Akesson B. Structural requirements of the phospholipid substrate for phospholipid N-methylation in rat liver. Biochimica et Biophysica Acta 752: 460–466, 1983
PubMed
CAS
Article
Google Scholar
Audubert F, Breton M, Colard O, Bereziat G. Differential methylation patterns in molecular species of phosphatidyl-ethanolamine derivatives in rat liver membranes. Biochimica et Biophysica Acta 1002: 62–68, 1989
PubMed
CAS
Article
Google Scholar
Backlund PS, Aksamit RR. Guanine nucleotide dependent carboxyl methylation of membrane proteins. Journal of Biological Chemistry 263: 15864–15867, 1988
PubMed
CAS
Google Scholar
Baldessarini RJ. Neuropharmacology of 5-adenosyl-L-methionine. American Journal of Medicine 83(Suppl. 5A): 95–103, 1987
PubMed
CAS
Article
Google Scholar
Bell KM, Plon L, Bunney WE, Potkin SG. S-Adenosyl-L-methionine treatment of depression; a controlled clinical trial. American Journal of Psychiatry 145: 1110–1114, 1988
PubMed
CAS
Google Scholar
Bottiglieri T, Chang TK, Laundy M, Carney MW, Godfrey P, et al. Transmethylation in depression. Alabama Journal of Medical Science 25: 296–301, 1988
CAS
Google Scholar
Brasitus TA, Davidson NO, Schachter D. Variations in dietary triacylglycerol saturation alters the lipid composition and fluidity of rat intestinal plasma membranes. Biochimica et Biophysica Acta 812: 460–472, 1985
PubMed
CAS
Article
Google Scholar
Brasitus TA, Dudeja PK, Worman HJ, Foster ES. The lipid fluidity of rat colonic brush-border membrane vesicles modulates Na+-H+ exchange and osmotic water permeability. Biochimica et Biophysica Acta 855: 16–24, 1986
PubMed
CAS
Article
Google Scholar
Bray GP, Tredger JM, Williams R. S-Adenosylmethionine protects against acetaminophen hepatotoxicity in mice. Gastroenterology 98: A571, 1990
Google Scholar
Brener J, Greenberg DM. Methyl transferring enzyme system of microsomes in the biosynthesis of lecithin. Biochimica et Biophysica Acta 46: 205–216, 1961
Article
Google Scholar
Brown MD, Dudeja PK, Brasitus TA. S-Adenosyl-L-methionine modulates Na+ + K+-ATPase activity in rat colonic basolateral membranes. Biochemical Journal 251: 215–222, 1988
PubMed
CAS
Google Scholar
Cabrero C, Duce AM, Ortiz P, Alemany S, Mato JM. Specific loss of the high molecular weight form of S-adenosyl-L-methionine synthetase in human liver cirrhosis. Hepatology 8: 1530–1534, 1988
PubMed
CAS
Article
Google Scholar
Cantoni GL. Biological methylation: selected topics. Annual Review of Biochemistry 44: 435–451, 1975
PubMed
CAS
Article
Google Scholar
Carney MWP, Chary TKN, Bottiglieri T, Reynolds EH. Switch and S-adenosylmethionine. Alabama Journal of Medical Science 25: 316–319, 1988
CAS
Google Scholar
Carney MWP, Chary TKN, Bottiglieri T, Reynolds EH, Toone EK. Switch mechanism in affective illness and oral S-adenosylmethionine (SAM). British Journal of Psychiatry 150: 724–725, 1987b
PubMed
CAS
Article
Google Scholar
Carney MWP, Toone BK, Reynolds EH. S-adenosylmethionine and affective disorder. American Journal of Medicine 83(Suppl. 5 A): 104–106, 1987a
PubMed
CAS
Article
Google Scholar
Castano JG, Alemany S, Nieto A, Mato JS. Activation of phospholipid methyltransferase by glucagon in rat hepatocytes. Journal of Biological Chemistry 255: 9041–9045, 1980
PubMed
CAS
Google Scholar
Celani T, Iori G, Vacca L. Electroencephalographic control with frequency analysis in depressed patients treated with SAMe. Current Therapy Research 23: 525–527, 1978
Google Scholar
Chawla RK, Berry CJ, Kutner MH, Rudman D. Plasma levels of transulfuration products in malnourished patients. American Journal of Clinical Nutrition 42: 577–584, 1985
PubMed
CAS
Google Scholar
Chawla RK, Lewis FW, Kutner MH, Bate DM, Roy RG, et al. Plasma cysteine, cystine, and glutathione in cirrhosis. Gastroenterology 87: 770–776, 1984
PubMed
CAS
Google Scholar
Chawla RK, Wolf DC, Kutner MH, Bonkovsky HL. Choline may be an essential nutrient in patients with alcoholic cirrhosis. Gastroenterology 97(6): 1514–1520, 1989
PubMed
CAS
Google Scholar
Cibin M, Gentile N, Ferri M, Le Grazie C, Gallimberti L. S-adenosylmethionine (SAMe) is effective in reducing ethanol abuse in an outpatient program for alcoholics. In Kuriyama K et al. (Eds) Biomedical and social aspects of alcohol and alcoholism, pp. 357–360, Excerpta Medica, Amsterdam, 1988
Google Scholar
Di Padova C, Tritapepe R, Rovagnati P, Pozzoli M, Stramentinoli G. Decreased blood levels of ethanol and acetaldehyde by S-adenosyl-methionine in humans. Archives of Toxicology (Suppl. 7): 240–242, 1984
Google Scholar
Drouva SV, Laplante E, LeBlanc P, Bechet J, et al. Estradiol activates methylating enzyme(s) involved in the conversion of phosphatidylethanolamine to phosphatidylcholine in rat pituitary membranes. Endocrinology 119: 2611–2622, 1986
PubMed
CAS
Article
Google Scholar
Dudeja PK, Foster ES, Brasitus TA. Regulation of Na+-H+ exchange by transmethylation reactions in rat colonic brush border membranes. Biochimica et Biophysica Acta 859: 61–68, 1986
PubMed
CAS
Article
Google Scholar
Eloranta TO, Kajander EO. Catabolism and lability of S-adenosyl-L-methionine in rat liver extracts. Biochemical Journal 224: 137–144, 1984
PubMed
CAS
Google Scholar
Fazio C, Andreoli V, Agnoli A, Casacchia M, Cerbo R. Effecti terapeutici e meccanismo d’azione della S-adenosil-L-metionina (SAMe) nella sindromi depressive. Minerva Medicine 64: 1515–1529, 1973
CAS
Google Scholar
Fazio C, Andreoli V, Agnoli A, Casacchia M, Cerbo R, et al. Therapy of schizophrenia and depressive disorders with S-adenosyl-methionine. IRCS Medical Service — Nervous System 2: 1015, 1974
Google Scholar
Feo F, Pascale R, Crasta D, Daino L, Pirisi L, et al. Role of transmethylation pathway (TP) in choline deficiency. Hepatology 2: 172, 1982
Google Scholar
Feo F, Pascale R, Garcea R, Daino L, Pirisi L, et al. Effect of the variations of S-adenosyl-L-methionine liver content on fat accumulation and ethanol metabolism in ethanol-intoxicated rats. Toxicology and Applied Pharmacology 83: 331–341, 1986
PubMed
CAS
Article
Google Scholar
Finkelstein JD, Kyle WE, Harris BJ, Martin JJ. Methionine metabolism in mammals: concentration of metabolites in rat tissue. Journal of Nutrition 112: 1011–1018, 1982
PubMed
CAS
Google Scholar
Finkelstein JD, Kyle WE, Martin JJ. Abnormal methionine adenosyltransferase in hypermethioninemia. Biochemical and Biophysical Research Communications 66: 1491–1497, 1975
PubMed
CAS
Article
Google Scholar
Finkelstein JD, Martin JJ, Harris BJ. Methionine metabolism in mammals. The methionine sparing effect of cystine. Journal of Biological Chemistry 263: 11750–11754, 1988
PubMed
CAS
Google Scholar
Gahl WA, Bernardini I, Finkelstein JD, Tangerman A, Martin JJ, et al. Transsulfuration in an adult with hepatic methionine adenosyltransferase deficiency. Journal of Clinical Investigation 81: 390–397, 1988
PubMed
CAS
Article
Google Scholar
Galletti P, Ingrosso D, Iardino P, Manna C, Pontoni G, et al. Enzymatic basis for the calcium-induced decrease of membrane protein methyl esterification in intact erythrocytes. European Journal of Biochemistry 154: 489–495, 1986
PubMed
CAS
Article
Google Scholar
Galletti P, Paik WK, Kim S. Methyl acceptor for protein methylase II from human erythrocyte membrane. European Journal of Biochemistry 97: 221–226, 1979
PubMed
CAS
Article
Google Scholar
Gatto G, Caleri D, Michelacci S, Sicuteri F. Analgesizing effect of a methyl donor (S-adenosyl-methionine) in migraine: an open clinical trial. International Journal of Clinical Pharmacology Research 6: 15–17, 1986
PubMed
CAS
Google Scholar
Gaull GE, Tallan HH. Methionine adenosyltransferase deficiency: new enzymatic defect associated with hypermethioninemia. Science 186: 49–63, 1974
Article
Google Scholar
Gaull GE, Tallan HH, Lonsdale D, Przyrembel H, Schaffner F, et al. Hypermethioninemia associated with methionine adenosyltransferase deficiency: clinical, morphologic, and biochemical observations on four patients. Journal of Pediatrics 98: 734–741, 1981
PubMed
CAS
Article
Google Scholar
Gentile S, Orlando C, Persico M, Coltorti M. Age-associated decline in the hepatic handling of cholephylic anions. Reversal by S-adenosyl-methionine (SAMe) administration. Journal of Hepatology 7(Suppl. 1): 5133, 1988a
Google Scholar
Gentile S, Persico M, Orlando C, Le Grazie C, Di Padova C, et al. Effect of different doses of S-adenosyl-methionine (SAMe) on nicotinic acid-induced hyperbilirubinemia in Gilbert’s syndrome. Scandinavian Journal of Clinical Laboratory Medical Investigations 48: 525–529, 1988b
CAS
Article
Google Scholar
Grisham CM, Barnett RE. The role of lipid- — phase transitions in the regulation of the (sodium + potassium) adenosine triphosphatase. Biochemistry 12: 2635–2637, 1973
PubMed
CAS
Article
Google Scholar
Harmand M-F, Vilamitjana J, Maloche E, Duphil R, Ducassou D. Effects of S-adenosyl-methionine on human articular chrondrocyte differentiation. American Journal of Medicine 83(Suppl. 5A): 48–54, 1987
PubMed
CAS
Article
Google Scholar
Hashizume K, Kobayashi M, Ichikawa K. Guanosine 5′-triphosphate modulation of S-adenosyl-L-methionine mediated methylation of phosphatidylethanolamine in rat liver plasma membrane. Biochemical and Biophysical Research Communications 114: 425–430, 1983
PubMed
CAS
Article
Google Scholar
Hattori H, Kanfer JN. Inhibition of rat brain microsomal Na+, K+-ATPase. Journal of Neurochemistry 42: 204–208, 1984
PubMed
CAS
Article
Google Scholar
Hirata F, Axelrod J. Enzymatic synthesis and rapid translocation of phosphatidylcholine by two methyltransferases in erythrocyte membranes. Proceedings of the National Academy of Sciences of the United States of America 75: 2348–2352, 1978
PubMed
CAS
Article
Google Scholar
Hirata F, Axelrod J. Phospholipid methylation and biological signal transmission. Science 209: 1082–1090, 1980
PubMed
CAS
Article
Google Scholar
Hirata F, Strittmatter WJ, Axelrod J. β-Adrenergic receptor agonists increase phospholipid methylation, membrane fluidity, and β-adrenergic receptor-adenylate cyclase coupling. Proceedings of the National Academy of Sciences of the United States of America 76: 368–372, 1979
PubMed
CAS
Article
Google Scholar
Hirata F, Toyoshima S, Axelrod J. Phospholipid methylation: a biochemical signal modulating lymphocyte mitogenesis. Proceedings of the National Academy of Sciences of the United States of America 77: 862–865, 1980
PubMed
CAS
Article
Google Scholar
Horowitz JM, Rypins EB, Henderson JM, Heymsfield SB, Moffitt SD, et al. Evidence for impairment of transsulfuration pathway in cirrhosis. Gastroenterology 81: 668–675, 1981
PubMed
CAS
Google Scholar
Huszar G. Methylated lysines and 3-methylhistidines in myosin: tissue and developmental differences. Methods in Enzymology 106: 287–295, 1984
PubMed
CAS
Article
Google Scholar
Janicak PG, Lipinski J, Davis JM, Comaty JE, Waternaux C, et al. S-adenosyl-methionine in depression. A literature review and preliminary report. Alabama Journal of Medical Science 25: 306–313, 1988
CAS
Google Scholar
Kagan BL, Sultzer DL, Rosenlicht N, Gerner RH. Oral S-Adenosyl-methionine in depression: a double-blind, placebo controlled trial. American Journal of Psychiatry 147: 591–595, 1990
PubMed
CAS
Google Scholar
Kelly KL, Kiechle FL, Jarett L. Insulin stimulation of phospholipid methylation in isolated rat adipocyte plasma membranes. Proceedings of the National Academy of Sciences of the United States of America 81: 1089–1092, 1984
PubMed
CAS
Article
Google Scholar
Kim S. S-Adenosylmethionine: protein-carboxyl O-methyltransferase. Methods of Enzymology 106: 295–309, 1984
CAS
Article
Google Scholar
Kim S, Galletti P. In Usdin et al. (Eds) Transmethylation, pp. 547–549, Elsevier, New York, 1979
Kim S, Nochumson S, Chin W, Paik WK. A rapid method for the purification of S-adenosylmethionine: protein-carboxyl O-methyltransferase by affinity chromatography. Analytical Biochemistry 84: 415–419, 1978
PubMed
CAS
Article
Google Scholar
Lakher MB, Wurtman RJ. Molecular composition of phosphatidyl-cholines produced by the phospholipid methylation pathway in rat brain in vivo. Biochemical Journal 244: 325–330, 1987a
PubMed
CAS
Google Scholar
Lakher MB, Wurtman RJ. In vivo synthesis of phosphatidyl-choline in rat brain via the phospholipid methylation pathway. Brain Research 419: 131–140, 1987b
PubMed
CAS
Article
Google Scholar
Laudanno OM. Cytoprotective effect of S-adenosylmethionine compared with that of misoprostol against ethanol-, aspirin-, and stress-induced gastric damage. American Journal of Medicine 83(Suppl. 5A): 43–54, 1987
PubMed
CAS
Article
Google Scholar
Lauterburg BH, Smith CV, Hughes H, Mitchell JR. Determinants of hepatic glutathione turnover: toxicological significance. Trends in Pharmacology Sciences 3(6): 245–248, 1982
CAS
Article
Google Scholar
Lieber CS. Metabolic effects of ethanol and its interaction with other drugs, hepatotoxic agents, vitamins, and carcinogens: a 1988 update. Seminars in Liver Disease 8: 47–68, 1988
PubMed
CAS
Article
Google Scholar
Lieber CS, Casini A, De Carli LM, Kim C-I, Lowe N, et al. S-Adenosyl-L-methionine attenuates alcohol-induced liver injury in the baboon. Hepatology 11: 165–172, 1990
PubMed
CAS
Article
Google Scholar
Lieber CS, DeCarli LM, Kim C, Lowe N, Sasaki R, et al. S-adenosyl-methionine (SAMe) attenuates alcohol-induced mitochondrial injury in the baboon. Hepatology 8: 1412, 1988
Google Scholar
Matsui Y, Kubo Y, Iwata N. S-adenosyl-methionine prevents ischemic neuronal death. European Journal of Pharmacology 144: 211–216, 1987
PubMed
CAS
Article
Google Scholar
Meister A. Glutathione. In Arias IM, et al. (Eds) The liver: biology and pathobiology, 2nd ed., pp. 401–408, Raven Press, New York, 1988
Google Scholar
Micali M, Chiti D, Balestra V. Double-blind controlled clinical trial of SAM administered orally in chronic liver diseases. Current Therapeutic Research 33: 1004–1013, 1983
Google Scholar
Paik WK, DiMaria P. Enzymatic methylation and demethylation of protein-bound lysine residues. Methods in Enzymology 106: 274–287, 1984
PubMed
CAS
Article
Google Scholar
Paik WK, Kim S. Protein methylation. Wiley, New York, 1980
Google Scholar
Panagia V, Makino N, Ganguly PK, Dhalla NS. Inhibition of Na+-Ca+2 exchange in heart sarcolemmal vesicles by phosphatidyl-ethanolamine N-methylation. European Journal of Biochemistry 166: 597–603, 1987
PubMed
CAS
Article
Google Scholar
Panagia V, Okumura K, Makino N, Dhalla NS. Stimulation of Ca2+-pump in rat heart sarcolemma by phosphatidylethanolamine N-methylation. Biochimica et Biophysica Acta 856: 383–387, 1986
PubMed
CAS
Article
Google Scholar
Pascale R, Daino R, Garcea R, Frassetto S, Ruggiu ME, et al. Inhibition by ethanol of rat liver plasma membrane (Na+, K+) ATPase: protective effect of S-adenosyl-L-methionine, L-methionine, and N-acetylcysteine. Toxicology and Applied Pharmacology 97: 216–229, 1989
PubMed
CAS
Article
Google Scholar
Pascale R, Pirisi L, Daino L, Frassetto S, Zanetti S, et al. Role of transmethylase pathway in alcoholic liver steatosis. Gastroentérologie Clinique et Biologique 6: 823–824, 1982
Google Scholar
Persico M, Gentile S, Di Padova C, Le Grazie C, Coltorti M. S-adenosylmethionine (SAMe)-induced improvement of hepatic handling of organic anions in cirrhosis. Gastroenterology 98: A620, 1990
Google Scholar
Phillis JW. S-adenosyl-methionine excites rat cerebral cortex neurons. Brain Research 213: 223–226, 1981
PubMed
CAS
Article
Google Scholar
Prasad C, Edwards RM. Stimulation of rat pituitary phospholipid methyltransferase by vasopressin but not oxytocin. Biochemical and Biophysical Research Communications 103: 559–564, 1981
PubMed
CAS
Article
Google Scholar
Quinn PJ. The molecular biology of membranes, McMillan Press, London, 1977
Google Scholar
Ridgway ND, Vance DE. Purification of phosphatidylethanolamine N-methyltransferase from rat liver. Journal of Biological Chemistry 262: 17231–17239, 1987
PubMed
CAS
Google Scholar
Rosenbaum J F, Fava M, Falk WE, Pollack M H, Cohen LS, et al. An open-label pilot study of oral S-adenosyl-methionine in major depression: interim results. Pharmacology Bulletin 24: 189–194, 1988a
CAS
Google Scholar
Rosenbaum JF, Fava M, Falk WE, Pollack MH, Cohen LS, et al. An open-label pilot study of oral S-adenosyl-methionine in major depression. An interim report. Alabama Journal of Medical Science 25: 301–306, 1988b
CAS
Google Scholar
Rosenbaum J F, Fava M, Falk WE, Pollack MH, Cohen LS, et al. The antidepressant potential of oral S-adenosyl-methionine. Acta Psychiatrica Scandinavica 81: 432–436, 1990
PubMed
CAS
Article
Google Scholar
Rudman D, Chawla RK, Bleier JC. In Blackburn GL, Young VM (Eds) Amino acids: metabolic and medical applications, pp. 484–496, John Wright PSG Inc., Boston, 1983
Sarnow P, Rasched I, Knippers R. A histone H4 specific methyltransferase. Properties, specificity and effects on nucleosomal histones. Biochimica et Biophysica Acta 655: 349–358, 1981
PubMed
CAS
Article
Google Scholar
Schanche JS, Ogreid D, Døskeland SO, Refsnes M, Sand TE, et al. Evidence against a requirement for phospholipid methylation in adenylate cyclase activation by hormones. FEBS Letters 138: 167–172, 1982
PubMed
CAS
Article
Google Scholar
Siegel FL, Wright LS, Rowe PM. Calmodulin as an activator and a substrate of methyltransferase enzymes. Methods in Enzymology 139: 667–677, 1987
PubMed
CAS
Article
Google Scholar
Stipanuk MH. Metabolism of sulfur containing amino acids. Annual Reviews of Nutrition 6: 179–209, 1986
CAS
Article
Google Scholar
Stramentinoli G, Catto E, Algeri S. Decrease of noradrenaline-O-methylation in rat brain induced by L-DOPA. Reversal effect of S-adenosyl-methionine. Journal of Pharmacy and Pharmacology 32: 430–431, 1980
PubMed
CAS
Article
Google Scholar
Stramentinoli G, Gualano M, Ideo G. Protective role of S-adenosyl-methionine in liver injury induced by D-galactosamine in rats. Biochemical Pharmacology 27: 1431–1433, 1978
PubMed
CAS
Article
Google Scholar
Stramentinoli G, Pezzoli C, Galli-Kienle M. Protective role of S-adenosyl-L-methionine against acetaminophen induced mortality and hepatotoxicity in mice. Biochemical Pharmacology 28: 3567–3571, 1979
PubMed
CAS
Article
Google Scholar
Strittmatter WJ, Hirata F, Axelrod J, et al. Benzodiazepine and adrenergic receptor ligands independently stimulate phospholipid methylation. Nature 282: 857–859, 1979
PubMed
CAS
Article
Google Scholar
Vahora SA, Malek-Ahmadi P. S-adenosyl-methionine in the treatment of depression. Neuroscience and Biobehavioral Reviews 12: 139–141, 1988
PubMed
CAS
Article
Google Scholar
Vemuri R, Phillipson KD. Protein methylation inhibits Na+-Ca+2 exchange activity in cardiac sarcolemmal vesicles. Biochimica et Biophysica Acta 939: 503–508, 1988
PubMed
CAS
Article
Google Scholar
Vendemiale G, Altomare E, Altavilla R, Le Grazie C, Di Padova C, et al. S-adenosyl-methionine (SAMe) improves acetaminophen metabolism in cirrhotic patients. Journal of Hepatology 9(1): S240, 1989a
Article
Google Scholar
Vendemiale G, Altomare E, Trizio T, Le Grazie C, Di Padova C, et al. Effects of oral S-adenosyl-L-methionine on hepatic glutathione in patients with liver disease. Scandinavian Journal of Gastroenterology 24(4): 407–415, 1989b
PubMed
CAS
Article
Google Scholar
Yavin E. Incorporation of intracisternally administered L-[methyl 3H] methionine into rat brain phospholipids. Journal of Neurochemistry 44: 1451–1458, 1985
PubMed
CAS
Article
Google Scholar
Zawad JS, Brown FC. β-Adrenergic coupled phospholipid methylation. A possible role in withdrawal from chronic ethanol. Biochemical Pharmacology 33: 3799–3803, 1984
PubMed
CAS
Article
Google Scholar
Zawad JS, Sulser F. S-Adenosyl-L-methionine modulates phosphatidylethanolamine methyltransferase response to isoproterenol in brain. European Journal of Pharmacology 124: 157–160, 1986
PubMed
CAS
Article
Google Scholar