Skip to main content
Log in

Verapamil

An Updated Review of its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Use in Hypertension

  • Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Synopsis

Although verapamil is a well-established treatment for angina, cardiac arrhythmias and cardiomyopathies, this review reflects current interest in calcium antagonists as antihypertensive agents by focusing on the role of verapamil in hypertension. Verapamil is a phenylalkylamine derivative which antagonises calcium influx through the slow channels of vascular smooth muscle and cardiac cell membranes. By reducing intracellular free calcium concentrations, verapamil causes coronary and peripheral vasodilation and depresses myocardial contractility and electrical activity in the atrioventricular and sinoatrial nodes. Verapamil is well suited for the management of essential hypertension since it produces generalised systemic vasodilation resulting in a marked reduction in systemic vascular resistance and, consequently, blood pressure.

Evidence from clinical studies supports the role of oral verapamil as an effective and well-tolerated first-line treatment for the management of patients with mild to moderate essential hypertension. Clinical studies have shown that verapamil is more effective the higher the pretreatment blood pressure and some authors have found a more pronounced antihypertensive effect in older patients or in patients with low plasma renin activity. Sustained release verapamil formulations are available for oral administration which, as a single daily dose, are as effective in lowering blood pressure over 24 hours as equivalent doses of conventional verapamil formulations given 3 times daily.

As a first-line antihypertensive agent, oral verapamil is equivalent to several other calcium antagonists, β-blockers, diuretics, angiotensin-converting enzyme (ACE) inhibitors and other vasodilators, and is not associated with many of the common adverse effects of these treatments. Verapamil may be preferred as an alternative first-line antihypertensive treatment to diuretics in elderly patients because it has similar efficacy in these patients without causing the adverse effects commonly linked with diuretic treatment. Furthermore, because verapamil does not cause bronchoconstriction, it may be used in preference to β-blockers in patients with asthma or chronic obstructive airway disease. Reflex tachycardia, orthostatic hypotension or development of tolerance is not evident following verapamil administration. As a second- or third-line treatment for patients refractory to established antihypertensive regimens, verapamil produces marked blood pressure reductions when combined with diuretics and/or ACE inhibitors, β-blockers and vasodilators such as prazosin. Combined treatment with β-blockers may produce severe cardiac depression, particularly if intravenous doses of each drug are used and should not be initiated in patients with existing myocardial depression.

Adverse effects occur in about 9% of all patients treated with verapamil and necessitate withdrawal of treatment in about 1%. Constipation, the most common adverse effect, has been reported in up to 38% of patients in clinical trials, but only 2% of patients receiving verapamil require withdrawal of treatment as a result of this effect. Peripheral oedema, flushing, dizziness and headache are manifestations of verapamil’s vasodilatory effects and are usually minor and rare. Cardiovascular adverse effects occur in less than 1% of hypertensive patients and include bradycardia, hypotension and palpitations.

Thus, clinical evidence to date suggests that verapamil is an effective and well-tolerated first-line antihypertensive treatment and, in addition, offers substantial clinical benefits as a second- or third-line treatment in refractory hypertension.

Pharmacodynamic Properties

Like other calcium antagonists, verapamil inhibits the slow inward current of calcium in normal cardiac tissues, and in the atrioventricular and sinoatrial nodes. Electrophysiological studies have shown that oral and intravenous verapamil prolong conduction through the atrioventricular node by up to 33% without impeding intra-atrial or intraventricular conduction. Although in patients with abnormal sinus node function verapamil may cause sinus arrest or sinoatrial block, the drug has little effect on normal sinus rhythm.

In hypertensive patients, oral and intravenous doses of verapamil lower mean arterial blood pressure at rest and after exercise. However, oral verapamil does not usually have a blood pressure lowering effect in normotensive subjects. Following a single 160mg oral dose maximum antihypertensive effects are seen after about 1.5 to 2 hours and may last for at least 4 hours. Intravenous verapamil 5 to 10mg produces an immediate reduction in blood pressure which is maintained for about 10 minutes in hypertensive patients.

This marked antihypertensive effect is achieved primarily by peripheral vasodilation via a reduction in systemic vascular resistance. Most studies have shown that the fall in systemic vascular resistance is not associated with a change in cardiac output because of the counterbalancing negative inotropic and chronotropic effects of verapamil. However, in patients with heart failure (left ventricular ejection fraction < 35%) the vasodilating action of verapamil may not be sufficient to overcome its negative inotropic and chronotropic effects, resulting in decreased cardiac output.

Verapamil does not appear to significantly alter heart rate compared with β-blockers, which decrease heart rate, and dihydropyridine calcium antagonists such as nifedipine and nicardipine, which have been shown to increase heart rate.

Intravenous verapamil reduces coronary vascular resistance by about 24% in patients with coronary artery disease, by dilating both large and small coronary vessels. Thus coronary blood flow is increased, providing a potential benefit for such patients.

Verapamil has a variable effect on hepatic blood flow and portal pressure. Verapamil inhibits platelet aggregation induced by collagen, adrenaline (epinephrine) and adenosine diphosphate (ADP) but has little or no effect on renal function, plasma lipid concentrations or the secretion of glucose regulatory hormones.

Pharmacokinetic Properties

Peak plasma verapamil concentrations of up to 336 µg/L are achieved within 1 to 2 hours of single oral doses of conventional verapamil 80 to 160mg in healthy volunteers but may be delayed up to 8 hours or more after a single oral dose of a sustained release preparation. However, similar mean plasma concentrations are achieved after equivalent daily doses of conventional and sustained release verapamil formulations, and bioavailability of sustained release verapamil formulations approaches that of conventional formulations.

Mean peak plasma concentration was 168 µg/L 1.2 hours after a single 80 or 120mg dose of conventional verapamil in hypertensive patients and 753 µg/L after 4 weeks of twice daily administration of conventional verapamil 120 to 240mg.

Although in both healthy volunteers and hypertensive patients over 90% of a single oral verapamil dose is absorbed, systemic bioavailability of the drug is limited to about 20% because of extensive first-pass hepatic extraction. Bioavailability is approximately doubled after repeated dosing, and is considerably increased in patients with hepatic cirrhosis but is unchanged in patients with renal failure.

Verapamil is widely distributed throughout the body, with an apparent volume of distribution in volunteers of 113 to 418L and 257 to 406L following intravenous and oral administration, respectively. Volume of distribution is further increased in various disease states such as liver cirrhosis. Verapamil is approximately 90% bound to plasma proteins and binding is independent of plasma concentration over a range of 35 to 1557 µg/L.

The primary metabolic pathways of verapamil are N-dealkylation and O-demethylation. The contribution of metabolites to the overall pharmacological effect is minimal as most metabolites are excreted as inactive conjugates. Norverapamil has about 20% of the pharmacological activity of the parent drug. Only 3% of a single verapamil dose is excreted in urine as unchanged drug, while approximately 70% of a single dose is excreted as metabolites in urine and 15% in faeces.

Verapamil clearance is subject to considerable interindividual variation and, as expected for a drug that undergoes extensive first-pass hepatic metabolism, clearance is reduced in patients with hepatic disease, and also in elderly patients. During chronic oral dosing with conventional verapamil formulations in volunteers and hypertensive patients verapamil clearance is reduced, with a corresponding increase in elimination half-life. The reasons for accumulation of verapamil during long term oral administration are not clear but a decrease in first-pass hepatic metabolism appears likely. It is evident that single dose pharmacokinetic data have limited use in predicting steady-state plasma verapamil concentrations.

Therapeutic Trials

In placebo-controlled studies, conventional or sustained release verapamil formulations administered in daily oral doses of 160 to 480mg consistently lower supine, standing and sitting blood pressures by up to 20% in patients with mild to moderate essential hypertension. 24-Hour blood pressure control is similar after 2 or 3 daily doses of a conventional verapamil formulation or a single dose of a sustained release formulation.

In comparative studies, verapamil has an equivalent effect on blood pressure to traditional first-line antihypertensive treatments. Compared with β-blockers, oral verapamil titrated from 240 to 480 mg/day is at least as efficacious as propranolol 80 to 480 mg/day, atenolol 50 to 100 mg/day, metoprolol 100 to 200 mg/day or pindolol 15 mg/day. During exercise, verapamil and propranolol have similar effects on blood pressure; both lower blood pressure without altering the pressor response to exercise but only propranolol decreases exercise tolerance in hypertensive patients.

Although data is limited, studies comparing the drug with diuretics provide evidence for the use of verapamil as an alternative first-line treatment, particularly in elderly hypertensive patients and in patients with low plasma renin activity. One study has shown that sustained release verapamil has similar antihypertensive efficacy to daily doses of bemetizide 25mg plus triamterene 50mg, hydrochlorothiazide 50mg plus amiloride 5mg, or thiabutazide 2.5mg plus spironolactone 25mg. Another 4-week study has shown that a conventional verapamil formulation at a dose of 320 mg/day reduces supine blood pressure by 26/18mm Hg, compared with bendrofluazide 5 mg/day which reduced blood pressure by 14/8mm Hg in hypertensive patients.

The antihypertensive effect of verapamil compares favourably with that of other calcium antagonists such as nicardipine, diltiazem, nifedipine and nitrendipine, and with other antihypertensive agents such as methyldopa or prazosin. However, comparative clinical trials with verapamil and other calcium antagonists such as felodipine, nisoldipine and isradipine are required to clarify the efficacy of verapamil in hypertension.

In patients refractory to traditional antihypertensive regimens, verapamil is an effective second-line treatment. For example, in patients with moderate to severe hypertension refractory to captopril 100 mg/day monotherapy, the addition of verapamil 320 mg/day significantly reduced systolic and diastolic blood pressures. Similarly, combined verapamil and prazosin treatment reduced blood pressure by up to 30/13mm Hg compared with either drug given alone, while treatment with a verapamil/chlorthalidone combination reduced diastolic blood pressure to below 95mm Hg in patients refractory to verapamil monotherapy. Although the antihypertensive effect of verapamil and a β-blocker is beneficial in hypertensive patients, this treatment combination should be avoided in patients with impaired cardiac function because of the risk of severe cardiac depression or asystole.

Verapamil also has a beneficial effect as a third-line antihypertensive treatment. In patients with severe hypertension refractory to their existing treatment with a diuretic and ACE inhibitor, blood pressure fell by 37/22mm Hg after at least 7 months of triple therapy with an ACE inhibitor, diuretic and verapamil.

Verapamil has been used with varying success in other hypertensive states. Patients with pulmonary hypertension had reduced pulmonary arterial pressure and vascular resistance after orally or intravenously administered verapamil, but adverse effects on right ventricular function have also been reported. In patients with hypertension and angina pectoris, oral verapamil 480 mg/day has a similar antianginal and antihypertensive effect to propranolol 320 mg/day. Verapamil has also been shown to be effective in hypertension secondary to renal disease, in hypertension in pregnancy, and as an intravenous formulation in hypertensive crises.

Adverse Effects

The overall incidence of adverse effects associated with verapamil treatment is about 9% and treatment is withdrawn in approximately 1% of patients. In over 4200 hypertensive patients treated with sustained release verapamil 240 to 480 mg/day, adverse effects were reported in 11.3% of patients and treatment was withdrawn in 3.2% of patients. The most common adverse effect in verapamil-treated patients is constipation which occurs in up to 37.6% of patients, but this is rarely serious and necessitates withdrawal of treatment in approximately 2% of treated patients. Other non-cardiac adverse effects which occurred in hypertensive patients treated with verapamil are headache (1.5%), dizziness (3.7%), fatigue (1%), flushing (1%) and nausea (1%). Cardiac adverse effects (bradycardia, palpitations and orthostatic hypotension) occurred in less than 1% of hypertensive patients; however cardiac adverse effects including first- and second-degree heart block, ventricular fibrillation and conduction disturbances have been reported during verapamil treatment for other cardiac disorders. Cardiac conduction disturbances are more common in patients with severely impaired cardiac function, of in patients receiving recent or concurrent β-blocker therapy.

Other adverse effects which have occurred infrequently and have a possible causal relationship to verapamil treatment include impotence, hepatotoxicity, central nervous system disorders and skin disorders. The abrupt withdrawal of verapamil after long term treatment was not associated with a rebound phenomenon in over 400 patients who had suffered a recent myocardial infarction and were treated for 6 months with oral verapamil.

Dosage and Administration

In patients with essential hypertension oral verapamil as a conventional formulation should be started at 80mg 3 times daily and titrated up to 160mg 3 times daily. Lower doses, starting at 40mg 3 times daily, may be used in elderly patients and in patients with hepatic dysfunction. The manufacturers’ recommended daily dose of oral sustained release verapamil preparations for the treatment of hypertension is 240mg once daily, although sometimes 120mg once daily may be sufficient in elderly patients. In general, doses are titrated up to 480 mg/day in 2 divided doses, but higher doses (up to 720 mg/day) have been used in some patients.

Intravenous verapamil 5 to 10mg (0.075 to 0.15 mg/kg bodyweight) administered over 2 minutes is recommended if an immediate antihypertensive effect in adults is required. If necessary, 5 to 10 mg/h can be administered via a drip infusion. Intravenous doses of 0.1 to 0.3 mg/kg bodyweight are recommended in patients aged under 15 years.

Intravenous verapamil should not be administered within a few hours of an intravenous β-blocker because of the risk of cardiac depression. Oral combination treatment with β-blocking agents has been administered without causing severe adverse effects in patients with preserved cardiac function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abernethy DR, Schwartz JB, Todd EL. Lack of interaction between verapamil and cimetidine. Clinical Pharmacology and Therapeutics 38: 342–349, 1985

    Article  PubMed  CAS  Google Scholar 

  • Abernethy DR, Schwartz JB, Todd EL, Luchi R, Snow E. Verapamil pharmacodynamics and disposition in young and elderly hypertensive patients: altered electrocardiographic and hypertensive responses. Annals of Internal Medicine 105: 329–336, 1986

    PubMed  CAS  Google Scholar 

  • Abernethy DR, Todd EL, Mitchell JR. Verapamil and norverapamil determination in human plasma by gas-liquid chromatography using nitrogen-phosphorus detection: application to single-dose pharmacokinetic studies. Pharmacology 29: 264–268, 1984

    Article  PubMed  CAS  Google Scholar 

  • Addonizio VP, Fisher CA, Straus III JF, Edmunds Jr LH. Inhibition of human platelet function by verapamil. Thrombosis Research 28: 545–556, 1982

    Article  PubMed  CAS  Google Scholar 

  • Aderka D, Levy A, Pinkhas J, Tiqua P. Tachyphylaxis to verapamil. Archives of Internal Medicine 146: 207, 1986

    Article  PubMed  CAS  Google Scholar 

  • Agabiti-Rosei E, Muiesan ML, Romanelli G, Beschi M, Castellano M, et al. Reversal of cardiac hypertrophy by long-term treatment with calcium antagonists in hypertensive patients. Journal of Cardiovascular Pharmacology 12 (Suppl. 6): S75–S78, 1988

    Article  PubMed  Google Scholar 

  • Ahmed T, Russi E, Kim CS, Danta I. Comparative effects of oral and inhaled verapamil on antigen-induced bronchoconstriction. Chest 88: 176–180, 1985

    Article  PubMed  CAS  Google Scholar 

  • Al-Khawaja IM, Caruana MP, Lahiri A, Whittington JR, Lewis JG, et al. Nicardipine and verapamil in essential hypertension. British Journal of Clinical Pharmacology 22: 273S–282S, 1986

    Article  Google Scholar 

  • Anavekar SN, Barter C, Adam WR, Doyle AE. A double-blind comparison of verapamil and labetalol in hypertensive patients with coexisting chronic obstructive airways disease. Journal of Cardiovascular Pharmacology 4 (Suppl. 3): S374–S377, 1982

    Article  PubMed  Google Scholar 

  • Andersen HJ. Excretion of verapamil in human milk. European Journal of Clinical Pharmacology 25: 279–280, 1983

    Article  PubMed  CAS  Google Scholar 

  • Anderson P, Bondesson U, De Faire U. Pharmacokinetics of verapamil in patients with hypertension. European Journal of Clinical Pharmacology 31: 155–163, 1986

    Article  PubMed  CAS  Google Scholar 

  • Anderson P, Bondesson U, De Faire U, Forslund L, Hedbäck B, et al. Verapamil in hypertension: comparison of twice- and thrice-daily dosing on blood pressure and pharmacokinetics. Current Therapeutic Research 41: 773–784, 1987

    Google Scholar 

  • Anderson P, Bondesson U, Sylven C. Clinical pharmacokinetics of verapamil in patients with atrial fibrillation. European Journal of Clinical Pharmacology 23: 49–57, 1982

    Article  PubMed  CAS  Google Scholar 

  • Andersson DEH, Röjdmark S, Hed R, Sundblad L. Hypercalcemic and calcium-antagonistic effects on insulin release and oral glucose tolerance in man. Acta Medica Scandinavica 211: 35–43, 1982

    Article  PubMed  CAS  Google Scholar 

  • Antman EM, Stone PH, Muller JE, Braunwald E. Calcium channel blocking agents in the treatment of cardiovascular disorders. Part I: Basic and clinical electrophysiological effects. Annals of Internal Medicine 93: 875–885, 1980

    PubMed  CAS  Google Scholar 

  • Asthana OP, Woodcock BG, Wenchel M, Frömming K-H, Schwabe L, et al. Verapamil disposition and effect on PQ-intervals after buccal, oral and intravenous administration. Arzneimittel-Forschung 34: 498–502, 1984

    PubMed  CAS  Google Scholar 

  • Baky SH, Singh BN. Verapamil hydrochloride: pharmacological properties and role in cardiovascular therapies. Pharmacotherapy 2: 328–353, 1982

    PubMed  CAS  Google Scholar 

  • Bala Subramanian V, Bowles MJ, Davies AB, Raftery EB. Combined therapy with verapamil and propranolol in chronic stable angina. American Journal of Cardiology 49: 125–133, 1982

    Article  Google Scholar 

  • Bala Subramanian V, Lahiri A, Siram P, Raftery EB. Verapamil in chronic stable angina: a controlled study with computerised multistage treadmill exercise. Lancet 1: 841–844, 1980

    Article  Google Scholar 

  • Bala Subramanian V, Raftery EB. The role of verapamil in chronic stable angina and hypertension. 30th Annual Scientific Session of the American College of Cardiology, San Francisco, March 15–19, 1981

  • Balderman SC, Chan AK, Gage AA. Verapamil cardioplegia: improved myocardial preservation during global ischemia. Journal of Thoracic and Cardiovascular Surgery 88: 57–66, 1984

    PubMed  CAS  Google Scholar 

  • Barbarash RA. Verapamil-rifampin interaction. Drug Intelligence and Clinical Pharmacy 19: 559–560, 1985

    PubMed  CAS  Google Scholar 

  • Barbarash RA, Bauman JL, Fischer JH, Kondos GT, Batenhorst RL. Near-total reduction in verapamil bioavailability by rifampin. Chest 94: 954–959, 1988

    Article  PubMed  CAS  Google Scholar 

  • Barbarino A, De Marinis L, Mancini A, Calabrò F, Massari M, et al. Calcium antagonists and hormone release. VI. Effects of a calcium antagonist (verapamil) on the biphasic insulin release in vivo Diabetes Research 8: 21–24, 1988

    PubMed  CAS  Google Scholar 

  • Barnathan ES, Addonizio VP, Shattil SJ. Interaction of verapamil with human platelet α-adrenergic receptors. American Journal of Physiology: Heart and Circulatory Physiology 242: H19–H23, 1982

    CAS  Google Scholar 

  • Bauer JH, Sunderrajan S, Reams G. Effects of calcium entry blockers on renin-angiotensin-aldosterone system, renal function and hemodynamics, salt and water excretion and body fluid composition. American Journal of Cardiology 56: 62H–67H, 1985

    Article  PubMed  CAS  Google Scholar 

  • Bauer LA, Stenwall M, Horn JR, Davis R, Opheim K, et al. Changes in antipyrine and indocyanine green kinetics during nifedipine, verapamil, and diltiazem therapy. Clinical Pharmacology and Therapeutics 40: 239–240, 1986

    Article  PubMed  CAS  Google Scholar 

  • Bazzato G, Coli U, Landini S, Fracasso A, Morachiello P, et al. Calcium metabolism in essential hypertensive patients treated by verapamil. American Journal of Nephrology 6 (Suppl. 1): 120–123, 1986

    Article  PubMed  Google Scholar 

  • Belz GG, Spies G. A controlled study of slow release verapamil in antihypertensive therapy. Zeitschrift für Kardiologie 74: 453–459, 1985

    PubMed  CAS  Google Scholar 

  • Bender F. Treatment of tachycardic arrhythmias and arterial hypertension with verapamil. Arzneimittel-Forschung 20: 1310–1314, 1970

    PubMed  Google Scholar 

  • Benjamin N, Phillips RWJ, Robinson BF. Verapamil and bendrofluazide in the treatment of hypertension: a controlled study of effectiveness alone and in combination. European Journal of Clinical Pharmacology 34: 249–253, 1988

    Article  PubMed  CAS  Google Scholar 

  • Bochsler JA, Simmons RL, Ward PJ, Chester PC, Latham AN. Verapamil SR and propranolol LA: a comparison of efficacy and side effects in the treatment of mild to moderate hypertension. Journal of Human Hypertension 1: 305–310, 1988

    PubMed  CAS  Google Scholar 

  • Boero R, Quarello F, Guarena C, Piccoli G. Verapamil in arterial hypertension with renal disease. Nephron 44: 80, 1986

    Article  PubMed  CAS  Google Scholar 

  • Boner AL, Vallone G, Andreoli A, Biancotto R, Warner JO. Nebulised sodium cromoglycate and verapamil in methacholine induced asthma. Archives of Disease in Childhood 62: 264–268, 1987

    Article  PubMed  CAS  Google Scholar 

  • Bonow RO, Leon MB, Rosing DR, Kent KM, Lipson LC, et al. Effects of verapamil and propranolol on left ventricular systolic function and diastolic filling in patients with coronary artery disease: radionuclide angiographic studies at rest and during exercise. Circulation 65: 1337–1350, 1982

    Article  PubMed  CAS  Google Scholar 

  • Bonow RO, Rosing DR, Bacharach SL, Green MV, Kent KM, et al. Effects of verapamil on left ventricular systolic function and diastolic filling in patients with hypertrophie cardiomyopathy. Circulation 64: 787–796, 1981

    Article  PubMed  CAS  Google Scholar 

  • Braunwald E. Mechanism of action of calcium-channel-blocking agents. New England Journal of Medicine 307: 1618–1627, 1982

    Article  PubMed  CAS  Google Scholar 

  • Brittinger WD, Schwarzbeck A, Wittenmeier KW, Tuthenhoff W. Klinisch-experimentelle Untersuchungen über die blutdrucksenkende wirkung von verapamil. Deutsche Medizinische Wochenschrift 95: 1871–1877, 1970

    Article  PubMed  CAS  Google Scholar 

  • Brouwer RML, Bolli P, Erné P, Conen D, Kiowski W, et al. Antihypertensive treatment using calcium antagonists in combination with captopril rather than diuretics. Journal of Cardiovascular Pharmacology 7: 588–591, 1985

    Article  Google Scholar 

  • Brzostek T, Dubiel JP, Żmudka K. Influence of verapamil and oxygen on pulmonary hypertension and right ventricular function. Cor et Vasa 30: 115–126, 1988

    PubMed  CAS  Google Scholar 

  • Bühler FR, Hulthén UL, Kiowski W, Müller FB, Bolli P. The place of the calcium antagonist verapamil in antihypertensive therapy. Journal of Cardiovascular Pharmacology 4 (Suppl. 3): S350–S357, 1982

    Article  PubMed  Google Scholar 

  • Bussmann W-D, Seher W, Gruengras M. Reduction of creatine kinase and creatine kinase-MB indexes of infarct size by intravenous verapamil. American Journal of Cardiology 54: 1224–1230, 1984

    Article  PubMed  CAS  Google Scholar 

  • Butman SM, Eagan J, Olson HG. Hemodynamic effects of verapamil in left ventricular valvular volume overload. American Heart Journal 110: 416–426, 1985

    Article  PubMed  CAS  Google Scholar 

  • Buxton AE, Marchlinski FE, Doherty JU, Flores B, Josephson ME. Hazards of intravenous verapamil for sustained ventricular tachycardia. American Journal of Cardiology 59: 1107–1110, 1987

    Article  PubMed  CAS  Google Scholar 

  • Campbell BC, Kelman AW, Hillis WS. Noninvasive assessment of the haemodynamic effects of nicardipine in normotensive subjects. British Journal of Clinical Pharmacology 20 (Suppl. 1): 55S-61S, 1985

  • Cardillo C, Musumeci V, Mores N, Baroni S, Cremona G, et al. Twenty-four-hour blood pressure monitoring after a single dose of sustained release verapamil. Cardiovascular Drugs and Therapy 2: 533–537, 1988c

    Article  PubMed  CAS  Google Scholar 

  • Cardillo C, Musumeci V, Mores N, Folti G. Effects of sustainedrelease verapamil on 24-hour ambulatory blood pressure and on pressor response to isometric exertion in hypertensive patients. Journal of Cardiovascular Pharmacology 13 (Suppl. 4): S31–S33, 1989

    Article  PubMed  Google Scholar 

  • Cardillo C, Musumeci V, Savi L, Guardigli R, Mores N, et al. Effect of sustained-release verapamil therapy on the blood pressure at rest and on the pressor response to isometric exertion in hypertensive patients. European Journal of Clinical Pharmacology 34: 549–553, 1988b

    Article  PubMed  CAS  Google Scholar 

  • Cardillo C, Savi L, Musumeci V, Mores N, Mettimano M, et al. Casual versus 24-hour ambulatory blood pressure recording in the evaluation of chronic administration of sustained-release verapamil. Journal of Human Hypertension 1: 281–285, 1988a

    PubMed  CAS  Google Scholar 

  • Carrasco HA, Fuenmayor A, Barboza JS, Gonzalez G. Effect of verapamil on normal sinoatrial node function and on sick sinus syndrome. American Heart Journal 96: 760–761, 1978

    Article  PubMed  CAS  Google Scholar 

  • Caruana M, Heber M, Brigden G, Raftery EB. Assessment of ‘once daily’ verapamil for the treatment of hypertension using ambulatory, intra-arterial blood pressure recording. European Journal of Clinical Pharmacology 32: 549–553, 1987

    Article  PubMed  CAS  Google Scholar 

  • Caudell J, Valle V, Soler M, Rius J. Acute intoxication with verapamil. Chest 75: 200–201, 1979

    Article  Google Scholar 

  • Chamontin B, Guittard J, Salvador M. Angiotensin converting enzyme inhibitor, diuretic, and calcium antagonist: a new tritherapy for severe arterial hypertension. Journal of Hypertension 3: 548, 1985

    Article  Google Scholar 

  • Chamontin BF, Montastruc JL, Salvador MJ. Hypertension with orthostatic hypotension: interest of verapamil. Journal of Cardiovascular Pharmacology 10 (Suppl. 10): S114–S116, 1987

    PubMed  Google Scholar 

  • Chew CYC, Brown G, Singh BN, Wong MM, Pierce C, et al. Effects of verapamil on coronary hemodynamic function and vasomobility relative to its mechanism of antianginal action. American Journal of Cardiology 51: 699–705, 1983

    Article  PubMed  CAS  Google Scholar 

  • Chew CYC, Hecht HS, Collett JT, McAllister RG, Singh BN. Influence of the severity of ventricular dysfunction on hemodynamic responses to intravenously administered verapamil in ischemic heart disease. American Journal of Cardiology 47: 917–922, 1981

    Article  PubMed  CAS  Google Scholar 

  • Chierchia S, Crea F, Bernini W, Gensini G, Parodi O, et al. Antiplatelet effects of verapamil in man. American Journal of Cardiology 47: 399, 1981

    Article  Google Scholar 

  • Chimienti M, Previtali M, Medici A, Piccinini M. Acute verapamil poisoning: successful treatment with epinephrine. Clinical Cardiology 5: 219–222, 1982

    PubMed  CAS  Google Scholar 

  • Coaldrake LA. Verapamil overdose. Anaesthesia and Intensive Care 12: 174–175, 1984

    PubMed  CAS  Google Scholar 

  • Cody RJ, Kubo SH, Covit AB, Müller FB, Lopez-Overjero J, et al. Exercise hemodynamics and oxygen delivery in human hypertension: response to verapamil. Hypertension 8: 3–10, 1986

    Article  PubMed  CAS  Google Scholar 

  • Corea L, Bentivoglio M, Alunni G. Isometric exercise before and after acute and chronic verapamil administration in controls and in hypertensives. Acta Therapeutica 7: 119–133, 1981

    Google Scholar 

  • Corea L, Bentivoglio M, Verdecchia P, Bianchini C. Long term verapamil therapy in mild-to-moderate hypertension: randomised study of normal and slow-release formulations. Acta Therapeutica 9: 263–274, 1983

    CAS  Google Scholar 

  • Corea L, Bentivoglio M, Verdecchia P, Provvidenza M. Calcium antagonists and diuretics in arterial hypertension: a useful combination. In Reid & Pickup (Eds) Calcium antagonists and the treatment of hypertension, pp. 23–30, Oxford University Press, Oxford, 1984

    Google Scholar 

  • Covinsky JO, Hamburger SC. Slow channel blockers. Southern Medical Journal 76: 55–64, 1983

    Article  PubMed  CAS  Google Scholar 

  • Cox JP, O’Boyle CA, Mee F, Kelly J, Atkins N, et al. The antihypertensive efficacy of verapamil in the elderly evaluated by ambulatory blood pressure measurement. Journal of Human Hypertension 2: 41–47, 1988

    PubMed  CAS  Google Scholar 

  • Cruickshank JK, Anderson NMcF, Wadsworth J, McHardy Young S, Jepson E. Treating hypertension in black compared with white non-insulin dependent diabetics: a double-blind trial of verapamil and metoprolol. British Medical Journal 297: 1155–1159, 1988

    Article  PubMed  CAS  Google Scholar 

  • Cubeddu LX, Aranda J, Singh B, Klein M, Brachfeld J, et al. A comparison of verapamil and propranolol for the initial treatment of hypertension. Journal of the American Medical Association 256: 2214–2221, 1986

    Article  PubMed  CAS  Google Scholar 

  • Cubeddu LX, Fuenmayor NT. Comparative pharmacokinetics and pharmacodynamics of IR and SR verapamil in patients with hypertension: effects of food intake. Journal of Cardiovascular Pharmacology 12 (Suppl. 6): S188, 1988

    Google Scholar 

  • Danish Study Group on Verapamil in Myocardial Infarction. Verapamil in acute myocardial infarction. European Heart Journal 5: 516–528, 1984a

    Google Scholar 

  • Danish Study Group on Verapamil in Myocardial Infarction. Abrupt withdrawal of verapamil in ischaemic heart disease. European Heart Journal 5: 529–532, 1984b

    Google Scholar 

  • Dargie HJ. Verapamil and beta-blockers in hypertension: a beneficial drug interaction? British Journal of Clinical Practice 39 (Suppl. 42): 44–47, 1985

    Google Scholar 

  • De Leeuw PW, Birkenhäger WH. Effects of verapamil in hypertensive patients. Acta Medica Scandinavica (Suppl. 681): 125–128, 1982

  • Demirelli SE, Bulur H, Demiroglu C. The effects of various antihypertensives on blood lipids. Therapiewoche 37: 1659–1665, 1987

    Google Scholar 

  • De Ponti C, Vincenzi M. Acute and chronic effects of verapamil in exercise-induced angina. In Zanchetti & Krikler (Eds) Calcium antagonism in cardiovascular therapy: experience with verapamil, pp. 148–158, Excerpta Medica, Amsterdam-Oxford-Princeton, 1981

    Google Scholar 

  • Dessi-Fulgheri P, Pacifico A, Bandiera F, Rubattu S, Madeddu P, et al. Effect of nifedipine and verapamil on carbohydrate metabolism in hypertensive patients with impaired glucose tolerance. Journal of Cardiovascular Pharmacology 10 (Suppl. 10): S195–S198, 1987

    PubMed  Google Scholar 

  • Dimmitt SB, Beilin LJ, Hockings BEF. Verapamil withdrawal as a possible cause of myocardial infarction in a hypertensive woman with a normal coronary angiogram. Medical Journal of Australia 149: 218, 1988

    PubMed  CAS  Google Scholar 

  • Doering W. Effect of coadministration of verapamil and quinidine on serum digoxin clearance. European Journal of Clinical Pharmacology 25: 517–521, 1983

    Article  PubMed  CAS  Google Scholar 

  • Dominic JA, Bourne DWA, Tan TG, Kirsten EB, McAllister RG. The pharmacology of verapamil. III. Pharmacokinetics in normal subjects after intravenous drug administration. Journal of Cardiovascular Pharmacology 3: 25–38, 1981

    Article  PubMed  CAS  Google Scholar 

  • Doran AR, Narang PK, Meigs CY, Wolkowitz OM, Roy A, et al. Verapamil concentrations in cerebrospinal fluid after oral administration. New England Journal of Medicine 312: 1261–1262, 1985

    PubMed  CAS  Google Scholar 

  • Doyle AE. Comparison of beta-adrenoceptor blockers and calcium antagonists in hypertension. Hypertension 5 (Suppl. II): II103–108, 1983

    PubMed  CAS  Google Scholar 

  • Dunn JM, Groth PE. Verapamil — a once-daily dosage: pharmacokinetic and pharmacodynamic observation. Current Therapeutic Research 38: 572–578, 1985

    CAS  Google Scholar 

  • Echizen H, Eichelbaum M. Clinical pharmacokinetics of verapamil, nifedipine and diltiazem. Clinical Pharmacokinetics 11: 425–449,1986

    Article  PubMed  CAS  Google Scholar 

  • Echizen H, Vogelgesang B, Eichelbaum M. Effects of d,l-vera-pamil on atrioventricular conduction in relation to its stereoselective first-pass metabolism. Clinical Pharmacology and Therapeutics 38: 71–76, 1985

    Article  PubMed  CAS  Google Scholar 

  • Edmonds D, Würth JP, Baumgart P, Vetter W, Vetter H. Twenty-four-hour monitoring of blood pressure during calcium antagonist therapy. In Fleckenstein & Laragh (Eds) Hypertension-the next decade: verapamil in focus, pp. 94–100, Churchill Livingstone, Edinburgh, 1987

    Google Scholar 

  • Edwards DJ, Lavoie R, Beckman H, Blevins R, Rubenfire M. The effect of coadministration of verapamil on the pharmacokinetics and metabolism of quinidine. Clinical Pharmacology and Therapeutics 41: 68–73, 1987

    Article  PubMed  CAS  Google Scholar 

  • Eichelbaum M. Clinical pharmacology of calcium channel blockers. In Lemberger & Reidenberg (Eds) Proceedings of the Second World Conference on Clinical Pharmacology and Therapeutics, pp. 774–787, American Society for Pharmacology and Experimental Therapeutics, Maryland, 1984

    Google Scholar 

  • Eichelbaum M, Birkel P, Grube E, Gutgemann U, Somogyi A. Effects of verapamil on P-R intervals in relation to verapamil plasma levels following single i.v. and oral administration and during chronic treatment. Klinische Wochenschrift 58: 919–925, 1980

    Article  PubMed  CAS  Google Scholar 

  • Eichelbaum M, Ende M, Remberg G, Schomerus M, Dengler HJ. The metabolism of 14C-D-L-verapamil in man. Drug Metabolism and Disposition 7: 145–148, 1979

    PubMed  CAS  Google Scholar 

  • Eichelbaum M, Mikus G, Vogelgesang B. Pharmacokinetics of (+)-, (−)- and (± )-verapamil after intravenous administration. British Journal of Clinical Pharmacology 17: 453–458, 1984

    Article  PubMed  CAS  Google Scholar 

  • Eichelbaum M, Somogyi A. Inter-and intra-subject variation in the first-pass elimination of highly cleared drugs during chronic dosing: studies with deuterated verapamil. European Journal of Clinical Pharmacology 26: 47–53, 1984

    Article  PubMed  CAS  Google Scholar 

  • Eichelbaum M, Somogyi A, Von Unruh GE. Dengler HJ. Simultaneous determination of the intravenous and oral pharmacokinetic parameters of d,l-verapamil using stable isotopelabelled verapamil. European Journal of Clinical Pharmacology 19: 133–137, 1981

    Article  PubMed  CAS  Google Scholar 

  • Eiskjaer H, Pedersen EB, Rasmussen LM, Jespersen B. Verapamil sustained-release in renal parenchymal hypertension; effect on blood pressure, kidney function, angiotensin II, aldosterone, arginine vasopressin, atrial natriuretic peptide, and lipoproteins. Journal of Cardiovascular Pharmacology 13 (Suppl. 4): 517–522, 1989

    Google Scholar 

  • Elliott HL, Meredith PA, Reid JL. Verapamil and prazosin in essential hypertension: evidence of a synergistic combination? Journal of Cardiovascular Pharmacology 10 (Suppl. 10): S108–S110, 1987

    PubMed  Google Scholar 

  • Emery AEH, Skinner R, Howden LC, Matthews MB. Verapamil in Duchenne muscular dystrophy. Lancet 1: 559, 1982

    Article  PubMed  CAS  Google Scholar 

  • Epstein ML, Kiel EA, Victorica BE. Cardiac decompensation following verapamil therapy in infants with supraventricular tachycardia. Pediatrics 75: 737–740, 1985

    PubMed  CAS  Google Scholar 

  • Epstein ML, Seibel MA, Hill MR, Pieper JA. Pharmacokinetics of chronic oral verapamil therapy in infants. American Heart Journal 112: 648, 1986

    Google Scholar 

  • Epstein SE, Rosing DR. Verapamil: its potential for causing serious complications in patients with hypertrophic cardiomyopathy. Circulation 64: 437–441, 1981

    Article  PubMed  CAS  Google Scholar 

  • Erne P, Bolli P, Bertel O, Hulthen UL, Kiowski W, et al. Factors influencing the hypotensive effects of calcium antagonists. Hypertension 5 (Suppl. II): 97–102, 1983

    Google Scholar 

  • Escudero J, Hernandez H, Martinez F. Comparative study of the antihypertensive effect of verapamil and atenolol. American Journal of Cardiology 57: 54D–58D, 1986

    Article  PubMed  CAS  Google Scholar 

  • Fearrington EL, Rand CH, Rose JD. Hyperprolactinemia-galactorrhoea induced by verapamil. American Journal of Cardiology 51: 1466–1467, 1983

    Article  PubMed  CAS  Google Scholar 

  • Fenech A, Pickup AJ. Verapamil: a multicentre hospital trial in the treatment of hypertension. In Reid & Pickup (Eds) Calcium antagonists and treatment of hypertension, pp. 55–59, Oxford University Press, Oxford, 1984

    Google Scholar 

  • Ferguson II JE, Siukola LVM, Albright GA. Use of verapamil for paroxysmal supraventricular tachycardia during epidural anesthesia for cesarean section. American Journal of Perinatology 5: 128–130, 1988

    Article  PubMed  Google Scholar 

  • Ferlinz J, Citron PD. Hemodynamic and myocardial performance characteristics after verapamil use in congestive heart failure. American Journal of Cardiology 51: 1339–1345, 1983

    Article  PubMed  CAS  Google Scholar 

  • Ferlinz J, Easthope J, Arnow WS. Effects of verapamil on myocardial performance in coronary disease. Circulation 59: 313–319, 1979

    Article  PubMed  CAS  Google Scholar 

  • Ferlinz J, Turbow ME. Antianginal and myocardial metabolic properties of verapamil in coronary artery disease. American Journal of Cardiology 46: 1019–1026, 1980

    Article  PubMed  CAS  Google Scholar 

  • Ferlito S, Modica L, Romano F, Patanë M, Raudino M, et al. Effect of verapamil on glucose, insulin and glucagon levels after oral glucose load in normal and diabetic subjects. Panminerva Medica 24: 221–226, 1982

    PubMed  CAS  Google Scholar 

  • Findlay IN, Dargie HJ, Gillen G, Elliott AT. Effects on cardiac function, heart rate and blood pressure during combination therapy with verapamil and atenolol. British Journal of Clinical Pharmacology 19: 565P–566P, 1985

    Google Scholar 

  • Finucci GF, Padrini R, Piovan D, Melica E, Merkel C, et al. Verapamil pharmacokinetics and liver function in patients with cirrhosis. International Journal of Clinical Pharmacology Research VII: 123–126, 1988

    Google Scholar 

  • Fish JE, Norman PS. Effects of the calcium channel blocker, verapamil on asthmatic airway responses to muscarinic, histaminergic, and allergic stimuli. American Review of Respiratory Disease 133: 730–734, 1986

    PubMed  CAS  Google Scholar 

  • Flaim SF, Irwin JM, Ratz PH, Swigart SC. Differential effects of calcium channel blocking agents on oxygen consumption rate in vascular smooth muscle. American Journal of Cardiology 49: 511–518, 1982

    Article  PubMed  CAS  Google Scholar 

  • Fleckenstein A, Frey M, Fleckenstein-Grün G. Consequences of uncontrolled calcium entry and its prevention with calcium antagonists. European Heart Journal 4 (Suppl. H): 43–50, 1983

    PubMed  CAS  Google Scholar 

  • Fleckenstein A, Tritthart H, Döring HJ, Byon KY. BAY a 1040— ein hochaktiver Ca++-antagonistischer. Inhibitor de elektro-mechanischen Koppelungsprozesse im warmblütermyokard. Arzneimittel-Forschung 22: 22–23, 1972

    PubMed  CAS  Google Scholar 

  • Freedman SB, Richmond DR, Ashley JJ, Kelly DT. Verapamil kinetics in normal subjects and patients with coronary artery spasm. Clinical Pharmacology and Therapeutics 30: 644–652, 1981

    Article  PubMed  CAS  Google Scholar 

  • Freeman JG, Barton JR, Record CO. Effect of isosorbide dinitrate, verapamil and labetalol on portal pressure in cirrhosis. British Medical Journal 291: 561–562, 1985

    Article  PubMed  CAS  Google Scholar 

  • Freis ED. Hemodynamics of hypertension. Physiological Reviews 40: 27–33, 1980

    Google Scholar 

  • Frishman WH, Charlap S. Verapamil in the treatment of chronic stable angina. Archives of Internal Medicine 143: 1407–1415, 1983

    Article  PubMed  CAS  Google Scholar 

  • Frishman W, Charlap S, Kimmel B, Saltzberg S, Stroh J, et al. Twice-daily administration of oral verapamil in the treatment of essential hypertension. Archives of Internal Medicine 146: 561–565, 1986

    Article  PubMed  CAS  Google Scholar 

  • Frishman WH, Eisen G, Charlap S, Strom JA. Long-term safety and efficacy comparison of immediate-release and sustained-release oral verapamil in systemic hypertension. Journal of Clinical Hypertension 3: 605–609, 1987

    PubMed  CAS  Google Scholar 

  • Frishman WH, Klein NA, Klein P, Strom JA, Tawil R, et al. Comparison of oral propranolol and verapamil for combined systemic hypertension and angina pectoris: a placebo-controlled double blind randomised crossover trial. American Journal of Cardiology 50: 1164–1172, 1982

    Article  PubMed  CAS  Google Scholar 

  • Frishman WH, LeJemtel TH. Electropharmacology of the slow-channel inhibitors in the management of cardiac arrhythmias: verapamil. Pace — Pacing and Clinical Electrophysiology 5: 402–413, 1982

    Article  CAS  Google Scholar 

  • Frohlich ED, Tarazi RC, Dustan HP. Re-examination of the hemodynamics of hypertension. American Journal of the Medical Sciences 257: 9–15, 1969

    Article  PubMed  CAS  Google Scholar 

  • Gelbke HP, Schlicht HJ, Schmidt G. Fatal poisoning with verapamil. Archives of Toxicology 37: 89–94, 1977

    Article  PubMed  CAS  Google Scholar 

  • Giacomini KM, Massoud N, Wong FM, Giacomini JC. Decreased binding of verapamil to plasma proteins in patients with liver disease. Journal of Cardiovascular Pharmacology 6: 924–928, 1984

    Article  PubMed  CAS  Google Scholar 

  • Gluskin LE, Strasberg B, Shah JH. Verapamil-induced hyperprolactinemia and galactorrhea. Annals of Internal Medicine 95: 66–67, 1981

    PubMed  CAS  Google Scholar 

  • Goenen M, Col J, Compere A, Bonte J. Treatment of severe verapamil poisoning with combined amrinone-isoproterenol therapy. American Journal of Cardiology 58: 1142–1143, 1986

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Gomez A, Cires Pujols M, Gamio Capestany F, Rodriguez de la Vega A, Garcia-Barreto D. Relationships between verapamil plasma concentrations and its antihypertensive action. International Journal of Clinical Pharmacology, Therapy and Toxicology 26: 453–460, 1988

    CAS  Google Scholar 

  • Gotta AW, Capuano C, Hartung J, Sullivan CA. Calcium entry blockers and human platelet aggregation. New York State Journal of Medicine 88: 132–133, 1988

    PubMed  CAS  Google Scholar 

  • Gould BA, Mann S, Kieso H, Bala Subramanian V, Raftery EB. The 24-hour intra-arterial ambulatory profile of blood pressure reduction with verapamil. Circulation 65: 22–27, 1982

    Article  PubMed  CAS  Google Scholar 

  • Groszman RJ. Reassessing portal venous pressure measurements. Gastroenterology 86: 1611–1614, 1984

    Google Scholar 

  • Guarascio P, D’Amato C, Sette P, Conte A, Visco G. Liver damage from verapamil. British Medical Journal 288: 362–363, 1984

    Article  PubMed  CAS  Google Scholar 

  • Guerrero JR, Martin SS. Verapamil: full spectrum calcium channel blocking agent: an overview. Medicinal Research Reviews 4: 87–109, 1984

    Article  PubMed  CAS  Google Scholar 

  • Gulamhusein S, Ko P, Carruthers SG, Klein GJ. Acceleration of the ventricular response during atrial fibrillation in the Wolff-Parkinson-White syndrome after verapamil. Circulation 65: 348–354, 1982

    Article  PubMed  CAS  Google Scholar 

  • Hagino N. Application of Iproveratril in the pharmacotherapy of hypertension. Japanese Journal of Clinical Experimental Medicine 45: 208–212, 1968

    Google Scholar 

  • Halperin AK, Gross KM, Rogers JF, Cubeddu LX. Verapamil and propranolol in essential hypertension. Clinical Pharmacology and Therapeutics 36: 750–758, 1984

    Article  PubMed  CAS  Google Scholar 

  • Hamann SR, Blouin RA, McAllister RG. Clinical pharmacokinetics of verapamil. Clinical Pharmacokinetics 9: 26–41, 1984

    Article  PubMed  CAS  Google Scholar 

  • Han P, Boatwright C, Ardlie NG. Inhibition of platelet function by antiarrhythmic drugs, verapamil and disopyramide. Thrombosis and Haemostasis 47: 150–153, 1982

    PubMed  CAS  Google Scholar 

  • Hanyok JJ, Chow MSS, Kluger J, Izard MW. An evaluation of the pharmacokinetics, pharmacodynamics, and dialyzability of verapamil in chronic hemodialysis patients. Journal of Clinical Pharmacology 28: 831–836, 1988

    PubMed  CAS  Google Scholar 

  • Hare DL, Horowitz JD. Verapamil hepatotoxicity: a hypersensitive reaction. American Heart Journal 111: 610–611, 1986

    Article  PubMed  CAS  Google Scholar 

  • Harper RW, Whitford E, Middlebrook K, Federman J, Anderson S, et al. Effects of verapamil on the electrophysiologic properties of the accessory pathway in patients with the Wolff-Parkinson-White Syndrome. American Journal of Cardiology 50: 1323–1330, 1982

    Article  PubMed  CAS  Google Scholar 

  • Hawkins CMA, Fletcher AE, Bulpitt CJ, Pike LA. The effects of verapamil and propranolol on quality of life in hypertension. British Journal of Clinical Pharmacology 25: 98P–99P, 1988

    Google Scholar 

  • Heagerty AM, Swales JD. The combination of verapamil and captopril in the treatment of essential hypertension. Pharmatherapeutica 5: 21–25, 1987

    PubMed  CAS  Google Scholar 

  • Hedbäck B, Hermann LS. Antihypertensive effect of verapamil in patients with newly discovered mild to moderate essential hypertension. Acta Medica Scandinavica 1 (Suppl. 681): 129–135, 1984

    Google Scholar 

  • Hedbäck B, Parment K. The antihypertensive effect of verapamil in twice and thrice daily dose regimens: a randomized, double-blind, crossover trial. Journal of International Medical Research 11: 190–193, 1983

    PubMed  Google Scholar 

  • Henry JA, Chester PC, Latham AN. Sustained-release verapamil or atenolol in essential hypertension. Journal of Drug Development 1: 69–75, 1988

    Google Scholar 

  • Henry PD. Comparative pharmacology of calcium antagonists: nifedipine, verapamil and diltiazem. American Journal of Cardiology 46: 1047–1058, 1980

    Article  PubMed  CAS  Google Scholar 

  • Hess OM, Murakami T, Krayenbuehl HP. Does verapamil improve left ventricular relaxation in patients with myocardial hypertrophy? Circulation 74: 530–543, 1986

    Article  PubMed  CAS  Google Scholar 

  • Hicks CB, Abraham K. Verapamil and myoclonic dystonia. Annals of Internal Medicine 103: 154, 1985

    PubMed  CAS  Google Scholar 

  • Hicks GL. Verapamil-potassium cardioplegia: a two-year experience with 470 patients. Texas Heart Institute Journal 13: 69–75, 1986

    PubMed  Google Scholar 

  • Hicks GL, DeWeese JA. Verapamil potassium cardioplegia and cardiac conduction. Annals of Thoracic Surgery 39: 324–328, 1985

    Article  PubMed  Google Scholar 

  • Hla KK, Henry JA, Latham AN. Pharmacokinetics and pharmacodynamics of two formulations of verapamil. British Journal of Clinical Pharmacology 24: 661–664, 1987

    Article  PubMed  CAS  Google Scholar 

  • Hollifield JW, Heusner JH, DesChamps MK. Comparison of equivalent oral doses of verapamil and diltiazem in patients with mild to moderate hypertension. American Journal of Hypertension 1: 36A, 1988

    Google Scholar 

  • Holtzman JL, Finley D, Mottonen L, Berry DA, Ekholm BP, et al. Pharmacodynamic and pharmacokinetic interaction of flecainide and verapamil. Clinical Pharmacology and Therapeutics 41: 242, 1987

    Google Scholar 

  • Horio Y, Ono T, Rokutanda M, Hirata A, Okumura K, et al. Electrophysiologic effects of nicardipine hydrochloride (YC-93) on the human cardiac conduction system. Kokyu To Junkan 31: 671–677, 1983

    PubMed  CAS  Google Scholar 

  • Hornung RS, Jones RI, Gould BA, Sonecha T, Raftery EB. Twice-daily verapamil for hypertension: a comparison with propranolol. American Journal of Cardiology 57: 93D–98D, 1986

    Article  PubMed  CAS  Google Scholar 

  • Horvath JS, Fletcher PJ, Bailey BP, Duggin GG, Hall B, et al. Verapamil in essential hypertension: a comparison with atenolol plus hydralazine. Clinical and Experimental Hypertension — Theory and Practice A9: 1185–1195, 1987

    Article  CAS  Google Scholar 

  • Hosie J, Hosie G, Meredith PA. The effects of age on the pharmacokinetics and pharmacodynamics of two formulations of verapamil. Journal of Cardiovascular Pharmacology 13 (Suppl. 4): S60–S62, 1989

    Article  PubMed  Google Scholar 

  • Hughes Jr GS, Cowart TD, Conradi EC. Efficacy of verapamil-hydrochlorothiazide-spironolactone therapy in hypertensive black patients. Clinical Pharmacy 6: 322–326, 1987

    PubMed  Google Scholar 

  • Husaim MH, Kuvasnicka J, Ryden L, Holmberg S. Action of verapamil on sinus node atrioventricular and intraventricular conduction. British Heart Journal 35: 734–737, 1973

    Article  Google Scholar 

  • Hutchison SJ, Lorimer AR, Lakhdar A, McAlpine SG. β-blockers and verapamil: a cautionary tale. British Medical Journal 289: 659–660, 1984

    Article  PubMed  CAS  Google Scholar 

  • Hynning P-A, Anderson P, Bondesson U, Boréus LO. Liquid-chromatographic quantification compared with gas-chromatographic-mass spectrometric determination of verapamil and norverapamil in plasma. Clinical Chemistry 34: 2502–2503, 1988

    PubMed  CAS  Google Scholar 

  • Ikeda Y, Kikuchi M, Toyama K, Watanabe K, Ando Y. Inhibition of human platelet functions by verapamil. Thrombosis and Haemostatis 45: 158–161, 1981

    CAS  Google Scholar 

  • Immonen P, Linkola A, Waris E. Three cases of severe verapamil poisoning. International Journal of Cardiology 1: 101–105, 1981

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Unno N, Ou M-C, Iwama Y, Sugimoto T. Level of verapamil in human milk. European Journal of Clinical Pharmacology 26: 657–658, 1984

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen FM, Sack DA, James SP. Delirium induced by verapamil. American Journal of Psychiatry 144: 248, 1987

    PubMed  CAS  Google Scholar 

  • Johnson BF, Wilson J, Marwaha R, Hoch K, Johnson J. The comparative effects of verapamil and a new dihydropyridine calcium channel blocker on digoxin pharmacokinetics. Clinical Pharmacology and Therapeutics 42: 66–71, 1987

    Article  PubMed  CAS  Google Scholar 

  • Johnson GJ, Leis LA, Francis GS. Disparate effects of the calcium-channel blockers nifedipine and verapamil, on α2-adrenergic receptors and thromboxane A2-induced aggregation of human platelets. Circulation 73: 847–854, 1986

    Article  PubMed  CAS  Google Scholar 

  • Johnson SM, Mauritson DR, Willerson JF, Hillis LD. A comparison of verapamil and nifedipine in patients with Prinz-metal’s variant angina pectoris. American Journal of Cardiology 47: 1295–1300, 1981

    Article  PubMed  CAS  Google Scholar 

  • Johnston DL, Gebhardt VA, Donald A, Kostuk WJ. Comparative effects of propranolol and verapamil alone and in combination on left ventricular function and volumes in patients with chronic exertional angina: a double-blind, placebo-controlled, randomised, crossover study with radionuclide ventriculography. Circulation 68: 1280–1289, 1983

    Article  PubMed  CAS  Google Scholar 

  • Johnston DL, Lesoway R, Humen DP, Kostor WJ. Clinical and haemodynamic evaluation of propranolol in combination with verapamil, nifedipine and diltiazem in exertional angina pectoris: a placebo-controlled, double-blind, randomised crossover study. American Journal of Cardiology 55: 680–687, 1985

    Article  PubMed  CAS  Google Scholar 

  • Jokinen A, Sundberg S, Ottoila P, Heikkila J, Gordin A. Twice-daily dosing of verapamil in hypertension. Current Therapeutic Research 38: 966–973, 1985

    Google Scholar 

  • Jones CR, Pasanisi F, Elliott HL, Reid JL. Effects of verapamil and nisoldipine on human platelets: in vivo and in vitro studies. British Journal of Clinical Pharmacology 20: 191–196, 1985

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen NP, Walstad RA. Pharmacokinetics of verapamil and norverapamil in patients with hypertension: a comparison of oral conventional and sustained release formulations. Pharmacology and Toxicology 63: 105–107, 1988

    Article  PubMed  Google Scholar 

  • Kates RE, Keefe DLD, Schwartz J, Harapat S, Kirsten EB, et al. Verapamil disposition kinetics in chronic atrial fibrillation. Clinical Pharmacology and Therapeutics 30: 44–51, 1981

    Article  PubMed  CAS  Google Scholar 

  • Kawai C, Konishi T, Matsuyama E, Okazaki H. Comparative effects of three calcium antagonists; diltiazem, verapamil, and nifedipine, on the sinoatrial and atrioventricular nodes: experimental and clinical studies. Circulation 63: 1035–1042, 1981

    Article  PubMed  CAS  Google Scholar 

  • Keech AC, Harper RW, Harrison PM, Pitt A, McLean AJ. Extent and pharmacokinetic mechanisms of oral atenolol-verapamil interaction in man. European Journal of Clinical Pharmacology 35: 363–366, 1988

    Article  PubMed  CAS  Google Scholar 

  • Keefe DL, Yee YG, Kates RE. Verapamil protein binding in patients and in normal subjects. Clinical Pharmacology and Therapeutics 29: 21–26, 1981

    Article  PubMed  CAS  Google Scholar 

  • Kerr D, Graham J, Cummings J, Morrison G, Brodie MJ, et al. The effect of verapamil on the pharmacokinetics of adriamycin. British Journal of Cancer 54: 200–201, 1986

    Google Scholar 

  • King BD, Pitchon R, Stern EH, Schweitzer P, Schneider RR, et al. Impotence during therapy with verapamil. Archives of Internal Medicine 143: 1248–1249, 1983

    Article  PubMed  CAS  Google Scholar 

  • Kiowski W, Bühler FR, Fadayomi MO, Erne P, Müller FB, et al. Age, race, blood pressure and renin: predictors for antihypertensive treatment with calcium antagonists. American Journal of Cardiology 56: 81H–85H, 1985

    Article  PubMed  CAS  Google Scholar 

  • Kirsten EB, Guerrero J, Müller-Peltzer H. Pharmacokinetics of a verapamil slow release formulation. In Fleckenstein & Laragh (Eds) Hypertension — the next decade: verapamil in focus, pp 274–278, Churchill-Livingstone, Edinburgh, 1987

    Google Scholar 

  • Klein HO, Kaplinsky E. Verapamil and digoxin: their respective effects on atrial fibrillation and their interaction. American Journal of Cardiology 50: 894–902, 1982

    Article  PubMed  CAS  Google Scholar 

  • Klein HO, Lang R, DeSegni E, Kaplinsky E. Verapamil-digoxin interaction. New England Journal of Medicine 303: 160, 1980

    PubMed  CAS  Google Scholar 

  • Klein HO, Lang R, Weiss E, DeSegni E, Libhaber C, et al. The influence of verapamil on serum digoxin concentration. Circulation 65: 998–1003, 1982

    Article  PubMed  CAS  Google Scholar 

  • Klein MD, Weiner DA. Treatment of angina pectoris and hypertension with sustained-release calcium channel blocking drugs. Circulation 75 (Suppl. V): VI10–113, 1987

    Google Scholar 

  • Kober G, Nickelsen B, Jakobs B, Kaltenbach M. The influence of long-term therapy with verapamil on the development of coronary artery stenosis. In Rosenthal J (Ed.) Calcium antagonists and hypertension: current status, pp. 97–105, Excerpta Medica, Amsterdam, 1986

    Google Scholar 

  • Kober G, Schneider W, Kaltenbach M. Can the progression of coronary sclerosis be influenced by calcium antagonists? Journal of Cardiovascular Pharmacology 13 (Suppl. 4): 52–56, 1989

    Google Scholar 

  • Koike Y, Shimamura K, Shudo I, Saito H. Pharmacokinetics of verapamil in man. Research Communications in Chemical Pathology and Pharmacology 24: 37–47, 1979

    PubMed  CAS  Google Scholar 

  • Kong C-W, Lay C-S, Tsai Y-T, Yeh C-L, Lai KH, et al. The haemodynamic effect of verapamil on portal hypertension in patients with postnecrotic cirrhosis. Hepatology 6: 423–426, 1986

    Article  PubMed  CAS  Google Scholar 

  • Konishi T, Nakamura Y, Konishi T, Kawai C. Accentuated negative inotropism of verapamil after ischaemic intervention in isolated working rat heart. Cardiovascular Research 18: 639–644, 1984

    Article  PubMed  CAS  Google Scholar 

  • Kounis NG. Asystole after verapamil and digoxin. British Journal of Clinical Practice 34: 57–58, 1980

    PubMed  CAS  Google Scholar 

  • Kozlowski JH, Kozlowski JA, Schuller D. Poisoning with sustained-release verapamil. American Journal of Medicine 85: 127, 1988

    Article  PubMed  CAS  Google Scholar 

  • Krämer BK, Risler T. Sustained-release verapamil in the treatment of hypertensive patients with impaired renal function. Current Therapeutic Research 44: 986–993, 1988

    Google Scholar 

  • Kubo SH, Cody RJ, Covit AB, Feldschuh, Laragh JH. The effects of verapamil on renal blood flow, renal function, and neuro-hormonal profiles in patients with moderate to severe hypertension. Journal of Clinical Hypertension 3: 38S–46S, 1986

    Google Scholar 

  • Kuhlmann J. Effects of quinidine, verapamil and nifedipine on the pharmacokinetics and pharmacodynamics of digitoxin during steady state conditions. Arzneimittel-Forschung 37: 545–548, 1987

    PubMed  CAS  Google Scholar 

  • Kumagai H, Onoyama K, Hirakata H, Katafuti R, Hori K, et al. Bradyarrhythmia induced by orally administered verapamil and propranolol in chronic hemodialysis patients. Current Therapeutic Research 40: 1–6, 1986

    Google Scholar 

  • Kumana CR, Mahon WA. Bizarre perceptual disorder of extremities in patients taking verapamil. Lancet 1: 1324–1325, 1981

    Article  PubMed  CAS  Google Scholar 

  • Lam YWF. Calcium metabolism, calcium-channel blocking agents, and hypertension management. Drug Intelligence and Clinical Pharmacy 22: 659–671, 1988

    PubMed  CAS  Google Scholar 

  • Lay C-S, Tsai Y-T, Kong C-W, Lee F-Y, Lee S-D, et al. Effects of verapamil on estimated hepatic blood flow in patients with HBsAg-positive cirrhosis. Hepato-gastroenterology 35: 121–124, 1988

    PubMed  CAS  Google Scholar 

  • Lehtonen A, Gordin A, Salo H. Comparison of sustained release verapamil and hydrochlorothiazide in hypertension — effect on blood pressure and metabolic variables. International Journal of Clinical Pharmacology, Therapy and Toxicology 25: 301–305, 1987

    CAS  Google Scholar 

  • Leon MB, Rosing DR, Bonow RO, Lipson LC, Epstein SE. Clinical efficacy of verapamil alone and combined with propranolol in treating patients with chronic stable angina pectoris. American Journal of Cardiology 48: 131–139, 1981

    Article  PubMed  CAS  Google Scholar 

  • Leonetti G, Cuspidi C, Sampieri L, Terzoli L, Zanchetti A. Comparison of cardiovascular, renal, and humoral effects of acute administration of the calcium channel blockers in normotensive and hypertensive subjects. Journal of Cardiovascular Pharmacology 4 (Suppl. 3): S319–S324, 1982

    Article  PubMed  Google Scholar 

  • Leonetti G, Pasotti C, Ferrari GP, Zanchetti A. Verapamil and propranolol: a comparison of two hypertensive agents. Acta Medica Scandinavica 1 (Suppl. 681): 137–141, 1984

    Google Scholar 

  • Leonetti G, Sala C, Bianchini C, Terzoli L, Zanchetti A. Anti-hypertensive and renal effects of orally administered verapamil. European Journal of Clinical Pharmacology 18: 375–382, 1980

    Article  PubMed  CAS  Google Scholar 

  • Lessem J. Combined administration of verapamil and beta blockers in patients with angina pectoris. In Zanchetti & Krikler (Eds). Calcium antagonism in cardiovascular therapy: experience with verapamil, pp. 159–166, Excerpta Medica, Amsterdam-Oxford-Princeton, 1981

    Google Scholar 

  • Lewis B, Mitha A, Gotsman M. Immediate hemodynamic effects of verapamil in man. Cardiology 60: 366–376, 1976

    Article  Google Scholar 

  • Lewis GRJ. Verapamil in the management of chronic hypertension. Clinical and Investigative Medicine 3: 175–177, 1980

    PubMed  CAS  Google Scholar 

  • Lewis GRJ. The long-term management of hypertension with verapamil. Clinical and Experimental Pharmacology and Physiology 6 (Suppl.): 107–112, 1982

    CAS  Google Scholar 

  • Lewis GRJ, Morley KD, Lewis BM, Bones PJ. The treatment of hypertension with verapamil. New Zealand Medical Journal 87: 351–354, 1978

    PubMed  CAS  Google Scholar 

  • Lewis JG. Adverse reactions to calcium antagonists. Drugs 25: 196–222, 1983

    Article  PubMed  CAS  Google Scholar 

  • Lindholm A, Henricsson S. Verapamil inhibits cyclosporin metabolism. Lancet 1: 1262–1263, 1987

    Article  PubMed  CAS  Google Scholar 

  • Loi C-M, Rollins DE, Dukes GE, Peat MA. Effect of cimetidine on verapamil disposition. Clinical Pharmacology and Therapeutics 37: 654–657, 1985

    Article  PubMed  CAS  Google Scholar 

  • Lowe PA. Verapamil-neostigmine interaction? Anaesthesia and Intensive Care 14: 211–212, 1986

    PubMed  CAS  Google Scholar 

  • Luna RL, Carrasco RM. Efficacy of verapamil in patients resistant to other antihypertensive therapy. American Journal of Cardiology 57: 64D–68D, 1986

    Article  PubMed  CAS  Google Scholar 

  • Lund-Johansen P. Hemodynamic effects of verapamil in essential hypertension at rest and during exercise. Acta Medica Scandinavica 1 (Suppl. 681): 109–115, 1984

    Google Scholar 

  • Lund-Johansen P. Hemodynamic effects of calcium channel blockers at rest and during exercise in essential hypertension. American Journal of Medicine 79 (Suppl. 4A): 11–18, 1985

    Article  PubMed  CAS  Google Scholar 

  • MacGregor GA, Markandu ND, Singer DRJ. Diuretics and calcium antagonists in hypertension. British Journal of Clinical Practice 42 (Suppl. 60): 58–59, 1988

    Google Scholar 

  • MacPhee GJA, Mclnnes GT, Agnew E, Brodie MJ. Clinically relevant adverse interaction between verapamil and carbamazepine in epileptic patients. British Journal of Clinical Pharmacology 21: 569P–570P, 1986

    Google Scholar 

  • Magometschnigg D, Hörtnagl H, Rameis H. Diltiazem and verapamil: functional antagonism of exogenous noradrenalin and angiotensin II in man. European Journal of Clinical Pharmacology 26: 303–307, 1984

    Article  PubMed  CAS  Google Scholar 

  • Maisel AS, Motulsky HJ, Insel PA. Hypotension after quinidine plus verapamil. New England Journal of Medicine 312: 167–170, 1985

    Article  PubMed  CAS  Google Scholar 

  • Manfroi WC, Vieira SR, Das S, Koppe VF, Ludwig R, et al. Long-term verapamil therapy in primary congestive cardiomyopathy. Journal of Cardiovascular Pharmacology 12 (Suppl. 6): S218, 1988

    Google Scholar 

  • Mannhold R. Calcium antagonists: basic chemical and pharmacological properties. Drugs Today 20: 69–90, 1984

    CAS  Google Scholar 

  • Maragno I, Gianotti C, Tropeano PF, Rodighiero V, Gaion RM, et al. Verapamil-induced changes in digoxin kinetics in cirrhosis. European Journal of Clinical Pharmacology 32: 309–311, 1987

    Article  PubMed  CAS  Google Scholar 

  • Markley HG, Cheronis JCD, Piepho RW. Verapamil in prophylactic therapy of migraine. Neurology 34: 973–976, 1984

    Article  PubMed  CAS  Google Scholar 

  • Marlettini MG, Labriola E, Trabatti M, Agostini D, Cassani A, et al. Treatment of hypertension in pregnancy with verapamil. In Schenker, Rippmann & Weinstein (Eds). Recent advances in pathophysiological conditions in pregnancy, pp. 387–390, Elsevier Science Publishers, 1984

  • Marlettini MG, Salomone T, Agostini D, Trisolino G, Trabatti M, et al. Long-term treatment of primary hypertension with verapamil. Current Therapeutic Research 39: 59–64, 1986

    Google Scholar 

  • Massari Ph, Lecoz A, Moirot E, Bonmarchand G, Droy JM, et al. Acute intoxication with verapamil treated by dobutamine and endocavitary stimulation [Intoxication aìguè par le vérapamil traitée par dobutamine et stimulation endocavitaire]. Coeur 17: 366–367, 1986

    Google Scholar 

  • Matsui M, Nishiwaki H, Yoshino J, Endo M, Yoshikawa M, et al. Effects of nicardipine hydrochloride on the conduction system of the heart in man. Japanese Heart Journal 23 (Suppl.): 243–245, 1982

    Google Scholar 

  • Mattila J, Mäntylä R, Taskinen J, Männistö P. Pharmacokinetics of sustained-release verapamil after a single administration and at steady state. European Journal of Drug Metabolism and Pharmacokinetics 10: 133–138, 1985

    Article  PubMed  CAS  Google Scholar 

  • Maulik SK, Gupta YK, Karmarkar MG, Reddy KS, Seth SD. Serum lipids in hypertensive patients treated with verapamil. Journal of Cardiovascular Pharmacology 12 (Suppl. 6): S182, 1988

    Google Scholar 

  • McAllister RG, Kirsten EB. The pharmacology of verapamil. IV. Kinetic and dynamic effects after single intravenous and oral doses. Clinical Pharmacology and Therapeutics 31: 418–426, 1982

    Article  PubMed  CAS  Google Scholar 

  • McAllister RG, Schloemer GL, Hamman SR. Kinetics and dynamics of calcium entry antagonists in systemic hypertension. American Journal of Cardiology 57: 16D–21D, 1986

    Article  PubMed  CAS  Google Scholar 

  • McCarron DA. Calcium in the pathogenesis and therapy of human hypertension. American Journal of Medicine 78 (Suppl. 2B): 27–34, 1985

    Article  PubMed  CAS  Google Scholar 

  • McGoon MD, Vlietstra RE, Holmes DR, Osborn JE. The clinical use of verapamil. Mayo Clinic Proceedings 57: 495–510, 1982

    PubMed  CAS  Google Scholar 

  • McGovern B, Garan H, Ruskin JN. Precipitation of cardiac arrest by verapamil in patients with Wolff-Parkinson-White Syndrome. Annals of Internal Medicine 104: 791–794, 1986

    PubMed  CAS  Google Scholar 

  • McGowan FX, Reiter MJ, Pritchett ELC, Shand DG. Verapamil plasma binding: relationship to α1-acid glycoprotein and drug efficacy. Clinical Pharmacology and Therapeutics 33: 485–490, 1983

    Article  PubMed  CAS  Google Scholar 

  • Mclnnes GT. Clinical pharmacology of verapamil. British Journal of Clinical Practice 42 (Suppl. 60): 3–8, 1988

    Google Scholar 

  • Mclnnes GT, McLenachan JM, Henderson E, Herrick AL, Dargie HJ. Celiprolol and verapamil in the treatment of essential hypertension. American Heart Journal 116: 1437–1438, 1988

    Article  Google Scholar 

  • Mclnnes GT, Thomson GD, Murray GD, Thompson GG, Brodie MJ. Intravenous verapamil during β-adrenoceptor blockade with propranolol. British Journal of Clinical Pharmacology 21: 580P, 1986

    Google Scholar 

  • Mehta J, Mehta P, Ostrowsk N, Crews F. Effects of verapamil on platelet aggregation, ATP release and thromboxane generation. Thrombosis Research 30: 469–475, 1983

    Article  PubMed  CAS  Google Scholar 

  • Meredith PA, Elliott HL, Pasanisi F, Kelman AW, Sumner DJ, et al. Verapamil pharmacokinetics and apparent hepatic and renal blood flow. British Journal of Clinical Pharmacology 20: 101–106, 1985

    Article  PubMed  CAS  Google Scholar 

  • Meredith PA, Elliott HL, Pasanisi F, Reid JL. Prazosin and verapamil: a pharmacokinetic and pharmacodynamic interaction? British Journal of Clinical Pharmacology 21: 85P, 1986

    Article  Google Scholar 

  • Merkel C, Gatta A, Bolognesi M, Padrini R, Finucci GF, et al. The calcium-channel blocker verapamil does not improve portal pressure in patients with alcoholic cirrhosis. British Journal of Clinical Pharmacology 26: 273–277, 1988

    Article  PubMed  CAS  Google Scholar 

  • Midtbø K, Hals O. Verapamil in the treatment of hypertension. Current Therapeutic Research 27: 830–838, 1980

    Google Scholar 

  • Midtbø K, Hals O. Influence of verapamil and nifedipine on the pressor response to isometric exertion in hypertensive patients. Current Therapeutic Research 40: 326–332, 1986

    Google Scholar 

  • Midtbø KA, Hals O, Lauve O. A new sustained-release formulation of verapamil in the treatment of hypertension. Journal of Clinical Hypertension 3: 125S–132S, 1986

    Google Scholar 

  • Midtbo K, Hals O, Storstein L. Once and twice daily administration of verapamil retard in the treatment of essential hypertension. In Reid& Pickup (Eds) Calcium antagonists and treatment of hypertension, pp. 13–20, Oxford University Press, Oxford, 1984a

    Google Scholar 

  • Midtbø K, Hals O, Van Der Meer J, Storstein L, Rämsch K-D. Double-blind comparison of the antihypertensive effects of verapamil and nifedipine. In Godfraind et al. (Eds) Calcium entry blockers in cardiovascular and cerebral dysfunction, pp. 285–293, Martinus Nijhoff, The Hague, 1984b

    Chapter  Google Scholar 

  • Midtbo K, Lauve O, Hals O. No metabolic side effects of long-term treatment with verapamil in hypertension. Angiology 39: 1025–1059, 1988

    Article  PubMed  CAS  Google Scholar 

  • Millard RW, Lathrop DA, Grupp G, Ashraf M, Grupp IL, et al. Differential cardiovascular effects of calcium channel blocking agents: potential mechanisms. American Journal of Cardiology 49: 499–506, 1982

    Article  PubMed  CAS  Google Scholar 

  • Miller MR, Withers R, Bhamra R, Holt DW. Verapamil and breastfeeding. European Journal of Clinical Pharmacology 30: 125–126, 1986

    Article  PubMed  CAS  Google Scholar 

  • Misra M, Thakur R, Bhandari K. Sinus arrest caused by atenololverapamil combination. Clinical Cardiology 10: 365–367, 1987

    Article  PubMed  CAS  Google Scholar 

  • Mitchell LB, Schroeder JS, Mason JW. Comparative clinical electrophysiologic effects of diltiazem, verapamil and nifedipine: a review. American Journal of Cardiology 49: 629–635, 1982

    Article  PubMed  CAS  Google Scholar 

  • Møller IW. Cardiac arrest following I.V. verapamil combined with halothane anaesthesia. British Journal of Anaesthesia 59: 522–526, 1987

    Article  PubMed  Google Scholar 

  • Mooy J, Böhm R, Van Baak M, Van Kemenade J, Van Der Vet A, et al. The influence of antituberculosis drugs on the plasma level of verapamil. European Journal of Clinical Pharmacology 32: 107–109, 1987a

    Article  PubMed  CAS  Google Scholar 

  • Mooy J, Schols M, Van Baak M, Van Hooff M, Muytjens A, et al. Pharmacokinetics of verapamil in patients with renal failure. European Journal of Clinical Pharmacology 28: 405–410, 1985

    Article  PubMed  CAS  Google Scholar 

  • Mooy J, Van Baak M, Böhm R, Does R, Petri H, et al. The effects of verapamil and propranolol on exercise tolerance in hypertensive patients. Clinical Pharmacology and Therapeutics 41: 490–495, 1987b

    Article  PubMed  CAS  Google Scholar 

  • Muiesan G, Agabiti-Rosei E, Castellano M, Alicandri CL, Corea L, et al. Antihypertensive and humoral effects of verapamil and nifedipine in essential hypertension. Journal of Cardiovascular Pharmacology 4: S325–S329, 1982

    Article  PubMed  Google Scholar 

  • Muirhead DC, Norris RJ, Cockayne D, Hill GWR. Pharmacokinetics of once-daily verapamil: comparative bioavailability of two sustained-release formulations. British Journal of Clinical Practice 42 (Suppl. 60): 14–19, 1988

    Google Scholar 

  • Müller FB, Bolli P, Linder L, Kiowski W, Erne P, et al. Calcium antagonists and the second drug for hypertensive therapy. American Journal of Medicine 81 (Suppl. 6A): 25–29, 1986b

    Article  PubMed  Google Scholar 

  • Müller FB, Ha HR, Hotz H, Schmidlin O, Follath F, et al. Once a day verapamil in essential hypertension. British Journal of Clinical Pharmacology 21: 143S–147S, 1986a

    Article  PubMed  Google Scholar 

  • Narang PK, Blumhardt CL, Doran AR, Pickar D. Steady-state cerebrospinal fluid transfer of verapamil and metabolites in patients with schizophrenia. Clinical Pharmacology and Therapeutics 44: 550–557, 1988

    Article  PubMed  CAS  Google Scholar 

  • Nash DT, Feer TD. Hepatic injury possibly induced by verapamil. Journal of the American Medical Association 249: 395–396, 1983

    Article  PubMed  CAS  Google Scholar 

  • Navasa M, Bosch J, Reichen J, Bru C, Mastai R, et al. Effects of verapamil on hepatic and systemic hemodynamics and liver function in patients with cirrhosis and portal hypertension. Hepatology 8: 850–854, 1988

    Article  PubMed  CAS  Google Scholar 

  • Nayler WG. Calcium antagonists and the ischemic myocardium. International Journal of Cardiology 15: 267–285, 1987

    Article  PubMed  CAS  Google Scholar 

  • Nayler WG, Dillon JS, Sturrock WJ. Calcium antagonists and hypertension. Clinical and Experimental Pharmacology and Physiology 15: 93–103, 1988

    Article  PubMed  CAS  Google Scholar 

  • Nayler WG, Ferrari R, Williams A. Protective effect of pretreatment with verapamil, nifedipine and propranolol on mitochondrial function in the ischemic and perfused myocardium. American Journal of Cardiology 46: 242–248, 1980

    Article  PubMed  CAS  Google Scholar 

  • Nayler WG, Grinwald P. Calcium entry blockers and myocardial function. Federation Proceedings 40: 2855–2861, 1981

    PubMed  CAS  Google Scholar 

  • Negro F, Pessano B, Marcolongo M, Presbitero P, Brunetto MR, et al. Severe liver injury possibly due to verapamil. Italian Journal of Gastroenterology, 18: 332–334, 1986

    Google Scholar 

  • Nelson K, Woodcock BG, Kirsten R. Improvement of the quantitative determination of verapamil in human plasma. International Journal of Clinical Pharmacology and Biopharmacy 17: 375–379, 1979

    PubMed  CAS  Google Scholar 

  • Neugebauer G. Comparative cardiovascular actions of verapamil and its major metabolites in the anaesthetized dog. Cardiovascular Research 12: 247–254, 1978

    Article  PubMed  CAS  Google Scholar 

  • Nicholson JP, Resnick LM, Laragh JH. The antihypertensive effect of verapamil at extremes of dietary sodium intake. Annals of Internal Medicine 107: 329–334, 1987

    PubMed  CAS  Google Scholar 

  • Nicholson JP, Resnick LM, Laragh JH. Hydrochlorothiazide is not additive to verapamil in treating essential hypertension. Archives of Internal Medicine 149: 125–128, 1989

    Article  PubMed  CAS  Google Scholar 

  • Niederau C, Hellmann A, Sonnenberg A, Erckenbrecht J. Effects of verapamil on exocrine pancreatic secretion in man. Digestive Diseases and Sciences 30: 72–77, 1985

    Article  PubMed  CAS  Google Scholar 

  • Nissinen A, Koistinen A, Tuomilehto J, Sundberg S, Gordin A. Sustained release verapamil in hypertension: results from a noninvasive ambulatory blood pressure monitoring and clinical study. European Journal of Clinical Pharmacology 31: 255–259, 1986

    Article  PubMed  CAS  Google Scholar 

  • Nontakanun S, Ngarmukos P, Sitthisook S, Jeam-Anukulit N, Intharakoses A, et al. A multicenter study of verapamil in systemic hypertension in Thailand. American Journal of Cardiology 57: 106D–107D, 1986

    Article  PubMed  CAS  Google Scholar 

  • Norris RJ, Muirhead DC, Christie RB, Devane JG, Bottini PB. The bioavailability of a slow-release verapamil formulation. British Journal of Clinical Practice 39 (Suppl. 42): 9–16, 1985

    Google Scholar 

  • Olowoyeye JO, Giwa LO, Araoye MA. A controlled clinical trial of verapamil in the treatment of hypertension: comparison with alpha methyldopa. Current Therapeutic Research 34: 523–530, 1983

    Google Scholar 

  • Opie LH. Drugs and the heart, III: calcium antagonists. Lancet 1: 806–810, 1980

    Article  PubMed  CAS  Google Scholar 

  • Opie LH. Calcium antagonists — mechanisms, therapeutic indications and reservations: a review. Quarterly Journal of Medicine 53: 1–16, 1984

    PubMed  CAS  Google Scholar 

  • Opie LH. Calcium channel antagonists. Part III: use and comparative efficacy in hypertension and supraventricular arrhythmias. Minor indications. Cardiovascular Drugs and Therapy 1: 625–656, 1988

    Article  PubMed  CAS  Google Scholar 

  • Opie LH, Walpoth B, Barsacchi R. Calcium and catecholamines: relevance to cardiomyopathies and significance in therapeutic strategies. Journal of Molecular and Cellular Cardiology 17 (Suppl. 2): 21–34, 1985

    Article  PubMed  CAS  Google Scholar 

  • Orekhov AN, Baldenkov GN, Tertov VV, Ryong LH, Kozlov SG, et al. Cardiovascular drugs and atherosclerosis: effects of calcium antagonists, β-blockers, and nitrates on atherosclerotic characteristics of human aortic cells. Journal of Cardiovascular Pharmacology 12 (Suppl. 6): S66–S68, 1988

    Article  PubMed  CAS  Google Scholar 

  • Orlandi C, Marlettini MG, Cassani A, Trabatti M, Agostini D, et al. Treatment of hypertension during pregnancy with the calcium antagonist verapamil. Current Therapeutic Research 39: 884–893, 1986

    Google Scholar 

  • Orr GM, Bordansky HJ, Dymond DS, Taylor M. Fatal verapamil overdose. Lancet 2: 1218–1219, 1982

    Article  PubMed  CAS  Google Scholar 

  • Packer M, Leon MB, Bonow RO, Kieval J, Rosing DR, et al. Hemodynamic and clinical effects of combined verapamil and propranolol therapy in angina pectoris. American Journal of Cardiology 5: 903–912, 1982

    Article  Google Scholar 

  • Packer M, Medina N, Yushak M. Adverse hemodynamic and clinical effects of calcium channel blockade in pulmonary hypertension secondary to obliterative pulmonary vascular disease. Journal of the American College of Cardiology 4: 890–901, 1984b

    Article  PubMed  CAS  Google Scholar 

  • Packer M, Medina N, Yushak M, Wiener I. Detrimental effects of verapamil in patients with primary pulmonary hypertension. British Heart Journal 52: 106–111, 1984a

    Article  PubMed  CAS  Google Scholar 

  • Parmley WW, Blumlein S, Sievers R. Modification of experimental atherosclerosis by calcium-channel blockers. American Journal of Cardiology 55: 165B–171B, 1985

    Article  PubMed  CAS  Google Scholar 

  • Parodi O, Maseri A, Simonetti I. Management of unstable angina at rest by verapamil: a double-blind cross-over study in coronary care unit. British Heart Journal 41: 167–174, 1979

    Article  PubMed  CAS  Google Scholar 

  • Pasanisi F, Elliott HL, Meredith PA, McSharry DR, Reid JL. Combined alpha adrenoceptor antagonism and calcium channel blockade in normal subjects. Clinical Pharmacology and Therapeutics 36: 716–723, 1984

    Article  PubMed  CAS  Google Scholar 

  • Pasanisi F, Ferrara AL, Marotta T. A combination of verapamil, captopril, and diuretic in the treatment of severe hypertension. Cardiovascular Drugs and Therapy 2: 219–220, 1988

    Article  PubMed  CAS  Google Scholar 

  • Patel KR, Al Shama MR, Kerr JW. The effect of inhaled verapamil on allergen-induced bronchoconstriction. Clinical Allergy 13: 119–122, 1983

    Article  PubMed  CAS  Google Scholar 

  • Patel KR, Tullett WM. Comparison of two calcium antagonists, verapamil and gallopamil (D-600), in exercise-induced asthma. European Journal of Respiratory Diseases 67: 269–271, 1985

    PubMed  CAS  Google Scholar 

  • Pedersen KE, Christiansen BD, Kjaer K, Klitgaard NA, Nielsen-Judsk N. Verapamil-induced changes in digoxin kinetics and intraerythrocytic sodium concentration. Clinical Pharmacology and Therapeutics 34: 8–13, 1983

    Article  PubMed  CAS  Google Scholar 

  • Pedersen KE, Dorph-Pedersen A, Hvidt S, Klitgaard NA, Nielsen-Kudsk F. Digoxin-verapamil interaction. Clinical Pharmacology and Therapeutics 30: 311–316, 1981

    Article  PubMed  CAS  Google Scholar 

  • Pedrinelli R, Tarazi RC. Interference of calcium entry blockade invivowith pressor responses to α-adrenergic stimulation: effects of two unrelated blockers on responses to both exogenous and endogenously released norepinephrine. Circulation 69: 1171–1176, 1984

    Article  PubMed  CAS  Google Scholar 

  • Peer G, Korzets A, Levtov O. Plasma lipid profile in verapamiltreated hypertensive patients. International Journal of Clinical Pharmacology, Therapy and Toxicology 25: 489–492, 1987

    CAS  Google Scholar 

  • Pepine CJ, Feldman RL, Whittle J, Curry RC, Conti CR. Effect of diltiazem in patients with variant angina: a randomised double-blind trial. American Heart Journal 101: 719–725, 1981

    Article  PubMed  CAS  Google Scholar 

  • Petri H, Arends BG, van Baak MA. The effect of verapamil on cardiovascular and metabolic responses to exercise. European Journal of Applied Physiology 55: 499–502, 1986

    Article  CAS  Google Scholar 

  • Pieper JA, Rutledge DR. Determination of verapamil and its primary metabolites in serum by ion-pair adsorption high-performance liquid chromatography. Journal of Chromatographic Science 26: 473–477, 1988

    PubMed  CAS  Google Scholar 

  • Popa VT, Somani P, Simon V. The effect of inhaled verapamil on resting bronchial tone and airway contractions induced by histamine and acetylcholine in normal and asthmatic subjects. American Review of Respiratory Disease 130: 1006–1013, 1984

    PubMed  CAS  Google Scholar 

  • Pozenel H. Antihypertensive effect of verapamil. Results with a new sustained-release formulation for once daily administration. Fortschritte der Medizin 23: 639–642, 1985

    Google Scholar 

  • Price WA, Giannini AJ. Neurotoxicity caused by lithium-vera-pamil synergism. Journal of Clinical Pharmacology 26: 717, 1986

    PubMed  CAS  Google Scholar 

  • Prystowsky EN. The effects of slow channel blockers and beta blockers on atrioventricular nodal conduction. Journal of Clinical Pharmacology 28: 6–21, 1988

    PubMed  CAS  Google Scholar 

  • Purneil RJ. Bradycardia after verapamil and spinal analgesia. Anaesthesia 40: 1245, 1985

    Article  Google Scholar 

  • Rabkin SW, Tomlinson C, Corbett BN, Cuddy TE. Verapamil and supraventricular tachyarrhythmias: beneficial effect in patients with chronic pulmonary disease. Canadian Medical Association Journal 122: 64–68, 1980

    PubMed  CAS  Google Scholar 

  • Radford D. Side effects of verapamil in infants. Archives of Disease in Childhood 58: 465–466, 1983

    Article  PubMed  CAS  Google Scholar 

  • Raftos J. Verapamil in the long-term treatment of angina pectoris. Medical Journal of Australia 2: 78–80, 1980

    PubMed  CAS  Google Scholar 

  • Ram CVS, Featherston WE. Calcium antagonists in the treatment of hypertension. An overview. Chest 93: 1251–1253, 1988

    Article  PubMed  CAS  Google Scholar 

  • Reid JL, Pasanisi F, Meredith PA, Elliott HL. Clinical pharmacological studies on the interaction between α-adrenoceptors and calcium antagonists. Journal of Cardiovascular Pharmacology 7 (Suppl. 6): S206–S209, 1985

    Article  PubMed  Google Scholar 

  • Reinfrank J, Eckardt A, Hahn K-J. Verapamil SR 240mg as a contribution to compliance in long-term treatment of hypertension. Bibliothèca Cardiologica 42: 156–160, 1987

    PubMed  Google Scholar 

  • Reiter MJ, Shand DG, Pritchett EL. Comparison of intravenous and oral verapamil dosing. Clinical Pharmacology and Therapeutics 32: 711–720, 1982

    Article  PubMed  CAS  Google Scholar 

  • Rodin SM, Johnson BF, Wilson J, Ritchie P, Johnson J. Com-parative effects of verapamil and isradipine on steady-statdigoxin kinetics. Clinical Pharmacology and Therapeutics 43: 668–672, 1988

    Article  PubMed  CAS  Google Scholar 

  • Röjdmark S, Andersson DEH, Hed R, Nordlund A, Sundblad L, et al. Does verapamil influence glucose-induced insulin release in man? Acta Medica Scandinavica 210: 501–505, 1981

    Article  PubMed  Google Scholar 

  • Rolli A, Favaro L, Finardi A, Aurier E, Bonatti V, et al. Effectiveness of verapamil in the prevention of ventricular fibrillation in the acute stage of myocardial infarction. Archiv des Maladies du Coeur 81: 907–911, 1988

    CAS  Google Scholar 

  • Rosing DR, Idänpään-Heikkilä U, Maron BJ, Bonow RO, Epstein SE. Use of calcium-channel blocking drugs in hypertrophic cardiomyopathy. American Journal of Cardiology 55: 185B–195B, 1985

    Article  PubMed  CAS  Google Scholar 

  • Ross Jr J. Primary pulmonary hypertension. In Martin (Ed.) Principles of internal medicine, 11th ed., pp. 1102–1105, McGraw-Hill Book Company, New York, 1987

    Google Scholar 

  • Rouleau J-L, Chatterjee K, Ports TA, Doyle MH, Hiramatsu B, et al. Mechanism of relief of pacing-induced angina with oral verapamil: reduced oxygen demand. Circulation 67: 94–100, 1983

    Article  PubMed  CAS  Google Scholar 

  • Rubin AS, Zablocki AD. Hyperkalemia, verapamil and dantrolene. Anesthesiology 66: 246–249, 1987

    Article  PubMed  CAS  Google Scholar 

  • Rutledge DR, Pieper JA, Mirvis DM. Effects of chronic phenobarbital on verapamil disposition in humans. Journal of Pharmacology and Experimental Therapeutics 246: 7–13, 1988

    PubMed  CAS  Google Scholar 

  • Samniah N, Schlaeffer F. Cerebral infarction associated with oral verapamil overdose. Clinical Toxicology 26: 365–369, 1988

    PubMed  CAS  Google Scholar 

  • Scharer K, Alatas H, Bein G. The treatment of renal hypertension with verapamil in childhood. Monatsschrift für Kinderheilkunde 125: 706–712, 1977

    PubMed  CAS  Google Scholar 

  • Schmieder RE, Messerli FH, Garavaglia GE, Nunez BD Cardiovascular effects of verapamil in patients with essential hypertension. Circulation 75: 1030–1036, 1987

    Article  PubMed  CAS  Google Scholar 

  • Schols M, Mooy J, van Hooff M, van Baak MA, Rahn KH. Studies on the disposition of verapamil in patients with renal failure. Naunyn-Schmiedeberg’s Archives of Pharmacology 322 (Suppl.): R130, 1983

    Google Scholar 

  • Schomerus M, Spiegelhalder B, Stieren B, Eichelbaum M. Physiologic disposition of verapamil in man. Cardiovascular Research 10: 605–612, 1976

    Article  PubMed  CAS  Google Scholar 

  • Schütz E, Riem HH, Bühler FR, Follath F. Serum concentration and antihypertensive effect of slow release verapamil. Journal of Cardiovascular Pharmacology 4 (Suppl. 3): S346–S349, 1982

    Article  PubMed  Google Scholar 

  • Schwartz JB, Abernethy DR, Egan J. Verapamil pharmacokinetics. British Journal of Pharmacology 21: 555, 1986

    Google Scholar 

  • Schwartz JB, Abernethy DR, Taylor AA, Mitchell JR. An investigation of the cause of accumulation of verapamil during regular dosing in patients. British Journal of Clinical Pharmacology 19: 512–516, 1985

    Article  PubMed  CAS  Google Scholar 

  • Seabra-Gomes R, Rickards A, Sutton R. Hemodynamic effects of verapamil and practolol in man. European Journal of Cardiology 4: 79–85, 1976

    PubMed  CAS  Google Scholar 

  • Semplicini A, Pessina AC, Rossi GP, Padrini R, Tagliafierro R, et al. Plasma levels of verapamil and its effects on blood pressure, body fluid volumes and renal function in hypertensive patients. International Journal of Clinical Pharmacology Research 2 (Suppl. 1): 81–86, 1982

    Google Scholar 

  • Serafini PC, Petracco A, Vicosa IM, Costa PL. Antihypertensive effect of verapamil in severe pre-eclampsia —a preliminary study. Arquivos Brasileiros de Cardiologia 32: 57–61, 1979

    PubMed  CAS  Google Scholar 

  • Shah GM, Winer RL. Verapamil kinetics during maintenance hemodialysis. American Journal of Nephrology 5: 338–341, 1985

    Article  PubMed  CAS  Google Scholar 

  • Shamoon H, Baylor P, Kambosos D, Charlap S, Plawes S, et al. Influence of oral verapamil on glucoregulatory hormones in man. Journal of Clinical Endocrinology and Metabolism 60: 536–541, 1985

    Article  PubMed  CAS  Google Scholar 

  • Shand DG, Hammill SC, Aaronsen L, Pritchett ELC. Reduced verapamil clearance during long-term oral administration. Clinical Pharmacology and Therapeutics 30: 701–703, 1981

    Article  PubMed  CAS  Google Scholar 

  • Sharma SK, Pande JN. The effect of verapamil inhalation on pulmonary functions in bronchial asthma. American Review of Respiratory Disease 137: 37, 1988

    Google Scholar 

  • Silke B. Studies with sustained-release verapamil in essential hypertension. British Journal of Clinical Practice 42 (Suppl. 60): 53–57, 1988

    Google Scholar 

  • Silke B, Verma SP, Nelson GIC. The effects on left ventricular performance of nifedipine and verapamil in exercise-induced angina pectoris. British Journal of Clinical Pharmacology 17: 735–743, 1984

    Article  PubMed  CAS  Google Scholar 

  • Singh BN, Chew CYC, Josephson MA, Packer M. Pharmacologic and hemodynamic mechanisms underlying the antianginal actions of verapamil. American Journal of Cardiology 50: 886–893, 1982

    Article  PubMed  CAS  Google Scholar 

  • Singh BN, Collett JT, Chew CYC. New perspectives in the pharmacologic therapy of cardiac arrhythmias. Progress in Cardiovascular Diseases 22: 243–301, 1980

    Article  PubMed  CAS  Google Scholar 

  • Singh BN, Ellrodt G, Peter CT. Verapamil: a review of its pharmacological properties and therapeutic use. Drugs 15: 169–197, 1978

    Article  PubMed  Google Scholar 

  • Singh BN, Nademanee K, Baky SH. Calcium antagonists: clinical use in the treatment of arrhythmias. Drugs 25: 125–153, 1983

    Article  PubMed  CAS  Google Scholar 

  • Singh BN, Rebanal P, Piontek M, Nademanee K. Calcium antagonists and beta blockers in the control of mild to moderate systemic hypertension, with particular reference to verapamil and propranolol. American Journal of Cardiology 57: 99D–105D, 1986

    Article  PubMed  CAS  Google Scholar 

  • Singh BN, Roche AHG. Effects of intravenous verapamil on hemodynamics in patients with heart disease. American Heart Journal 94: 593–599, 1977

    Article  PubMed  CAS  Google Scholar 

  • Sirmans SM, Pieper JA, Lalonde RL, Self TH, Smith D. Effect of calcium channel antagonists on theophylline disposition. Drug Intelligence and Clinical Pharmacy 21: 16A, 1987

    Google Scholar 

  • Smith MS, Benyunes MC, Bjornsson TD, Shand DG, Pritchett ELC. The influence of cimetidine on the pharmacokinetics and the pharmacodynamics of verapamil. Journal of the American College of Cardiology 3: 568, 1984

    Article  Google Scholar 

  • Solomon GD, Steel MJ, Spaccavento LJ. Verapamil prophylaxis of migraine. Journal of the American Medical Association 250: 2500–2502, 1983

    Article  PubMed  CAS  Google Scholar 

  • Somogyi A, Albrecht M, Kliems G, Schafer K, Eichelbaum M. Pharmacokinetics, bioavailability and ECG response of verapamil in patients with liver cirrhosis. British Journal of Clinical Pharmacology 12: 51–60, 1981

    Article  PubMed  CAS  Google Scholar 

  • Sørensen SS, Thomsen OØ, Danielsen H, Pedersen EB. Effect of verapamil on renal plasma flow, glomerular filtration rate and plasma angiotensin II, aldosterone and arginine vasopressin in essential hypertension. European Journal of Clinical Pharmacology 29: 257–261, 1985

    Article  PubMed  Google Scholar 

  • Soward AL, Vanhaleweyk GLJ, Serruys PW. The haemodynamic effects of nifedipine, verapamil and diltiazem in patients with coronary artery disease: a review. Drugs 32: 66–101, 1986

    Article  PubMed  CAS  Google Scholar 

  • Speders S, Sosna J, Schumacher A, Pfennigsdorf G. Efficacy and safety of Isoptin® SR 240mg in essential hypertension — results of a phase IV study under practice conditions. Hochdruck 8: 25–30, 1988

    Google Scholar 

  • Spiegelhalder B, Eichelbaum M. Determination of verapamil in human plasma by mass fragmentography using stable isotopelabelled verapamil as internal standard. Arzneimittel-Forschung 27: 94–97, 1977

    PubMed  CAS  Google Scholar 

  • Spritzer N, Spritzer TS, Rodrigues R. Treatment of resistant hypertension: 3 years of follow-up with the combination of verapamil and methyldopa. Journal of Cardiovascular Pharmacology 13 (Suppl. 14): 565–567, 1989

    Google Scholar 

  • Spurrell RAJ, Krikler DM, Sowton GE. The effect of verapamil on the electrophysiological properties of the anomalous atrioventricular connections in Wolff-Parkinson-White syndrome. British Heart Journal 36: 256–257, 1974

    Article  PubMed  CAS  Google Scholar 

  • Stadler P, Leonardi L, Riesen W, Ziegler W, Marone C, et al. Cardiovascular effects of verapamil in essential hypertension. Clinical Pharmacology and Therapeutics 42: 485–492, 1987

    Article  PubMed  CAS  Google Scholar 

  • Stone PH, Antman EM, Muller JE, Braunwald E. Calcium channel blocking agents in the treatment of cardiovascular disorders. Part II. Hemodynamic effects and clinical applications. Annals of Internal Medicine 93: 886–904, 1980

    PubMed  CAS  Google Scholar 

  • Storstein L, Larsen A, Midtbø K, Saevareid L. Pharmacokinetics of calcium blockers in patients with renal insufficiency and in geriatric patients. Acta Medica Scandinavica (Suppl. 681): 25–30, 1983

  • Strigl R, Gastroph G, Hege HG, Döring P, Mehring W. The determination of verapamil in maternal and fetal blood. Ge-burtshife und Frauenheilkunde 40: 496–499, 1980

    Article  CAS  Google Scholar 

  • Théroux P, Taeymans Y, Waters DD. Calcium antagonists: clinical use in the treatment of angina. Drugs 25: 178–195, 1983

    Article  PubMed  Google Scholar 

  • Thiesen K, Scheininger M. Electrophysiological effects of quinidine alone and of the combination quinidine-verapamil on AV conduction in humans. Clinical Cardiology 6: 405–411, 1983

    Article  Google Scholar 

  • Todd GD, Bourne DWA, McAllister RG. Measurement of verapamil concentrations in plasma by gas chromatography and high pressure liquid chromatography. Therapeutic Drug Monitoring 2: 411–416, 1980

    PubMed  CAS  Google Scholar 

  • Trohman RG, Estes DM, Castellanos A, Palomo AR, Myerburg RJ, et al. Increased quinidine plasma concentrations during administration of verapamil: a new quinidine-verapamil interaction. American Journal of Cardiology 57: 706–707, 1986

    Article  PubMed  CAS  Google Scholar 

  • Trost BN, Weidmann P. Effects of calcium antagonists on glucose homeostasis and serum lipids in non-diabetic and diabetic subjects: a review. Journal of Hypertension 5 (Suppl. 4): S81–S104, 1987

    Article  PubMed  CAS  Google Scholar 

  • Truccone N, Mariona F. Intrauterine conversion of fetal supraventricular tachycardia with combination of digoxin and verapamil. Pediatric Pharmacology 5: 149–153, 1985

    PubMed  CAS  Google Scholar 

  • Tucker RA, Serote WF. Parenteral-verapamil-induced sustained hypotension. Drug Intelligence and Clinical Pharmacy 18: 239–241, 1984

    PubMed  CAS  Google Scholar 

  • Van der Meer J, Ver der Wall E. Fatal acute intoxication with verapamil. Netherlands Journal of Medicine 26: 130–132, 1982

    Google Scholar 

  • Vanhees L, Fagard R, Amery A. Effect of calcium channel blockade and beta-adrenoceptor blockade on short graded and single-level endurance exercises in normal men. European Journal of Applied Physiology 58: 87–91, 1988

    Article  CAS  Google Scholar 

  • Van Poorten JF, Dhasmana KM, Kuypers RSM, Erdmann W. Verapamil and reversal of vercuronium neuromuscular blockade. Anesthesia and Analgesia 63: 155–157, 1984

    PubMed  Google Scholar 

  • Vasiliades J, Wilkerson K, Ellul D, Anticoli M, Rocchini P. Gaschromatographic determination of verapamil and norverapamil, with a nitrogen-selective detector. Clinical Chemistry 28: 638–641, 1982

    PubMed  CAS  Google Scholar 

  • Vinks AATMM, Bruggink TM, van Brummelen P, Danhof M, Breimer DD. Verapamil slow release tablets: kinetic and dynamic properties in healthy volunteers. In Fleckenstein & Laragh (Eds) Hypertension — the next decade: verapamil in Focus, pp. 213–217, Churchill-Livingstone, Edinburgh, 1987

    Google Scholar 

  • Vlietstra RE, Farias MAC, Frye RL, Smith HC, Ritman EL. Effect of verapamil on left ventricular function: a randomised placebo-controlled study. American Journal of Cardiology 51: 1213–1217, 1983

    Article  PubMed  CAS  Google Scholar 

  • Vogelgesang B, Echizen H, Schmidt E, Eichelbaum M. Stereo-selective first-pass metabolism of highly cleared drugs: studies of this bioavailability of (−)- and (+)-verapamil examined with a stable isotope technique. British Journal of Clinical Pharmacology 18: 733–740, 1984

    Article  PubMed  CAS  Google Scholar 

  • Waeber G, Beck G, Waeber B, Bidiville J, Nussberger J, et al. Comparison of betaxolol with verapamil in hypertensive patients: discrepancy between office and ambulatory blood pressures. Journal of Hypertension 6: 239–245, 1988

    Article  PubMed  CAS  Google Scholar 

  • Walsh RA, Badke FR, O’Rourke RA. Differential effects of systemic and intracoronary calcium channel blocking agents on global and regional left ventricular function in conscious dogs. American Heart Journal 102: 341–350, 1981

    Article  PubMed  CAS  Google Scholar 

  • Warrington SJ, Holt D, Johnston A, Fitzsimons TJ. Pharmacokinetics and pharmacodynamics of verapamil in combination with atenolol, metoprolol and propranolol. British Journal of Clinical Pharmacology 17 (Suppl. 1): 37S–44S, 1984

    Article  PubMed  Google Scholar 

  • Weiner DA. Calcium channel blockers. Medical Clinics of North America 72: 83–115, 1988

    PubMed  CAS  Google Scholar 

  • Weinrauch LA, Belok S, D’Elia JA. Decreased serum lithium during verapamil therapy. American Heart Journal 108: 1378–1380, 1984

    Article  PubMed  CAS  Google Scholar 

  • Wicker P, Roudaut R, Gosse P, Dallocchio M. Short and long term treatment of mild to moderate hypertension with verapamil. In Reid & Pickup (Eds) Calcium antagonists and treatment of hypertension, pp. 45–50, Oxford University Press, Oxford, 1984

    Google Scholar 

  • Wing LMH, Miners JO, Lillywhite KJ. Verapamil disposition — effects of sulphinpyrazone and cimetidine. British Journal of Clinical Pharmacology 19: 385–391, 1985

    Article  PubMed  CAS  Google Scholar 

  • Winniford MD, Markham RV, Firth BG, Nicod P, Hillis LD. Hemodynamic and electrophysiologic effects of verapamil and nifedipine in patients on propranolol. American Journal of Cardiology 50: 704–710, 1982

    Article  PubMed  CAS  Google Scholar 

  • Woodcock BG, Hopf R, Kaltenbach M. Verapamil and norver-apamil plasma concentrations during long-term therapy in patients with hypertrophic obstructive cardiomyopathy. Journal of Cardiovascular Pharmacology 2: 17–23, 1980

    Article  PubMed  CAS  Google Scholar 

  • Woodcock BG, Rietbrock I, Vohringer HF, Rietbrock N. Verapamil disposition in liver disease and intensive care patients: kinetics clearance and apparent blood flow relationships. Clinical Pharmacology and Therapeutics 29: 27–34, 1981

    Article  PubMed  CAS  Google Scholar 

  • Woodcock BG, Wömer P, Rietbrock N, Schwabe L, Frömming KH. Verapamil in healthy volunteers after single oral and sublingual administration. Arzneimittel-Forschung 32: 1567–1571, 1982

    PubMed  CAS  Google Scholar 

  • Yong CL, Kunka RL, Bates TR. Factors affecting the plasma protein binding of verapamil and norverapamil in man. Research Communications in Chemical Pathology and Pharmacology 20: 329–339, 1980

    Google Scholar 

  • Zachariah PK, Sheps SG, Oshrain C, Schirger A, Stein WJ. Antihypertensive efficacy of sustained-release verapamil. Journal of Clinical Hypertension 3: 536–546, 1987

    PubMed  CAS  Google Scholar 

  • Zatuchni J. Verapamil-digoxin interaction. American Heart Journal 108: 412–413, 1984

    Article  PubMed  CAS  Google Scholar 

  • Zawar PB, Chawhan RN, Gosavi SV. Verapamil in hypertension: a long-term study. Indian Heart Journal 34: 38–41, 1982

    PubMed  CAS  Google Scholar 

  • Zipes DP, Fischer JC. Effects of agents which inhibit the slow channel on sinus node automaticity and atrioventricular conduction in the dog. Circulation Research 34: 184–192, 1974

    Article  PubMed  CAS  Google Scholar 

  • Zipes DP, Troup PJ. New antiarrhythmic agents. American Journal of Cardiology 41: 1005–1024, 1978

    Article  PubMed  CAS  Google Scholar 

  • Zoghbi W, Schwartz JB. Verapamil overdose: report of a case and review of the literature. Cardiovascular Reviews and Reports 5: 356–359, 1984

    Google Scholar 

  • Zuck D, Rao JJ. Profound bradycardia with verapamil and halothane. Anaesthesia 40: 84–85, 1985

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Various sections of the manuscript reviewed by: L. Corea, Cardiology Clinic, University of Perugia, Perugia, Italy; L.X. Cubeddu, Division of Clinical Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA; A. Doyle, Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia; W.H. Frishman, Montefiore Medical Center, Jack D. Weiler Hospital of the Albert Einstein College of Medicine, Bronx, New York, USA; J.S. Horvath, Renal and Hypertension Unit, Royal Prince Albert Hospital, Camperdown, New South Wales, Australia; C. Kawai, Faculty of Medicine, Kyoto University, Kyoto, Japan; J. Lam, Institute of Cardiology of Montréal, Montréal, Québec, Canada; G.R.J. Lewis, Napier Hospital, Napier, New Zealand; Y. Nakamura, Faculty of Medicine, Kyoto University, Kyoto, Japan; E.B. Raftery, Northwick Park Hospital and Clinical Research Centre, Harrow, Middlesex, England; J. van Harten, Centre for Bio-Pharmaceutical Sciences, Division of Pharmacology, Sylvius Laboratories, Leiden, The Netherlands.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McTavish, D., Sorkin, E.M. Verapamil. Drugs 38, 19–76 (1989). https://doi.org/10.2165/00003495-198938010-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-198938010-00003

Keywords

Navigation