial Chemotherapy 14: 431–434, 1984

    PubMed  CAS  Google Scholar 

  • Kamiya T, Saito H, Sakuragawa N, Imaoka S, Kuramoto A. Effect of cefotaxime upon haemostasis. Japanese Journal of Antibiotics 40: 1275–1293, 1987

    PubMed  CAS  Google Scholar 

  • Kampf D, Borner K, Möller M, Kessel M. Kinetic interactions between azlocillin, cefotaxime and cefotaxime metabolites in normal and impaired renal function. Clinical Pharmacology and Therapeutics 35: 214–220, 1984

    PubMed  CAS  Google Scholar 

  • Kaneko H, Shirai T, Katoh M, Shimura H, Nojima Z, et al. A clinical study of cefotaxime in patients with infections complicating a disorder of the hemopoietic tissue: its therapeutic effect and influence on the coagulation system. Japanese Journal of Antibiotics 38: 3145–3155, 1985

    PubMed  CAS  Google Scholar 

  • Karakusis PH, Trenholme GM, Levin S. A review of the use of cefotaxime in the treatment of skin and skin structure infections, with special reference to Gram-positive pathogens. Infection 13 (Suppl. 1): 46–49, 1985

    Google Scholar 

  • Katsunuma H. Clinical evaluation of the effect of cefotaxime in senile pneumonia caused by Gram-positive and Gram-negative bacteria. Infection 13 (Suppl. 1): 18–24, 1985

    Google Scholar 

  • Kazmierczak A, Pechinot A, Tremeaux JC, Duez JM, Kohli E, et al. Bactericidal activity of cefotaxime and fosfomycin in cerebrospinal fluid during the treatment of rabbit meningitis experimentally induced by methicillin-resistant Staphylococcus aureus. Infection 13 (Suppl. 1): 76–80, 1985

    CAS  Google Scholar 

  • Kelly CP, O’Connor R, Weir DG. Pseudomembranous colitis and cefotaxime. Lancet 1: 102–103, 1986

    PubMed  CAS  Google Scholar 

  • Kerver AJH, Rommes JH, Mevissen-Verhage EAE, Hirlstaert PF, Vos A, et al. Prevention of colonisation and infection in critically ill patients: a prospective randomised study. Critical Care Medicine 16: 1087–1093, 1988

    PubMed  CAS  Google Scholar 

  • Kim KS, Manocchio M, Bayer AS. Efficacy of cefotaxime and latamoxef for Escherichia coli bacteremia and meningitis in newborn rats. Chemotherapy (Basel) 30: 262–269, 1984

    CAS  Google Scholar 

  • Kirk JM. Probable cefotaxime interference in enzymatic ammonia assay — a cautionary note. Annals of Clinical Biochemistry 26: 195–196, 1989

    PubMed  CAS  Google Scholar 

  • Kitzis MD, Ferré B, Coutrot A, Acar JF, Gutmann L. In vitro activity of combinations of beta-lactam antibiotics with beta-lactamase inhibitors against cephalosporinase-producing bacteria. European Journal of Clinical Microbiology and Infectious Diseases 8: 783–788, 1989

    CAS  Google Scholar 

  • Klastersky J, Glauser MP, Schimpff SC, Zinner SH, Gaya H, et al. Prospective randomized comparison of three antibiotic regimens for empirical therapy of suspected bacteremic infection in febrile granulocytopenic patients. Antimicrobial Agents and Chemotherapy 29: 263–270, 1986

    PubMed  CAS  Google Scholar 

  • Kobayashi S, Arai S, Hayashi S. In vitro and in vivo effects of combinations of cefotaxime or other β-lactams with rolitetra-cycline on methicillin-resistant Staphylococcus aureus. Japanese Journal of Antibiotics 42: 1208–1215, 1989

    PubMed  CAS  Google Scholar 

  • Korting HC, Abeck D. One-shot treatment of uncomplicated gonorrhoea with third generation cephalosporins with differing serum half-life. Chemotherapy 35: 441–448, 1989

    PubMed  CAS  Google Scholar 

  • Kosmidis J, Daikos GK. Prospective randomized comparative studies of mezlocillin/cefotaxime vs gentamicin/cefoxitin. Journal of Antimicrobial Chemotherapy 11 (Suppl. C): 91–95, 1983

    PubMed  Google Scholar 

  • Krairojananan S. Use of cefotaxime in gonorrhoea. Singapore Medical Journal 24: 11–13, 1983

    PubMed  CAS  Google Scholar 

  • Krausse R, Ullmann V, Bandstetter G, Kratochvil P. Investigation of human bile and serum levels by high pressure liquid chromatography after administration of latamoxef or cefotaxime. Arzneimittel-Forschung 34: 1787–1791, 1984

    PubMed  CAS  Google Scholar 

  • Labro MT, Babin-Chevaye C, Hakim J. Effects of cefotaxime and cefodizime on human granulocyte functions in vitro. Journal of Antimicrobial Chemotherapy 18: 233–237, 1986

    PubMed  CAS  Google Scholar 

  • Lahtinen J, Alhava EM, Hakkiluoto A, Kairaluoma M, Miettinen P. Antibiotic prophylaxis in complicated biliary surgery. Abstract. 15th International Congress of Chemotherapy, Istanbul, July, 1987

  • Lam K, Bayer AS. In vitro bactericidal synergy of gentamicin combined with penicillin G, vancomycin or cefotaxime against group G Streptococci. Antimicrobial Agents and Chemotherapy 26: 260–262, 1984

    PubMed  CAS  Google Scholar 

  • Lambert-Zechovsky N, Bingen E, Aujard Y, Mathieu H. Impact of cefotaxime on the fecal flora in children. Infection 13 (Suppl. 1): 140–144, 1985

    Google Scholar 

  • Lander DW, Jungkind DL, Stone LL. Attempted reduction by Abbott MS-2 false-susceptible errors for cefotaxime-resistant Pseudomonas aeruginosa by medium modification. Journal of Clinical Microbiology 25: 732–733, 1987

    PubMed  CAS  Google Scholar 

  • Lanni N, Scaglione B. Il ceftriaxone nella terapia di infezioni delle basse vie respiratorie: confronto con cefotaxime. Minerva Medica 77: 317–319, 1986

    PubMed  CAS  Google Scholar 

  • Lapointe J-R. Béliveau C, Chicoine L, Joncas JH. A comparison of ampicillin-cefotaxime and ampicillin-chloramphenicol in childhood bacterial meningitis: an experience in 55 patients. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 167–180, 1984

    PubMed  Google Scholar 

  • Lapointe JR, Chicoine L. Cefotaxime versus chloramphenicol for ampicillin-resistant Haemophilus influenzae meningitis: a retrospective study of sixty-two cases. 15th International Congress of Chemotherapy, July 1987, Progress in Chemotherapy — Antimicrobial Section pp. 1034–1037, 1987

  • Lapointe J-R, Lavallée C, Michaud A, Chicoine L, Joncas J-H. In vitro comparison of ampicillin-chloramphenicol and ampicillin-cefotaxime against 284 Haemophilus isolates. Antimicrobial Agents and Chemotherapy 29: 594–597, 1986

    PubMed  CAS  Google Scholar 

  • Lassman HB, Coombes JD. Metabolism of cefotaxime: a review. Diagnostic Microbiology and Infectious Disease 2 (Suppl.): 3–12, 1984

    CAS  Google Scholar 

  • Lau WY, Fan ST, Yui TF, Poon GP, Wong SH. Prophylaxis of postappendicectomy sepsis by metronidazole and cefotaxime; a randomized, prospective and double blind trial. British Journal of Surgery 70: 670–672, 1983

    PubMed  CAS  Google Scholar 

  • Lauridsen F, Bjoernsen K, Nielsen SAD, Hansen OH. Short-term prophylaxis with cefotaxime in colorectal surgery. Diseases of the Colon and Rectum 31: 25–27, 1988

    PubMed  CAS  Google Scholar 

  • Lecour H, Seara A, Cordeiro J, Miranda M. Treatment of childhood bacterial meningitis. Infection 17: 343–346, 1989

    PubMed  CAS  Google Scholar 

  • Lecour H, Seara A, Miranda AM, Cordeiro J. Cefotaxime in pneumococcal meningitis. Infection 13 (Suppl. 1): 73–75, 1985

    Google Scholar 

  • Lecour H, Seara A, Miranda AM, Cordeiro J, Sarmento J. Treatment of 160 cases of acute bacterial meningitis with cefotaxine. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 195–202, 1984

    PubMed  Google Scholar 

  • Ledingham IM, Alcock SR, Eastaway AT, McDonald JC, McKay IE, et al. Triple regimens of selective decontamination of the digestive tract, systemic cefotaxime, and microbiological surveillance for prevention of acquired infection in intensive care. Lancet 1: 785–790, 1988

    PubMed  CAS  Google Scholar 

  • LeFrock J, Mader J, Smith B, Carr B. Bone and joint infections caused by Gram-positive bacteria: treatment with cefotaxime. Infection (Suppl. 1): 50–55, 1985

  • LeFrock JL, Molavi A, Smith A, Black P, Rosenberg M, et al. Effectiveness of cefotaxime in Gram-negative meningitis. Neurosurgery 15: 679–682, 1984

    PubMed  CAS  Google Scholar 

  • Lenz T, Haller H. Athrombozytose unter Cefotaxim-Azlocillin-Kombinationstherapie. Deutsche Medizinische Wochenschrift 109: 1423–1424, 1984

    PubMed  CAS  Google Scholar 

  • Lepage P, Bogaerts J, Nsengumuremyi F, Hitimana DG, Van Goethem C, et al. Severe multiresistant systemic infections in Central Africa — clinical features and treatment in a paediatric department. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 153–159, 1984

    PubMed  Google Scholar 

  • Lepage P, Bogaerts J, Van Goethem C, Hitimana DG, Nsengumuremyi F. Multiresistant Salmonella typhimurium systemic infection in Rwanda. Clinical features and treatment wth cefotaxime. Journal of Antimicrobial Chemotherapy 26 (Suppl. T), in press, 1990a

  • Lepage P, Kestelyn P, Bogaerts J. Treatment of gonococcal conjunctivitis with a single intramuscular injection of cefotaxime. Journal of Antimicrobial Chemotherapy 26 (Suppl. T), in press, 1990b

  • Lingaas E, Midtvedt T. The influence of cefoperazone, cefotaxime, ceftazidime and aztreonam on phagocytosis by human neutrophils in vitro. Journal of Antimicrobial Chemotherapy 23: 701–710, 1989

    PubMed  CAS  Google Scholar 

  • Lode H, Glatzel PD. Cefotaxime: efficacy and tolerance in lower respiratory tract infections caused by Gram-positive cocci. Infection 13 (Suppl. 1): 25–27, 1985

    Google Scholar 

  • Löffler L, Bauernfeud A, Keyl W, Hoffstedt B, Piergies A, et al. An open, comparative study of sulbactam plus ampicillin vs cefotaxime as initial therapy for serious soft tissue and bone and joint infections. Reviews of Infectious Diseases 8 (Suppl. 5): 593–595, 1986

    Google Scholar 

  • Lohr J, Wagner PK, Rothmund M. Perioperative antibioticaprophylaxe (Einmal — oder Mehrfachgabe) bei elektiven colorectaler Eingriffen. Chirurg 55: 512–514, 1984

    PubMed  CAS  Google Scholar 

  • Lovering AM, Bywater MJ, Holt HA, Champion HM, Reeves DS. Resistance of bacterial pathogens to four aminoglycosides and six other antibacterials and prevalence of amtinoglycoside modifying enzymes, in 20 UK centres. Journal of Antimicrobial Chemotherapy 22: 823–839, 1988

    PubMed  CAS  Google Scholar 

  • Macdonald CM, Fromson JM, McDonald A, Dell D, Chamberlain J, et al. Disposition of cefotaxime in rat, dog and man. Arzneimittel-Forschung 34: 1719–1723, 1984

    PubMed  CAS  Google Scholar 

  • Mader JH, Mader JT. Adult Haemophilus influenzaemeningitis. Indiana Medicine 80: 1080–1082, 1987

    PubMed  CAS  Google Scholar 

  • Mader JT, LeFrock JL, Hyams KC, Molavi A, Reinarz JA. Cefotaxime therapy for patients with osteomyelitis and septic arthritis. Reviews of Infectious Diseases 4 (Suppl.): S472–S480, 1982

    PubMed  Google Scholar 

  • Maesen FPV, Davies BI, van den Bergh JJAM, Gubbelmens HLL, Meek JCE, et al. Cefodizime and cefotaxime in acute exacerbations of chronic bronchitis: a randomised double-blind prospective study in 180 patients. Journal of Antimicrobial Chemotherapy 25: 413–422, 1990

    PubMed  CAS  Google Scholar 

  • Mahieux F, Verdy E, Romatet S, Guillard A. Hypoprothrombinémie sous céfotaxime au cours d’un régime carencé en vitamine K. Presse Médicale 17: 1095, 1989

    Google Scholar 

  • Mandell LA, Bergeron MG, Ronald AG, Vega C, Harding G, et al. Once-daily therapy with ceftriaxone compared with daily multiple-dose therapy with cefotaxime for serious bacterial infections: a randomised, double-blind study. Journal of Infectious Diseases 160: 433–441, 1989

    PubMed  CAS  Google Scholar 

  • Mangkalaviraj C, Sirisopana N. Cefotaxime for gonorrhoea. Journal of the Medical Association of Thailand 66: 575–578, 1983

    PubMed  CAS  Google Scholar 

  • Marchbanks CR, Yost RL, White RL. Cefotaxime stability during in vitro microbiological testing. Antimicrobial Agents and Chemotherapy 31: 1375–1378, 1987

    PubMed  CAS  Google Scholar 

  • Martens MG, Faro S, Hammill H, Maccato M, Riddle GD, et al. Comparison of cefotaxime, cefoxitin and clindamycin plus gentamycin in the treatment of uncomplicated and complicated pelvic inflammatory disease. Journal of Antimicrobial Chemotherapy 26 (Suppl. T), in press, 1990

  • Martino P, Venditti M, Petti MC, Mandelli F, Serra P. Cefotaxime plus amikacin as empiric therapy in the treatment of febrile episodes in neutropenic patients with hématologie malignancies. Infection 13: 125–129, 1985

    PubMed  CAS  Google Scholar 

  • Maslow MJ, Simberkoff MS, Rahal JJ. Clinical efficacy of a synergistic combination of cefotaxime and amikacin against multiresistant Pseudomonas and Serratia infections. Journal of Antimicrobial Chemotherapy 16: 227–234, 1985

    PubMed  CAS  Google Scholar 

  • Matsuoka T, Ota H, Takeda J, Takatani O. Basic and clinical studies of cefotaxime. Japanese Journal of Antibiotics 39: 726–732, 1986

    PubMed  CAS  Google Scholar 

  • Matsumoto T, Yoshida T, Ohura T, Hoshi M, Honda K, et al. Pharmacokinetic and clinical studies on cefotaxime in plastic and reconstructive surgery. Japanese Journal of Antibiotics 40: 311–324, 1987

    PubMed  CAS  Google Scholar 

  • Matzke GR, Abraham PA, Halstenson CE, Keane WF. Cefotaxime and desacetyl cefotaxime kinetics in renal impairment. Clinical Pharmacology and Therapeutics 38: 31–36, 1985

    PubMed  CAS  Google Scholar 

  • McCluskey WP, Esterhai JL, Brighton CT, Heppenstall RB. Neutropenia complicating parenteral antibiotic treatment of infected nonunion of the tibia. Archives of Surgery 124: 1309–1312, 1989

    PubMed  CAS  Google Scholar 

  • McDonald PJ, Sanders T, Higgins G, Finlay-Jones L, Hakendorf M, et al. Antibiotic prophylaxis in hysterectomy-cefotaxime compared to ampicillin-tinidazole. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 223–230, 1985

    Google Scholar 

  • Michéa-Hamzehpour M, Auckenthaler R, Kunz J, Pechere J-C. Effect of a single dose of cefotaxime or ceftriaxone on human faecal flora: a double-blind study. Drugs 35 (Suppl. 2): 6–11, 1988

    PubMed  Google Scholar 

  • Miglioli PA, Tedeschi U. Importance of the mode of administration on cephotaxime concentration in bile. Chemotherapy (Basel) 34: 380–384, 1988

    CAS  Google Scholar 

  • Moellering RC, Eliopoulos GM. Activity of cefotaxime against Enterococci. Diagnostic Microbiology and Infectious Disease 2 (Suppl.): 85–90, 1984

    CAS  Google Scholar 

  • Moesgaard F, Nielsen ML, Hjortrup A, Kjersgaard P, Sørensen C, et al. Intraincisional antibiotic in addition to systemic antibiotic treatment fails to reduce wound infection rates in contaminated abdominal surgery: a controlled clinical trial. Diseases of the Colon and Rectum 32: 36–38, 1989

    PubMed  CAS  Google Scholar 

  • Moore ES, Jimenez M, Barriere SL, Cimino ML, Fekety FR. Additive and synergistic bactericidal activity contributed by cefotaxime during cefotaxime therapy. Clinical Pharmacy 7: 901–905, 1988

    PubMed  CAS  Google Scholar 

  • Morris DL, Rodgers Wilson S, Pain J, Edwardson KF, Jones J, et al. A comparison of aztreonam/metronidazole and cefotaxime/metronidazole in elective colorectal surgery: antimicrobial prophylaxis must include Gram-positive cover. Journal of Antimicrobial Chemotherapy 25: 673–678, 1990

    PubMed  CAS  Google Scholar 

  • Moukhtar I, Nawishy S, Sabbour M. Pharmacokinetics of cefotaxime after a single intravenous dose in patients with impaired renal function. Chemoterapia 6: 38–40, 1987

    CAS  Google Scholar 

  • Mozzillo N, Dionigi R, Ventriglia L. Multicenter study of aztreonam in the prophylaxis of colorectal, gynecologic and urologic surgery. Chemotherapy (Basel) 35 (Suppl. 1): 58–71, 1989

    Google Scholar 

  • Mullaney DT, John JF. Cefotaxime therapy: evaluation of its effect on bacterial meningitis, CSF drug levels, and bactericidal activity. Archives of Internal Medicine 143: 1705–1708, 1983

    PubMed  CAS  Google Scholar 

  • Müller E, Heinkelein J. Ceftazidim versus Cefotaxim in der Therapie schwerer Infektionen bei Intensivpatienten. Infection 15 (Suppl. 4): 173–178, 1987

    Google Scholar 

  • Müller-Bühl U, Diehm C. Intraarterielle Infusionsbehandlung der mischinfizierten Gangrän mit Cefotaxim-Natrium. Medizinische Klinik 81: 751–752, 1986

    PubMed  Google Scholar 

  • Multicenter Study Group. Single-dose prophylaxis in patients undergoing vaginal hysterectomy: cefamandole versus cefotaxime. American Journal of Obstetrics and Gynaecology 160: 1198–1201, 1989

    Google Scholar 

  • Murillo J, Guzmán M, Isturiz R, Ocero C. Evaluation of the in vitro susceptibility of Gram-negative bacilli to cefotaxime, over a period of 3 years. Drugs 35 (Suppl. 2): 12–13, 1988

    PubMed  Google Scholar 

  • Murphy MF, Metcalfe P, Grint PCA, Green AR, Knowles S. Cephalosporin-induced immune neutropenia. British Journal of Haematology 59: 9–14, 1985

    PubMed  CAS  Google Scholar 

  • Naber KG, Dette GA, Kees F, Krothe H, Grobecker H. Pharmacokinetics, in vitro activity, therapeutic efficacy and clinical safety of aztreonam vs cefotaxime in the treatment of complicated urinary tract infections. Journal of Antimicrobial Chemotherapy 17: 517–527, 1986

    PubMed  CAS  Google Scholar 

  • National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. NCCLS Publication M7-A, 5 (22), 1985

  • Nauciel C, Martin E. Efficacité comparée de l’ampicilline, du chloramphénicol, du céfotaxime, de la ceftriaxone et de la péfloxacine dans l’infection expérimentale a Salmonella typhimurium. Pathologie Biologie 35: 1239–1242, 1987

    PubMed  CAS  Google Scholar 

  • Neu HC. Cephalosporins in the treatment of meningitis. Drugs 34(Suppl. 2): 135–153, 1987

    PubMed  Google Scholar 

  • Newland AC, Gaya H. Use of cephalosporins in immunologically compromised agents. Drugs 34 (Suppl. 2): 205–215, 1987

    PubMed  Google Scholar 

  • Nishimura T, Tabuki K, Motohiro T, Shimada Y, Takajo N, et al. Effects of cefotaxime on the coagulation system, especially their dependency on vitamin K-related factors. Japanese Journal of Antibiotics 40: 1881–1890, 1987

    PubMed  CAS  Google Scholar 

  • Nolan N, Tighe B, Cooney C, O’Brian DS. Cefotaxime and pseudomembranous colitis. Lancet 2: 888, 1985

    PubMed  CAS  Google Scholar 

  • Norwegian Study Group. Imipenem/cilastatin as monotherapy in severe infections: comparison with cefotaxime in combination with metronidazole and cloxacillin. Scandinavian Journal of Infectious Diseases 19: 667–675, 1987

    Google Scholar 

  • Notowicz A, Stolz E, van Klingeren B, van der Hoek J, De Hoop D, et al. Comparative study of treatment of uncomplicated gonorrhea with thiamphenicol and cefotaxime. Sexually Transmitted Disease 11 (Suppl.): 379–381, 1984

    CAS  Google Scholar 

  • Odio CM, Faingezicht I, Salas JL, Guevara J, Mohs E, et al. Cefotaxime vs conventional therapy for the treatment of bacterial meningitis of infants and children. Pediatric Infectious Disease 5: 402–407, 1986

    PubMed  CAS  Google Scholar 

  • Ohsawa T, Furakawa F. Neutropenia associated with cefotaxime. Drug Intelligence and Clinical Pharmacy 17: 739–742, 1983

    PubMed  CAS  Google Scholar 

  • Orienti S, Colombo F, Gervasini A, Bernasconi A, Barbieri R, et al. Ceftriaxone versus cefotaxime in the therapy of pulmonary infections. Current Therapeutic Research 45: 733–737, 1989

    Google Scholar 

  • Overgaard S, Løkkegaard N, Serøder S, Fugleberg S, Nielsen-Kudsk F. Cefotaxime disposition pharmacokinetics during peritoneal dialysis. Pharmacology and Toxicology 60: 321–324, 1987

    PubMed  CAS  Google Scholar 

  • Pal GS, Baker JT, Wright DJM. Penicillin-resistant Borrelia encephalitis responding to cefotaxime. Lancet 1: 50–51, 1988Parish LC, Asper RA. Systemic treatment of cutaneous infections: a comparative study of ciprofloxacin and cefotaxime. American Journal of Medicine 82 (Suppl. 4A): 227–229, 1987

    Google Scholar 

  • Park SC, Lee CH, KinxSY, Park CH, Kim TW, et al. Clinical trial of cefotaxime in patients with typhoid fever. Clinical Therapeutics 7: 448–451, 1985

    PubMed  CAS  Google Scholar 

  • Parker RH. Effect of frequency of administration on therapeutic efficacy of cefotaxime. Clinical Therapeutics 6: 488–499, 1984

    PubMed  CAS  Google Scholar 

  • Parker RH, Park S-Y. Safety of cefotaxime and other new β-lactam antibiotics. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 331–335, 1984

    PubMed  Google Scholar 

  • Pavone V, Specchia G, Guarini A, Coneglio M, Iaculli L, et al. Piperacillin plus amikacin versus cefotaxime plus amikacin in neutropenic and feverish patients with malignant hemopathies. Chemioterapia 7: 330–335, 1988

    PubMed  CAS  Google Scholar 

  • Pellegrin JL, Marit G, Fourche J, Broustet A, Texier-Maugein J, et al. Etude prospective randomisée, de la ceftazidime versus l’association céfotaxime-tobramycine, dans les leucémies aiguës en aplasia thérapeutique. Presse Médicale 17: 1960–1963, 1988

    CAS  Google Scholar 

  • Peltola H, Anthila M, Renkonen O-V, Finnish Study Group. Randomised comparison of chloramphénicol, ampicillin, cefotaxime, and ceftriaxone for childhood bacterial meningitis. Lancet 1: 1281–1287, 1989

    PubMed  CAS  Google Scholar 

  • Peretti P, Sueri L, Tosi M, Ciammarughi R, Cadeo GP, et al. Cefotaxime in the cerebrospinal fluid and serum in patients with purulent meningitis. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 117–123, 1984

    PubMed  Google Scholar 

  • Pérez-Ruvalcaba JA, Quintero-Pérez NP, Morales-Reyes JJ, Huitrón-Ramirez JA, Rodriguez-Chagollán JJ, et al. Double-blind comparison of ciprofloxacin with cefotaxime in the treatment of skin and skin structure infections. American Journal of Medicine 82 (Suppl. 4A): 242–246, 1987

    PubMed  Google Scholar 

  • Periti P, Mazzei T, Lamanna S, Mini E. Single-dose ceftriaxone versus multidose cefotaxime antimicrobial prophylaxis in gynecologic and obstetrical surgery: preliminary results of a multicenter prospective randomised study. Chemioterapia 3: 299–304, 1984

    PubMed  CAS  Google Scholar 

  • Petrikkos G, Androulakis M. Goumas P, Giamarellou H. A comparative study of cefoxitin, cefotaxime, moxalactam and aztreonam kinetics in saliva. Chemioterapia 6: 355–358, 1987

    CAS  Google Scholar 

  • Petropouios P, Dietrich PY, Amman J, Ayer G, Buchmann P, et al. Prophylaxie antibiotique par dose unique pour la chiurgie colo-rectale élective: étude multicentrique en Suisse. Helvetica Chirurgica Acta 52: 703–706, 1985

    Google Scholar 

  • Pfister H-W, Preac-Mursic V, Wilske B, Einhäupl KM. Cefotaxime vs penicillin G for acute neurologic manifestations in Lyme borreliosis. Archives of Neurology 46: 1190–1194, 1989

    PubMed  CAS  Google Scholar 

  • Phillips I. The role of cephalosporins in gonorrhoea and other sexually transmitted diseases. Drugs 34 (Suppl. 2): 164–179, 1987

    PubMed  Google Scholar 

  • Piccinno A, Pagliarulo A. Cefotaxime for the treatment of Grampositive urinary tract infection. Infection 13 (Suppl. 1): 100–102, 1985

    Google Scholar 

  • Pierce MA, Elliott AM, Cobbs CG. Cefotaxime aminoglycoside interactions. Chemotherapy (Basel) 31: 336–345, 1985

    CAS  Google Scholar 

  • Plesner A-M, Hansen MM, Nissen NI. Friis H. Cefotaxime monotherapy in septicaemic patients with haematological malignancies. Clinical Therapeutics 9: 97–105, 1986

    CAS  Google Scholar 

  • Plummer FA, Maggwa N, D’Costa LJ, Nsanze H, Karasira P, et al. Cefotaxime treatment of Haemophilus ducreyi infection in Kenya. Sexually Transmitted Disease 11: 304–307, 1984

    CAS  Google Scholar 

  • Pollock HM, Holt J, Murray C. Comparison of susceptibilities of anaerobic bacteria to cefmenoxime, ceftriaxone, and other antimicrobial compounds. Antimicrobial Agents and Chemotherapy 23: 780–783, 1983

    PubMed  CAS  Google Scholar 

  • Porpaczy P. Cefotaxime in the treatment of urinary tract infection. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 311–315, 1984

    PubMed  Google Scholar 

  • Portier H, Armengaud M, Becq-Giraudon B, Bousser J, Desbordes JM, et al. Traitement par l’association céfotaxime-fos-fomycine des méningites de l’adulte staphylocoques ou à entérobactéries. Presse Médicale 16: 2161–2166, 1987

    CAS  Google Scholar 

  • Portier H, Kazmierczak A, Lucht F, Tremeaux JC, Chavanet P, et al. Cefotaxime in combination with other antibiotics for the treatment of severe methicillin-resistant staphylococcal infections. Infection 13 (Suppl. 1): 13: 123–128, 1985

    Google Scholar 

  • Prevot M-H, Andremont A, Sancho-Garnier H, Tancrede C. Epidemiology of intestinal colonization by members of the family Enterobacteriaceae resistant to cefotaxime in a hematology-oncology unit. Antimicrobial Agents and Chemotherapy 30: 945–947, 1986

    PubMed  CAS  Google Scholar 

  • Pulay I, Flautner F, Tarjanyi M, Tichanyi T, Darvas K, et al. Comparative study, cefotaxime versus ceftriaxone in prevention of infections in pancreatic surgery. Abstract 353, 15th ICC, Istanbul, 19–24 July 1987

  • Quentin CD, Ansorg R. Penetration of cefotaxime into the aqueous humour of the human eye after intravenous application. Graefes Archive for Clinical and Experimental Ophthalmology 220: 245–247, 1983

    CAS  Google Scholar 

  • Quin JD. The nephrotoxicity of cephalosporins. Adverse Drug Reactions and Acute Poisoning Reviews 8: 63–72, 1989

    PubMed  CAS  Google Scholar 

  • Quintiliani R, Nightingale CH, Tilton R. Comparative pharmacokinetics of cefotaxime and ceftizoxime and the role of desacetylcefotaxime in the antibacterial activity of cefotaxime. Diagnostic Microbiology and Infectious Disease 2 (Suppl.): 63–70, 1984

    CAS  Google Scholar 

  • Raad II, Sherertz RJ, Loveless MO, Carillo C, O’Connor RP, et al. Comparison of cefpimizole with cefotaxime and penicillin G for treatment of uncomplicated gonorrhea. Sexually Transmitted Disease 15: 73–77, 1988

    CAS  Google Scholar 

  • Raahave D, Hesselfeldt P, Pedersen TB. Cefotaxime IV versus oral neomycin-erythromycin for prophylaxis after colorectal operations. Abstract. World Journal of Surgery 12: 369–373, 1988

    CAS  Google Scholar 

  • Ramirez FJH, Loperena HH, Regalado AS, Sánchez CJ, Valdez AC. Estudio clínico abierto randomizado para determinar eficacia y seguridad de pefloxacin vs cefotaxima en el tratamiento de infecciones severas. Investigation Médica Internacional 15: 75–84, 1988

    Google Scholar 

  • Ramirez-Ronda CH, Saavedra S, Rivera-Vazguez CR. Comparative, double-blind study of oral ciprofloxacin and intravenous cefotaxime in skin and skin structure infections. American Journal of Medicine 82 (Suppl. 4A): 220–223, 1987

    PubMed  CAS  Google Scholar 

  • Rankin GO, Sutherland CH. Nephrotoxicity of aminoglycosides and cephalosporins in combination. Adverse Drug Reactions and Acute Poisoning Reviews 8: 73–88, 1989

    PubMed  CAS  Google Scholar 

  • Rasmussen D, Bremmelgaard A, Rasmussen F, Thorup J. Treatment of serious urological infections with cefotaxime compared to ampicillin plus netilmicin. Danish Medical Bulletin 33: 49–51, 1986

    PubMed  CAS  Google Scholar 

  • Reeves JH, Russell GM, Cade JF, McDonald M. Comparison of ceftriaxone with cefotaxime in serious chest infections. Chest 96: 1292–1297, 1989

    PubMed  CAS  Google Scholar 

  • Relier LB. Interaction of cefotaxime and desacetylcefotaxime against pathogenic bacteria: assessment with the serum bactericidal test. Diagnostic Microbiology and Infectious Disease 2 (Suppl.): 55–61, 1984

    Google Scholar 

  • Repetto HA, Fernandez MacLoughlin GJ. Single-dose cefotaxime in the treatment of urinary tract infections in children: a randomized clinical trial. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 307–310, 1984

    PubMed  Google Scholar 

  • Ridley PD, Sagar S. Cephalosporin prophylaxis in abdominal surgery. British Journal of Clinical Practice 42: 337–342, 1988

    PubMed  CAS  Google Scholar 

  • Ridley PD, Sagar S. Comparative evaluation of cefotaxime and cephamandole in the prevention of post-operative infective complications following emergency abdominal surgery. British Journal of Clinical Practice 44: 17–21, 1990

    PubMed  CAS  Google Scholar 

  • Robbs JV, Kharsany A. Serum and tissue concentrations of intravenous cefotaxime during aortic surgery. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 113–116, 1984

    PubMed  Google Scholar 

  • Roberts DG, Roberts BM, Peterson Le, Al-Khaja NM. Comparison between cefotaxime and a combination of benzylpenicillin and cloxacillin as an antibiotic prophylaxis in cardiac surgery with cardio-pulmonary bypass. Journal of Cardiovascular Surgery 29: 650–657, 1988

    PubMed  CAS  Google Scholar 

  • Rodondi LC, Flaherty JF, Schoenfeld P, Barriere SL, Gambertoglio IG. Infuence of coadministration of the pharmacokinetics of mezlocillin and cefotaxime in healthy volunteers and in patients with renal failure. Clinical Pharmacology and Therapeutics 45: 527–534, 1989

    PubMed  CAS  Google Scholar 

  • Rolin O, Roche G, Bouanchaud DH. Bactericidal activity of cefotaxime and cefixime in a kinetic model in vitro. Presse Médicale 18: 1569–1571, 1989

    CAS  Google Scholar 

  • Rolston K, Bolivar R, Fainstein V, Jones P, Elting L, et al. Cefotaxime: single agent therapy for infections in cancer patients with adequate granulocyte counts. Journal of Antimicrobial Chemotherapy 15: 91–96, 1985

    PubMed  CAS  Google Scholar 

  • Rondanelli R, Dionigi RV, Calvi M, Dell’Antonio M, Corsico G, et al. Cefotaxime therapy of lower respiratory tract infections in intensive-care patients. International Journal of Clinical Pharmacology Research 7: 73–76, 1987

    PubMed  CAS  Google Scholar 

  • Rowe-Jones DC, Peel ALG, Kingston RD, Shaw JFL, Teasdale C, et al. Single dose cefotaxime plus metronidazole versus three dose cefuroxime plus metronidazole as prophylaxis against wound infection in colorectal surgery: multicentre prospective randomised study. British Medical Journal 300: 18–22, 1990

    PubMed  CAS  Google Scholar 

  • Roy S, Wilkins J. Cefotaxime in the treatment of female pelvic soft tissue infections. Infection 13 (Suppl. 1): 56–61, 1985

    Google Scholar 

  • Roy S, Wilkins J. Single-dose cefotaxime versus 3 to 5 dose cefoxitin for prophylaxis of vaginal or abdominal hysterectomy. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 217–221, 1984

    PubMed  Google Scholar 

  • Rubinstein E, Triester G, Avni I, Schwartzkopf R. The intravitreal penetration of cefotaxime in man following systemic and subconjunctival administrations. Ophthalmology 94: 30–34, 1987

    PubMed  CAS  Google Scholar 

  • Runyon BA, Akriviadis EA, Antillon MR, McHutchison JG, Montano A A. Short course versus long course therapy of spontaneous bacterial peritonitis: a randomised trial of 70 patients. Abstract 651. Gastroenterology 96: 1989

  • Runyon BA, Akriviadis EA, Sattler FR, Cohen J. Ascitic fluid and serum cefotaxime levels in patients treated for spontaneous bacterial peritonitis. Abstract. Hepatology 8: 1246, 1988

    Google Scholar 

  • Sage R, Nazareth B, Noone P. A prospective randomised comparison of cefotaxime vs netilmicin vs cefotaxime plus netilmicin in the treatment of hospitalised patients with serious sepsis. Scandinavian Journal of Infectious Diseases 19: 331–337, 1987

    PubMed  CAS  Google Scholar 

  • Sakaguchi Y, Murata K, Kimura M, Yamànoshita U, Shimoshikiryo K, et al. Experimental study of synergism between cefotaxime and ampicillin against Streptococcus D group. Japanese Journal of Antibiotics 36: 124–128, 1983

    PubMed  CAS  Google Scholar 

  • Sakurai M, Shibuya S, Miyagishima J, Wakamatsu E. Concentration of cefotaxime and its metabolite in the human bone marrow blood. Japanese Journal of Antibiotics 39: 739–745, 1986

    PubMed  CAS  Google Scholar 

  • Salama A, Goettsche B, Scheiffer T, Mueller-Eckhard C. Immune complex mediated intravascular hemolysis due to IgM cephalosporin dependent antibody. Transfusion 27: 460–463, 1987

    PubMed  CAS  Google Scholar 

  • Sangaret AM, German P, Djanhan Y, Duchassin XX. Cefotaxime in Caesarian sections in patients with chorioamniotitis. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 285–289, 1984

    PubMed  Google Scholar 

  • Scavizzi MR, Alonso J-M, Philippon AM, Jupeau-Vessieres AM, Guiyoule A. Failure of newer β-lactam antibiotics for murine Yersinia enterocolitica infection. Antimicrobial Agents and Chemotherapy 31: 523–526, 1987

    PubMed  CAS  Google Scholar 

  • Schleupner CJ. Clinical experience with cefotaxime for the therapy of bacteremias due to Gram-positive organisms. Infection 13 (Suppl. 1): 28–33, 1985

    Google Scholar 

  • Schrinner E, Limbert M, Seeger K, Seibert G, Novick WJ. The in vitro antimicrobial activity of desacetylcefotaxime compared to other related β-lactams. Diagnostic Microbiology and Infectious Disease 2 (Suppl.): 13–20, 1984

    Google Scholar 

  • Selan L, Thaller MC, Berlutti F, Passariello C, Scazzocchio F, et al. Effect of slime production on the antibiotic susceptibility of isolates from prosthetic infections. Journal of Chemotherapy 1: 369–373, 1989

    PubMed  CAS  Google Scholar 

  • Selwyn S, Bakhtiar M. Comparative in vitro studies on cefotaxime and desacetylcefotaxime. Drugs Under Experimental and Clinical Research 12: 953–965, 1984

    Google Scholar 

  • Shah PM. Staphylococcus aureus septicaemia treated with cefotaxime. Infection 13 (Suppl. 1): 34–36, 1985

    Google Scholar 

  • Shatney CH. Antibioitic prophylaxis in elective gastro-intestinal tract surgery: a comparison of single-dose pre-operative cefotaxime and multiple-dose cefoxitin. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 241–245, 1984

    PubMed  Google Scholar 

  • Shimokata K, Torigai K, Kato M, Sakai S, Nomura F, et al. Effects of cefotaxime single administration and of cefotaxime plus fosfomycin administration against respiratory tract infections. Japanese Journal of Antibiotics 41: 1261–1271, 1988

    PubMed  CAS  Google Scholar 

  • Shio K, Matsuda S, Kusumoto C, Tachibana S, Oyabu H, et al. Concentrations of cefotaxime in serum and myocardial tissue. Japanese Journal of Antibiotics 37: 1035–1039, 1984

    PubMed  CAS  Google Scholar 

  • Shulman I, Arnot PA, McGehee W, Garratty G. Cefotaxime-induced immune hemolytic anemia due to antibodies reacting in vitro by more than one mechanism. Transfusion. 30: 263–266, 1990

    PubMed  CAS  Google Scholar 

  • Shyu WC, Quintiliani R, Nightingale CH, Dudley MN. Effect of protein binding on drug penetration into blister fluid. Antimicrobial Agents and Chemotherapy 32: 128–130, 1988

    PubMed  CAS  Google Scholar 

  • Smith CR, Ambinder R, Lipsky JJ, Petty BG, Israel E, et al. Cefotaxime compared with nafcillin plus tobramycin for serious bacterial infections. Annals of Internal Medicine 101: 469–477, 1984

    PubMed  CAS  Google Scholar 

  • Smith JA, Henry D, Ngui-Yen J, Castell A, Coderre S. Comparison of agar dilution, microdilution, and disk elution methods for measuring the synergy of cefotaxime and its metabolite against anerobes. Journal of Clinical Microbiology 23: 1104–1108, 1986

    PubMed  CAS  Google Scholar 

  • Soriano F, Ponte C, Santamaria M, Castilla C. Effect of Bacteroides fragilis on mortality induced by Escherichia coli in an experimental infection treated with cefotaxime, aztreonam or gentamicin. Journal of Antimicrobial Chemotherapy 23: 383–388, 1989

    PubMed  CAS  Google Scholar 

  • Sow A. Cefotaxime treatment of meningitis in children. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 191–194, 1984

    PubMed  Google Scholar 

  • Stamboulian D, Argüello EA, Jasovich A, Villar O, Maglio F. Comparative clinical evaluation of imipenem/cilastatin vs cefotaxime in the treatment of severe bacterial infections. Review of Infectious Diseases 7 (Suppl. 3): 458–462, 1985

    Google Scholar 

  • Steinbakk M, Midtvedt T, Lingaas E, Gradsjord G. In vitro activity of ceftazidime, cefotaxime and gentamicin against 11,321 clinical isolates of bacteria. Acta Pathologica Microbiologica et Immunologica Scandinavica 95: 337–346, 1987

    CAS  Google Scholar 

  • Stobberingh EE, Philips JMH, Houben AW, van Boven CPA. A regional survey of the resistance to β-lactam antibiotics in clinical isolates of (facultative) aerobic micro-organisms. Drugs 35 (Suppl. 2): 41–44, 1988

    PubMed  Google Scholar 

  • Stolz E, Ong L, van Joost T, Michel MF. Treatment of non-complicated urogenital, rectal and oropharyngeal gonorrhoea with intramuscular cefotaxime l.Og or cefuroxime 1.5g. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 295–299, 1984

    PubMed  Google Scholar 

  • Stoutenbeek CP. The role of systemic antibiotic practice in infection prevention in intensive care by SDD. Infection 17: 418–421, 1989

    PubMed  CAS  Google Scholar 

  • Stoutenbeek CP, van Saene HKF, Miranda DR, Zandstra DF. The effect of selective decontamination of the digestive tract on colonisation and infection rate in multiple trauma patients. Intensive Care Medicine 10: 185–192, 1984

    PubMed  CAS  Google Scholar 

  • Stoutenbeek CP, van Saene HKF, Miranda DR, Zandstra DF, Lan D. The effect of oropharyngeal decontamination using topical nonabsorbable antibiotics on the incidence of noso-comial respiratory tract infections in multiple trauma patients. Journal of Trauma 27: 357–364, 1987a

    PubMed  CAS  Google Scholar 

  • Stoutenbeek CP, van Saene HKF, Zandstra DF. The effect of oral, nonabsorbable antibiotics on the emergence of resistant bacteria in patients in an intensive care unit. Journal of Antimicrobial Chemotherapy 19: 513–520, 1987b

    PubMed  CAS  Google Scholar 

  • Stratton CW, Kernodle DS, Eades SC, Weeks LS. Evaluation of cefotaxime alone and in combination with desacetylcefotaxime against strains of Staphylococcus aureus that produce variants of staphylococcal β-lactamase. Diagnostic Microbiology and Infectious Disease 12: 57–65, 1989

    PubMed  CAS  Google Scholar 

  • Sugar AM, Chahal RS, Stevens DA. A cephalosporin active in vivo against Nocardia: efficacy of cefotaxime in murine model of acute pulmonary nocardiosis. Journal of Hygiene 91: 421–427, 1983

    PubMed  CAS  Google Scholar 

  • Sullam PM, Drake TA, Täuber MG, Hackebarth CJ, Sande MA. Influence of the developmental state of valvular lesions on the antimicrobial activity of cefotaxime in experimental enterococcal infections. Antimicrobial Agents and Chemotherapy 27: 320–323, 1985

    PubMed  CAS  Google Scholar 

  • Sunakawa K, Akita H, Iwata S, Sato Y. The influence of cefotaxime on intestinal flora and bleeding diathesis in infants and neonates, compared with other β-lactams. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 317–324, 1984

    PubMed  Google Scholar 

  • Symonds J, Geddes AM. Cephalosporins in Gram-positive infections. Drugs 34 (Suppl. 2): 121–134, 1987

    PubMed  Google Scholar 

  • Takebe K, Imamura K, Masuda M, Murakami S, Tomiyama M, et al. A comparative study between cefodizime (CDZM) and cefotaxime (CTX) in respiratory tract infection. Kansenshogaku Zasshi 63: 318–351, 1989

    PubMed  CAS  Google Scholar 

  • Tancrede CH, Andremont AO, Leonard FC. Epidemiology of enterobacteria resistant to cefotaxime in hospital. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 53–57, 1984

    PubMed  Google Scholar 

  • Tetteroo GWM, Wagenvoort JHT, Castelein A, Tilanus HW, Inee C, et al. Selective decontamination to reduce gram-negative colonisation and infections after oesophageal resection. Lancet 335: 704–707, 1990

    PubMed  CAS  Google Scholar 

  • Thomas WEG, Cooper MJ. Prophylactic ‘Rocephin’ in colorectal surgery. Abstract 1054, 17th ICAAC, New York, 1987

  • Torres A, de Celis R, Rabinad E, Marco F, Almela M, et al. Therapeutic efficacy of the combination of aztreonam with cefotaxime in the treatment of severe nosocomial pneumonia. Comparative study against amikacin combined with cefotaxime. Chemotherapy (Basel) 35 (Suppl. 1): 15–24, 1989

    Google Scholar 

  • Trang JM, Jacobs RF, Kearns GL, Brown AL, Wells TG, et al. Cefotaxime and desacetylcefotaxime pharmacokinetics in infants and children with meningitis. Antimicrobial Agents and Chemotherapy 28: 791–795, 1985

    PubMed  CAS  Google Scholar 

  • Traub WH, Spohr M, Bauer D. Chemotherapeutic efficacy of cefotaxime and failure of fosfomycin in murine Salmonella typhimurium infection. Chemotherapy (Basel) 30: 148–157, 1984

    CAS  Google Scholar 

  • Trenholme GM, Schmitt BA, Nelson JA, Gvazdinskas LC, Harrison BB, et al. Comparative study of three different dosing regimens of cefotaxime for treatment of Gram-negative bacteremia. Diagnostic Microbiology and Infectious Disease 12: 107–111, 1989

    PubMed  CAS  Google Scholar 

  • Tuomala RE, Stoukides CA, Fischer S, Souney PF, Steele L, et al. Comparison of the relative efficacy and hospital changes in patients treated with ampicillin or cefotaxime for postpartum endometritis. Current Therapeutic Research 46: 292–302, 1989

    Google Scholar 

  • Ueda T, Sakai K, Fujimoto M. Studies of cefotaxime serum concentrations during surgery under general anaesthesia and its passage to the wound fluid after surgery for breast cancer. Infection 13 (Suppl. 1): 43–45, 1985

    Google Scholar 

  • Unertl K, Ruckdeschel G, Seebmann HK, Jensen U, Forst H, et al. Prevention of colonisation and respiratory infections in long-term ventilated patients by administration of local prophylaxis. Intensive Care Medicine 13: 106–113, 1987

    PubMed  CAS  Google Scholar 

  • Van Rensburg CEJ, Anderson R, Eftychis HA, Jooné GK. Effects of cefotaxime on neutrophil and lymphocyte functions. South African Medical Journal 64: 346–348, 1983

    PubMed  Google Scholar 

  • van Saene HKF, Stoutenbeek CP, Gilbertson A A. Review of available trials of selective decontamination of the digestive tract (SDD). Infection 18 (Suppl. 1): S5–S9, 1990

    PubMed  Google Scholar 

  • Vincent P, Colombel JF, Husson HO, Izard D, Paris JC, et al. Pharmacocinétique du cefotaxime chez les malades cirrhotiques avec ou sans ascite. Presse Médicale 17: 2331–2334, 1988

    CAS  Google Scholar 

  • Vincent JP, Dervanian P, Bodak A. Encéphalopathie sous cefotaxime: une observation chez un sujeqtgé insuffisant rénal. Annales de Médecine Interne 140: 322, 1989

    Google Scholar 

  • Voigt R, Schröder S, Bierwisch I, Michels W. Pharmakokinetische Untersuchungen von Cefotaxin während der Spätschwangerschaft. Zeitschrift für Geburtshilfe und Perinatologie 193: 230–232, 1989

    PubMed  CAS  Google Scholar 

  • von Loewenich V, Miething R, Uihlein M, Knothe H, Greipel-Zamorski M. Cefotaxim- und Desazetyl-Cefotaxim-Spiegel in Liquor cerebrospinalis von Neu- and Frühgeborenen. Pädiatrie und Pädologie 18: 361–366, 1983

    Google Scholar 

  • Wasilauskas BL. Effectiveness of cefotaxime alone and in combination with desacetylcefotaxime against Bacteroides fragilis. Diagnostic Microbiology and Infectious Disease 12: 39–43, 1989

    PubMed  CAS  Google Scholar 

  • Wauters E. Open randomized comparative multicenter trial of pefloxacin vs cefotaxime for the treatment of patients with severe bacterial infections. Reviews of Infectious Diseases 11 (Suppl. 5): 1171–1172, 1989

    Google Scholar 

  • Webber SA, Tuohy P. Bacteroides fragilis meningitis in a premature infant successfully treated with metronidazole. Pediatric Infectious Disease Journal 7: 886–887, 1988

    PubMed  CAS  Google Scholar 

  • Weber P, Boussougant Y, Farinotti R, Carbon C. Serum bactericidal activity against Enterobacteriaceae producing broad-spectrum beta-lactamases in volunteers administered ofloxacin and cefotaxime, alone or combined. European Journal of Clinical Microbiology and Infectious Disease 8: 524–526, 1989

    CAS  Google Scholar 

  • Weitekamp MR, Caputo GM, Al-Mondhiry HAB, Aber RC. The effects of latamoxef, cefotaxime, and cefoperazone on platelet function and coagulation in normal volunteers. Journal of Antimicrobial Chemotherapy 16: 95–101, 1985

    PubMed  CAS  Google Scholar 

  • Welch WD, Bawdon RE. Cefotaxime metabolism by hemolyzed blood: quantitation and inhibition of the deacetylation reaction. Diagnostic Microbiology and Infectious Disease 4: 119–124, 1986

    PubMed  CAS  Google Scholar 

  • Wells TG, Trang JM, Brown AC, Marmer BC, Jacobs RF. Cefotaxime therapy of bacterial meningitis in children. Journal of Antimicrobial Chemotherapy 14 (Suppl. B): 181–189, 1984

    PubMed  Google Scholar 

  • Westenfelder M, Pelz K. Klinische Studie zur Prüfung der Wirksamheit und Verträglichkeit von Cefotaxim, Ceftizoxin und Ceftriaxon bei Patienten mit komplizierten Harnwegsinfelktionen. Infection 11: 296–301, 1983

    PubMed  CAS  Google Scholar 

  • Whiting JL, Cheng N, Chow AW. Interactions of ciprofloxacin with clindamycin, metronidazole, cefoxitin, cefotaxime, and mezlocillin against Gram-positive and Gram-negative anaerobic bacteria. Antimicrobial Agents and Chemotherapy 31: 1379–1382, 1987

    PubMed  CAS  Google Scholar 

  • Wilson SE, Hopkins JA, Williams RA. A comparison of cefotaxime versus cefamandole in prophylaxis for surgical treatment of the biliary tract. Surgery, Gynecology and Obstetrics 164: 207–212, 1987

    PubMed  CAS  Google Scholar 

  • Winstanley TG, Spencer RC. An in vitro study of the interaction between cefotaxime and desacetylcefotaxime. Drugs Under Experimental and Clinical Research 12: 967–971, 1986

    PubMed  CAS  Google Scholar 

  • Wise R, Wright N. The pharmacokinetics of cefotaxime and ceftriaxone in renal and hepatic dysfunction. Infection 13 (Suppl. 1): 145–150, 1985

    Google Scholar 

  • Wise R, Wright N, Wills PJ. Pharmacology of cefotaxime and its desacetyl metabolite in renal and hepatic disease. Antimicrobial Agents and Chemotherapy 19: 526–531, 1981

    PubMed  CAS  Google Scholar 

  • Wittmann DH. Chemotherapeutic principles of difficult to treat infections in surgery: II. Bone and joint infections. Infection 8: 330–333, 1980

    Google Scholar 

  • Wittmann DH, Frommelt L. The efficacy of cefotaxime in Gram-positive surgical infections. Infection 13 (Suppl. 1): 37–42, 1985

    Google Scholar 

  • Wroe SJ, Ellershaw JE, Whittaker JA, Richens A. Focal motor status epilepticus following treatment with azlocillin and cefotaxime. Medical Toxicology 2: 233–234, 1987

    PubMed  CAS  Google Scholar 

  • Yangco BG, Baird I, Lorber B, Noble R, Bermudez R, et al. Comparative efficacy and safety of ceftizoxime, cefotaxime and latamoxef in the treatment of bacterial pneumonia in high risk patients. Journal of Antimicrobial Chemotherapy 19: 239–248, 1987

    PubMed  CAS  Google Scholar 

  • Yost RL, Derendorf H. Disposition of cefotaxime and its desacetyl metabolite in morbidly obese male and female subjects. Therapeutic Drug Monitoring 8: 189–194, 1986

    PubMed  CAS  Google Scholar 

  • Zabransky RJ, Birk RJ, Kuzynski TA, Toohey KL. Predicting the susceptibility of anaerobes to cefoperazone, cefotaxime, and cefoxitin with the thioglycolate broth disk procedure. Journal of Clinical Microbiology 24: 181–185, 1986

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Various sections of the manuscript reviewed by: S.R. Alcock, Department of Bacteriology and Immunology, Western Infirmary, University of Glasgow, Glasgow, Scotland; K.E. Aldridge, L.S.U. Medical Center, School of Medicine in New Orleans, USA; D.L. Hemsell, Department of Obstetrics and Gynecology, University of Texas, Southwestern Medical Center, Dallas, Texas, USA; K. Ishibiki, School of Medicine, Keio University, Tokyo, Japan; R.F. Jacobs, Division of Pediatric Infectious Diseases, University of Arkansas for Medical Services, Little Rock, Arkansas, USA; J. Klastersky, Service de Médecine Interne et Laboratoire d’Investigation Clinique H. Tagnon, Institut Jules Bortet, Brussels, Belgium; L.A. Mandell, Division of Infectious Disease, McMaster University, Hamilton, Ontario, Canada; H.C. Neu, Department of Medicine College of Physicians and Surgeons of Columbia University, New York, New York, USA; D.C. Rowe-Jones, Poole General Hospital, Longfleet Road, Poole, Dorset, England; A. Schreiner, Medical Department B, Haukeland Hospital, Bergen, Norway; C.P. Stoutenbeek, Intensive Care, onze lieve vrouwe gasthuis, Amsterdam, The Netherlands.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todd, P.A., Brogden, R.N. Cefotaxime. Drugs 40, 608–651 (1990). https://doi.org/10.2165/00003495-199040040-00008

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199040040-00008

Keywords

Navigation