Skip to main content
Log in

Mechanisms of Action of Aminoglutethimide as Endocrine Therapy of Breast Cancer

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Summary

During the last decade aminoglutethimide has been recognised as a valuable alternative in endocrine therapy for advanced breast cancer. Although some side effects do occur, most often these are initial effects which subside within a few weeks, and cessation of therapy is not usually indicated.

Aminoglutethimide was originally introduced as an inhibitor of steroidogenesis in the adrenal cortex. It was soon recognised, however, that inhibition of the non-glandular aromatase, blocking the conversion of androgenic prohormones to oestrogens, was more important, resulting in decreased blood levels of oestrogens.

In this review the role of aromatase inhibition as the only important aspect of the mechanism of action of aminoglutethimide is challenged. Evidence has accumulated during the last few years that aminoglutethimide is a most potent inducer of microsomal enzymes. In addition to the pharmacological implications this has (suggesting important interactions), it also points to the possibility that levels of oestrogens are decreased due to accelerated metabolism of these hormones. Based on new experimental data, and also clinical work with alternative aromatase inhibitors, it appears that the antitumour activity of aminoglutethimide may be due to both aromatase inhibition and accelerated metabolism of oestrogens. This seriously challenges the importance of aromatase inhibition alone as a strategy in endocrine therapy of breast cancer, and furthermore suggests that accelerated metabolism of key hormones is an alternative strategy to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboul-Enein A, Mansour N, Ashmawy I, Gawish Y, Abboud A. The influence of oestrogen receptor status on the response of metastatic breast cancer to aminoglutethimide. 2nd International Congress on Hormones and Cancer, Monte Carlo, 1983

  • Abul-Hajj Y. Comparative studies on aromatase inhibitors in relation to the significance of estrogen synthesis in human mammary tumors. Cancer Research 42 (Suppl.): 3373S–3377S, 1982

    PubMed  CAS  Google Scholar 

  • Adam AM, Bradbrook ID, Rogers HJ. High-performance liquid Chromatographic assay for simultaneous estimation of aminoglutethimide and acetylaminoglutethimide in biological fluids. Cancer Chemotherapy and Pharmacology 15: 176–178, 1985

    PubMed  CAS  Google Scholar 

  • Adam AM, Rogers HJ, Amiel SA, Rubens RD. The effect of acetylator phenotype on the disposition of aminoglutethimide. British Journal of Clinical Pharmacology 18: 495–505, 1984

    PubMed  CAS  Google Scholar 

  • Ahmann FR, Crawford D, Kreis W, Levasseur Y, et al. Adrenal steroid levels in castrated men with prostatic carcinoma treated with aminoglutethimide plus hydrocortisone. Cancer Research 47: 4736–4739, 1987

    PubMed  CAS  Google Scholar 

  • Alberto P, Mermillod B, Kaplan E, Goldhirsch A, Obrecht J-P, et al. A clinical trial of aminoglutethimide in advanced postmenopausal breast carcinoma: low response in patients previously treated with medroxyprogesterone. European Journal of Cancer and Clinical Oncology 21: 423–428, 1985

    CAS  Google Scholar 

  • Appelgren L-E, Brittebo E, Carlström K, Theve NO, Wilking N. Distribution and metabolism studies of 14C-labelled aminoglutethimide in mice. Abstract. 2nd Scandinavian Breast Cancer Symposium, Bergen, Norway, May 23–24, 1985

  • Asbury RF, Bakemeier RF, Fölsch E, McCune CS, Savlov E, et al. Treatment of metastatic breast cancer with aminoglutethimide. Cancer 47: 1954–1958, 1981

    PubMed  CAS  Google Scholar 

  • Baker MH, Foster AB, Harland SJ, Jarman M. Metabolism of aminoglutethimide in humans: formation of N-formylaminoglutethimide and nitroglutethimide. British Journal of Pharmacology 74: 243P-244P, 1981

    Google Scholar 

  • Barone RM, Shamonki IM, Siiteri PK, Judd HL. Inhibition of perpheral aromatization of androstenedione to estrone in postmenopausal women with breast cancer using Δ1-testolactone. Journal of Clinical Endocrinology and Metabolism 49: 672–676, 1979

    PubMed  CAS  Google Scholar 

  • Bartke A. Effects of prolactin and luteinizing hormone on the cholesterol stores in the mouse testis. Journal of Endocrinology 49: 317–324, 1971

    PubMed  CAS  Google Scholar 

  • Bellino FL, Osawa Y. Evidence of the direct aromatization of testosterone and different aromatization sites for testosterone and androstenedione in human placental microsomes. Biochemistry 13: 1925–1931, 1974

    PubMed  CAS  Google Scholar 

  • Bezwoda WR, Dansey R, Hesdorffer C, Browde S. The use of aminoglutethimide for the treatment of advanced breast cancer: correlations with prior treatment, ER and menstrual status. South African Medical Journal 72: 107–109, 1987

    PubMed  CAS  Google Scholar 

  • Block M, Trump D, Rose DP, Cummings KB, Hogan TF. Evaluation of aminoglutethimide in stage D prostate cancer: an assessment of efficacy and toxicity in patients with tumours refractory to hormonal therapy. Cancer Treatment Reports 68: 719–722, 1984

    PubMed  CAS  Google Scholar 

  • Bolt HM. Metabolism of estrogens — natural and synthetic. Pharmacology and Therapeutics 4: 155–181. 1979

    PubMed  CAS  Google Scholar 

  • Bolt HM, Kappus H, Bolt M. Effect of rifampicin treatment on the metabolism of ocstradiol and 17-alpha-cthinylocstradiol by human liver microsomes. European Journal of Clinical Pharmacology 8: 301–307. 1975

    PubMed  CAS  Google Scholar 

  • Bonneterrc J, Coppens H. Mauriac L. Metz M. Rousse J. et al. Aminoglutcthimide in advanced breast cancer: clinical results of a French multicenter randomized trial comparing 500mg and Ig per day. European Journal of Cancer and Clinical Oncology 21: 1153–1158. 1985

    Google Scholar 

  • Bradlow AL. A reassessment of the role of breast tumor aromatization. Cancer Research 42 (Suppl.): 3382S–3386S, 1982

    PubMed  CAS  Google Scholar 

  • Breuer H, Knuppen R. Enzymes of estrogen metabolism. In Clayton RB (Ed.) Methods in Enzymology, Vol. XV, pp. 691–735. A ademic Press. New York, 1969

    Google Scholar 

  • Brooks SM, Werk EE. Ackerman SJ, Sullivan I, Thrasher K. Adverse effects of phenobarbital on corticosteroid metabolism in patients with bronchial asthma. New England Journal of Medicine 286: 1125–1128, 1972

    PubMed  CAS  Google Scholar 

  • Brufman G, Biran S. Aminoglutcthimide as second-line endocrine therapy in advanced breast cancer. Anticancer Research 6: 1065–1068, 1986

    PubMed  CAS  Google Scholar 

  • Bruning PF, Bonfrer JMG, de Jong-Bakker M. Nooyen W. Influence of ACTH on aminoglutethimide-induccd reduction of plasma steroids in postmenopausal breast cancer. Journal of Steroid Biochemistry 21: 293–298, 1984

    PubMed  CAS  Google Scholar 

  • Bruning PF, Bonfrcr JGM, Engelsman E. von der Linden EH, de Jong-Bakker M, et al. Pros and cons of aminoglutcthimidc for advanced postmcnopausal breast cancer. Breast Cancer Research and Treatment 4: 289–295. 1984

    PubMed  CAS  Google Scholar 

  • Burstein S, Klaiber EL. Phenobarbital-induced increase in 6β-hydroxycortisol excretion: clue to its significance in human urine. Journal of Clinical Endocrinology and Metabolism 25: 293–296. 1965

    PubMed  CAS  Google Scholar 

  • Buzdar AU, Fraschini G, Blumenschein GR. Hematologie adverse effects of aminoglutcthimidc. Annals of Internal Medicine 100: 159. 1984

    PubMed  CAS  Google Scholar 

  • Buzdar AU, Powell KG Blumenschein GR. Aminoglutethimidc after tamoxifen therapy in advanced breast cancer: M.D. Anderson Hospital experience. Cancer Research 42 (Suppl.): 3448S–3450S, 1982

    PubMed  CAS  Google Scholar 

  • Camacho AM. Cash R. Brough AJ, Wilroy RS. Inhibition of adrenal stcroidogenesis by aminoglutethimide and the mechanism of action. Journal of the American Medical Association 202: 114–120. 1967

    CAS  Google Scholar 

  • Cash R. Brough AJ. Cohen MNP, Satoh PS. Aminoglutethimide (Elipten-Ciba) as an inhibitor of adrenal stcroidogencsis: mechanism of action and therapeutic trial. Journal of Clinical Endocrinology 27: 1239–1248. 1967

    CAS  Google Scholar 

  • Cash R, Petrini M, Brough AJ. Ovarian dysfunction associated with an anticonvulsant drug. Journal of the American Medical Association 208: 1149–1152, 1969

    PubMed  CAS  Google Scholar 

  • Child DF, Barke CW, Burlcy DM. Rees LH. Fraser TR. Drug control of Cushing’s syndrome. Acta Endocrinologica 82: 330–341. 1976

    PubMed  CAS  Google Scholar 

  • Cohen MP. Aminoglutethimide inhibition of adrenal desmolase activity. Proceedings of the Society for Experimental Biology 127: 1086–1090. 1968

    CAS  Google Scholar 

  • Conncy AH. Klutch A. Increased activity of androgen hydroxylases in liver microsomes of rats pretreatcd with phenobarbital and other drugs. Journal of Biological Chemistry 238: 1611–1617. 1963

    Google Scholar 

  • Conney AH, Levin W, Jacobsen M, Kuntzman R. Effects of drugs and environmental chemicals on steroid metabolism. Clinical Pharmacology and Therapeutics 14: 727–741, 1973

    PubMed  CAS  Google Scholar 

  • Conney AH, Schncidman K. Decreased hypnotic action of progesterone and other steroids in rats pretreated with drugs that stimulate steroid metabolism. Federation Proceedings 24: 152, 1965

    Google Scholar 

  • Coombes RC, Foster AB, Harland SJ, Jarman M, Nice C. Polymorphically acctylated aminoglutcthimide in humans. British Journal of Cancer 46: 340–345. 1982

    PubMed  CAS  Google Scholar 

  • Coombes RC, Goss P. Dowsett M, Gazet JC, Brodic A. 4-Hydroxy-androstenedione in treatment of postmenopausal patients with advanced breast cancer. Lancet ii: 1237–1239, 1984

    Google Scholar 

  • Corn M. Effect of phenobarbital and glutethimide on biological half-life of warfarin. Thrombosis et Diathesis Haemorrhagica 16: 606–612, 1966

    PubMed  CAS  Google Scholar 

  • Crivcllo JF. Jefcoate CR. Intracellular movement of cholesterol in rat adrenal cells: kinetics and effects of inhibitors. Journal of Biological Chemistry 255: 8144–8151. 1980

    Google Scholar 

  • Damanhouri Z. Herbert SA, Nicholls PJ. Aminoglutethimide as an inducer of oxidative drug metabolism in the rat. Pharmacology and Therapeutics 33: 145–152. 1987

    PubMed  CAS  Google Scholar 

  • Dao TL-Y. Huggins CB. Bilateral adrenalectomy in the treatment of cancer of the breast. Archives of Surgery 71: 645–657. 1955

    PubMed  Google Scholar 

  • Dexter RN. Fishman LM. Ncy RL. Liddlc GW. Inhibition of adrenal corticosteroid synthesis by aminoglutethimide: studies of the mechanism of action. Journal of Clinical Endocrinology 27: 473–480. 1967

    CAS  Google Scholar 

  • Douglas JS. Nicholls PJ. The urinary excretion of aminoglutethimide in man. Journal of Pharmacy and Pharmacology 17 (Suppl.): 115S–117S. 1965

    CAS  Google Scholar 

  • Douglas JS, Nicholls PJ. The partial fate of aminoglutcthimidc in man. Journal of Pharmacy and Pharmacology 24 (Suppl.): 150P. 1972

    PubMed  CAS  Google Scholar 

  • Dowsett M, Harris, AL. Stuart-Harris R. Hill M. Cantwell BMJ. et al. A comparison of the endocrine effects of low-dose aminoglutethimide with and without hydrocortisone in postmenopausal breast cancer patients. British Journal of Cancer 52: 525–529. 1985

    PubMed  CAS  Google Scholar 

  • Dowsett M, Santner SJ, Santen RJ. Jeffcoate SL. Smith IE: Effective inhibition by low-dose aminoglucthimide of peripheral aromatization in postmcnopausal breast cancer patients. British Journal of Cancer 52: 31–35. 1985

    PubMed  CAS  Google Scholar 

  • Edery M. Goussard J. Dchcnnin L. Schollcr R. Reiffsteck J. et al. Endogenous ocstradiol-17β concentration in breast tumours determined by mass fragmentography and by radioimmunoassay: relationship to receptor content. European Journal of Cancer 17: 115–120. 1981

    PubMed  CAS  Google Scholar 

  • Edwards OM. Courtenay-Evans RJ. Galley JM. Hunter J. Tait AD. Changes in cortisol metabolism following rifampicin therapy. Lancet ii: 549–551. 1974

    Google Scholar 

  • Elomaa I, Blomqvist C, Rissanen P. Aminoglutethimide as second-line therapy in advanced breast cancer. Breast Cancer Research and Treatment 7 (Suppl.): 5IS–54S. 1986

    Google Scholar 

  • El Safoury S, Bartke A. Aminoglutethimide inhibits steroidogenesis in the rat testis. Steroids 23: 169–172. 1974

    Google Scholar 

  • Eweiss N. Nicholls PJ. Askam V. Absorption and elimination of aminoglutethimide in the rat and guinea pig. IRCS Medical Science. Biochemistry 11: 843–844. 1983

    CAS  Google Scholar 

  • Fishman J, Hellman L, Zumoff B. Cassouto J. Pathway and stereochemistry of the formation of estriols in man. Biochemistry 5: 1789–1794, 1966

    PubMed  CAS  Google Scholar 

  • Fishman J, Nisselbaum JS, Menendez-Bulet CJ, Schwartz MK. Estrone and estradiol content in human breast tumours: relationship to estradiol receptors. Journal of Steroid Biochemistry 8: 893–896. 1977

    PubMed  CAS  Google Scholar 

  • Fishman LM. Liddlc GW, Island DP. Fleischer N. Kuchel O. Effects of aminoglutethimide on adrenal function in man. Journal of Clinical Endocrinology 27: 481–490, 1967

    CAS  Google Scholar 

  • Flint APF, Grinwich DL. Armstrong DT. Control of ovarian cholesterol ester biosynthesis. Biochemical Journal 132: 313–321, 1973

    PubMed  CAS  Google Scholar 

  • Forney JP, Milcwich L, Chen GT, Garlock JL. Schwarz BE, et al. Aromatization of androstenedione to estrone by human adipose tissue invitro: correlation with adipose tissue mass, age and endometrial neoplasia. Journal of Clinical Endocrinology and Metabolism 53: 192–199, 1981

    PubMed  CAS  Google Scholar 

  • Foster AB, Griggs LJ, Howe I. Jarman M. Leung C-S. et al. Metabolism of aminoglutethimide in humans: identification of four new urinary metabolites. Drug Metabolism and Disposition 12: 511–516. 1984

    PubMed  CAS  Google Scholar 

  • Fracchia AA. Randall HT, Farrow JH. The results of adrenalectomy in advanced breast cancer in 500 consecutive patients. Surgery. Gynecology and Obstetrics 125: 747–756. 1967

    CAS  Google Scholar 

  • Frisch RE, Canick JA. Tulchinsky D. Human fatty marrow aromatizes androgen to estrogen. Journal of Clinical Endocrinology and Metabolism 51: 395–396, 1980

    Google Scholar 

  • Gale KE. Treatment of advanced breast cancer with aminoglutethimide: a 14-year experience. Cancer Research 42 (Suppl.): 3389S–3396S, 1982

    PubMed  CAS  Google Scholar 

  • Gaunt R. Steinetz BG. Chart JJ. Pharmacologie alteration of steroid hormone functions. Clinical Pharmacology and Therapeutics 9: 657–681, 1968

    PubMed  CAS  Google Scholar 

  • Gerber SB, Miller KB. Cholestatic jaundice and aminoglutethimide. Annals of Internal Medicine 97: 138, 1982

    PubMed  CAS  Google Scholar 

  • Gez E, Sulkes A. Aminoglutethimide-induced leucopenia: a case report and review of the literature. Oncology 41: 399–402, 1984

    PubMed  CAS  Google Scholar 

  • Goss PE, Jarman M, Griggs LJ. Metabolism of aminoglutethimide in humans: quantification and clinical relevance of induced metabolism. British Journal of Cancer 51: 259–262, 1985

    PubMed  CAS  Google Scholar 

  • Goss PE, Powles TJ, Dowsett M, Hutchison G, Brodie AMH, et al. Treatment of advanced postmenopausal breast cancer with an aromatase inhibitor, 4-hydroxyandrestenedione: phase II report. Cancer Research 46: 4823–4826, 1986

    PubMed  CAS  Google Scholar 

  • Graves PE, Salhanick HA. Stereoselective inhibition of aromatase by enantiomers of aminoglutethimide. Endocrinology 105: 52–57, 1979

    PubMed  CAS  Google Scholar 

  • Griffiths CT, Hall TC, Saba Z, Barlow JJ, Nevinny HB. Preliminary trial of aminoglutethimide in breast cancer. Cancer 32: 31–37, 1973

    PubMed  CAS  Google Scholar 

  • Grodin JM, Siitevi PK, McDonald PC. Source of estrogen production in postmenopausal woman. Journal of Clinical Endocrinology and Metabolism 36: 207–214, 1973

    PubMed  CAS  Google Scholar 

  • Gupta C, Osterman J, Santen R, Bardin CW. In vivometabolism of progestins. iV. The effect of protocol design on the estimated metabolic clearance rate and volume of distribution of medroxyproges-terone acetate in women. Journal of Clinical Endocrinology and Metabolism 48: 816–820, 1979

    PubMed  CAS  Google Scholar 

  • Hall T, Barlow J, Griffiths C, Saba Z. Treatment of metastatic breast cancer with aminoglutethimide. Clinical Research 17: 402, 1969

    Google Scholar 

  • Harris AL. Could aminoglutethimide replace adrenalectomy? Breast Cancer Research and Treatment 6: 201–211, 19

  • Harris AL, Cantwell BMJ, Sainsbury JR, Needham G, Evans RGB. Low-dose aminoglutethimide (125mg twice daily) with hydrocortisone for the treatment of advanced postmenopausal breast cancer. Breast Cancer Research and Treatment 7 (Suppl.): 41–44, 1986

    Google Scholar 

  • Harris AL, Dowsett M, Jeffcoate SL, McKinna JA, Morgan M, et al. Endocrine and therapeutic effects of aminoglutethimide in premenopausal patients with breast cancer. Journal of Clinical Endocrinology and Metabolism 55: 718–722, 1982

    PubMed  CAS  Google Scholar 

  • Harris AL, Dowsett M, Smith IE, Jeffcoate SL. Endocrine effects of low dose aminoglutethimide alone in advanced postmenopausal breast cancer. British Journal of Cancer 47: 621–627, 1983

    PubMed  CAS  Google Scholar 

  • Harris AL, Dowsett M, Stuart-Harris R, Smith IE. Role of aminoglutethimide in male breast cancer. British Journal of Cancer 54: 657–660, 1986

    PubMed  CAS  Google Scholar 

  • Harris AL, Mitchell MD, Smith IE, Powles TJ. Suppression of plasma G-keto-prostaglandin F1α and 13,14-dihydro-15-keto-prostaglandin F2α by aminoglutethimide in advanced breast cancer. British Journal of Cancer 48: 595–598, 1983

    PubMed  CAS  Google Scholar 

  • Harris AL, Powles TJ, Smith IE. Aminoglutethimide in the treatment of advanced postmenopausal breast cancer. Cancer Research 42 (Suppl.): 3405S–3408S, 1982

    PubMed  CAS  Google Scholar 

  • Harvey HA, Lipton A, White DS, Santen RJ, Boucher AE, et al. Crossover comparison of tamoxifen and aminoglutethimide in advanced breast cancer. Cancer Research 42 (Suppl.): 3451S–3453S, 1982

    PubMed  CAS  Google Scholar 

  • Hayward JL, Rubens RD, Carbone PP, Heuson J-C, Kumaoka S, et al. Assessment of response to therapy in advanced breast cancer. British Journal of Cancer 35: 292–298, 1977

    PubMed  CAS  Google Scholar 

  • Hembree WC, Bardin CW, Lipsett MB. A study of estrogen metabolic clearance rates and transfer factors. Journal of Clinical Investigation 48: 1809–1819, 1969

    PubMed  CAS  Google Scholar 

  • Höffken K, Kemp H, Miller AA, Miller B, Schmidt CG, et al. Aminoglutethimide without hydrocortisone in the treatment of postmenopausal patient with advanced breast cancer. Cancer Treatment Reports 10: 1153–1157, 1986

    Google Scholar 

  • Horky K, Kuchel O, Gregorova I, Jirankova J, Matys Z. Klinische Erfahrungen mit Aminoglutathimid (Elipten1), einem neuen Inhibitor der Steroidbiosynthese in der Nebenniere. Schweizerische Medizinische Wochenschrift 47: 1843–1851, 1968

    Google Scholar 

  • Horky K, Kuchel O, Gregorova I, Starka L. Effect of aminoglutethimide on urinary steroid excretion in patients with congenital adrenal hyperplasia due to incomplete 21-hydroxylase deficiency. Metabolism 21: 305–212, 1972

    PubMed  CAS  Google Scholar 

  • Horky K, Kuchel O, Starka L, Gregovara I. Effect of aminoglutethimide on extraglandular metabolism of exogenous testosterone. Metabolism 20: 331–336, 1971

    PubMed  CAS  Google Scholar 

  • Hughes SWM, Burley DM. Aminoglutethimide: a ‘side effect’ turned to therapeutic advantage. Postgraduate Medical Journal 46: 409–416, 1970

    CAS  Google Scholar 

  • Hyatt PJ, Bhatt K, Tait JF. Steroidbiosynthesis by zona fusciculata and zona reticularis cells purified from the mammalian adrenal cortex. Journal of Steroid Biochemistry 19: 953–959, 1983

    PubMed  CAS  Google Scholar 

  • Iffy L, Ansell JS, Bryant JS, Herrmann WL. Nonadrenal female pseudohermaphroditism: an unusual case of fetal masculinization. Obstetrics and Gynecology 26: 59–65, 1965

    Google Scholar 

  • James VHT, Folkerd EJ, Bonney RC, Beranek PA, Reed MJ. Factors influencing estrogen production and metabolism in postmenopausal women with endocrine cancer. Journal of Endocrinological Investment 5: 335–345, 1982

    CAS  Google Scholar 

  • Jarman M, Foster AB, Goss PE, Griggs LJ, Howe I, et al. Metabolism of aminoglutethimide in humans: identification of hydroxylaminoglutethimide as an induced metabolite. Biomedical Mass Spectrometry 10: 620–625, 1983

    PubMed  CAS  Google Scholar 

  • Johnston GG, Krisle JR, Thop RC. Inhibition of adrenal steroidogenesis by glutethimide. Proceedings of the Society for Experimental Biology and Medicine 129: 20–23, 1968

    PubMed  CAS  Google Scholar 

  • Judd HL, Shamonki IM, Frumar AM, Lagasse LD. Origin of serum estradiol in postmenopausal women. Obstetrics and Gynecology 59: 680–686, 1982

    PubMed  CAS  Google Scholar 

  • Kahnt FW, Neher R. Über die Adrenale Steroid-Biosynthese in vitro III. Selektive Hemmung der Nebennierenrinden-Funktion. Helvetica Chimica Acta 49: 725–732, 1966

    CAS  Google Scholar 

  • Kaye SB, Woods RL, Fox RM, Coates AS, Tattersall HN. Use of aminoglutethimide as second-line endocrine therapy in metastatic breast cancer. Cancer Research 42 (Suppl.): 3445S–3447S, 1982

    PubMed  CAS  Google Scholar 

  • Kirschner MA, Cohen FB, Ryan C. Androgen-estrogen production rates in potmenopausal women with breast cancer. Cancer Research 38: 4029–4035, 1978

    PubMed  CAS  Google Scholar 

  • Kissin MW, Kark AE. Irreversible thrombocytopenia following aminoglutethimide. Cancer Treatment Reports 67: 849, 1983

    PubMed  CAS  Google Scholar 

  • Kowal J. Adrenal cells in tissue culture. IV. Use of an inhibitor of steroid synthesis for the study of ACTH action. Endocrinology 85: 270–279, 1969

    PubMed  CAS  Google Scholar 

  • Kuntzman R, Jacobson M, Schneidman K, Conney AH. Similarities between oxidative drug-metabolizing enzymes and steroid hydroxylases in liver microsomes. Journal of Pharmacology and Experimental Therapeutics 146: 280–285, 1964

    PubMed  CAS  Google Scholar 

  • Kvinnsland S, Lønning PE, Dahl O. Treatment of breast carcinoma with aminoglutethimide. Acta Radiologica Oncology 23: 421–424, 1984

    PubMed  CAS  Google Scholar 

  • Landay, RA, Gonzales MA, Taylor JC. Effect of phenobarbital on theophylline disposition. Journal of Allergy and Clinical Immunology 62: 27–29, 1978

    PubMed  CAS  Google Scholar 

  • Lawrence B, Lipton A, Harvey HA, Santen RJ, Wells SA, et al. Influence of estrogen receptor status on response of metastatic breast cancer to aminoglutethimide therapy. Cancer 45: 786–791, 1980

    PubMed  CAS  Google Scholar 

  • Lawrence B, Santen RJ, Lipton A, Harvey HA, Hamilton R, et al. Pancytopenia induced by aminoglutethimide in the treatment of breast cancer. Cancer Treatment Reports 62: 1581–1583, 1978

    PubMed  CAS  Google Scholar 

  • Lipner H, Greep RO. Inhibition of steroidogenesis at various sites in the biosynthetic pathway in relation to induced ovulation. Endocrinology 88: 602–607, 1971

    PubMed  CAS  Google Scholar 

  • Lipton A, Harvey HA, Santen RJ, Boucher A, White D, et al. Randomized trial of aminoglutethimide versustamoxifen in metastatic breast cancer. Cancer Research 42 (Suppl.): 3434S–3436S, 1982

    PubMed  CAS  Google Scholar 

  • Lipton A, Santen R, Harvey H, Drago J, Worgul A, et al. Treatment of advanced prostate cancer with aminoglutethimide. 2nd European Conference on Clinical Oncology, Amsterdam, November 1983. Abstract no 13-09, p. 152. Longcope C. The metabolism of estrone sulfate in normal males. Journal of Clinical Endocrinology 34: 113–122, 1972

    Google Scholar 

  • Longcope C, Layne DS, Tait JF. Metabolic clearance rates and interconversions of estrone and 17β-estradiol in normal males and females. Journal of Clinical Investigation 47: 93–106, 1968

    PubMed  CAS  Google Scholar 

  • Longcope C, Williams KIH. The metabolism of estrogens in normal women after pulse injections of 3H-estradiol and 3H-estrone. Journal of Clinical Endocrinology and Metabolism 38: 602–607, 1974

    PubMed  CAS  Google Scholar 

  • Lønning PE, Kvinnsland S. Bakke OM. Effect of aminoglutethimide on antipyrinc. thcophylline and digitoxin disposition in breast cancer. Clinical Pharmacology and Therapeutics 36: 796–802. 1984

    PubMed  Google Scholar 

  • Lonning PE. Kvinnsland S. Jahren G. Aminoglutethimide and warfarin: a new important drug interaction. Cancer Chemotherapy and Pharmacology 12: 10–12. 1984

    PubMed  CAS  Google Scholar 

  • Lønning PE. Kvinnsland S. Thorsen T. Ucland PM. Alterations in the metabolism of estrogens during treatment with aminoglutcthimidc in breast cancer patients: preliminary findings Clinical Pharmacokinctics 13: 393–406. 1987

    Google Scholar 

  • Lonning PE. Schanchc JS, Kvinnsland S, Ucland PM. Single-dose and steady-state pharmacokinctics of aminoglutcthimidc. Clinical Pharmacokinetics 10: 353–364. 1985

    PubMed  CAS  Google Scholar 

  • Lonning PE. Ucland PM. Kvinnsland S. The influence of a graded dose schedule of aminoglutethimide on the disposition of the optical enantiomers of warfarin in patients with breast cancer. Cancer Chemotherapy and Pharmacology 17: 177–181, 1986

    PubMed  CAS  Google Scholar 

  • MacDonald MG, Robinson DS, Sylwcstcr D, Jaffe JJ. The effects of phenobarbital, chloral betaine, and glutethimide administration on warfarin plasma levels and hypoprothrom-binemic responses in man. Clinical Pharmacology and Therapeutics 10: 80–84. 1969

    PubMed  CAS  Google Scholar 

  • Mancheno-Rico E. Kuchel O. Nowaczynski W. Seth KK. Sasaki C. et al. A dissociated effect of aminoglutethimide on the mineralocorticoid secretion in man. Metabolism 22: 123–132. 1973

    PubMed  CAS  Google Scholar 

  • Mason RC. Chetty U. Miller WR. Hawkins RA, Forrest APM. Aminoglutethimide and advanced breast cancer. Transactions of the Biochemical Society 8: 301. 1980

    CAS  Google Scholar 

  • Matsumine H. Hirato K. Yanaihara T. Tamada T, Yoshida M. Aromatization by skeletal muscle. Journal of Clinical Endocrinology and Mctabolism 63: 717–720, 1986

    CAS  Google Scholar 

  • Mauri M. Nunziata C, Gamucci T. Natali M. Gamma-GT elevation associated with aminoglutethimide (AG) therapy in advanced breast cancer. 2nd European Conference on Clinical Oncology, Amsterdam. November 1983

  • McCraken M, Benson EA. Hickling P. Systemic lupus crythematosus induced by aminoglutethimide British Medical Journal 281: 1254. 1980

    PubMed  CAS  Google Scholar 

  • McKenna TJ. Lorber D. Lacroix A. Rabin D. Testicular activity in Cushing’s disease. Acta Endocrinologica 91: 501–510, 1979

    PubMed  CAS  Google Scholar 

  • McMillan M. Maiscy MN. Effects of aminoglutethimidc in a case of cctopic ACTH syndrome. Acta Endocrinologica 64: 676–686, 1970

    PubMed  CAS  Google Scholar 

  • McNeill JM. Reed MJ, Beranek PA. Bonney RC, Ghilchik MW. et al. A comparison of the in vivouptake and metabolism of 3H-estrone and 3H-estradiol by normal breast and breast tumour tissues in postmenopausal women. International Journal of Cancer 38: 193–196, 1986

    CAS  Google Scholar 

  • Mendelson CR, Cleland WH, Smith ME. Simpson ER. Regulation of aromatase activity of stromal cells derived from human adipose tissue. Endocrinology 111: 1077–1085, 1982

    PubMed  CAS  Google Scholar 

  • Menge G, Dubois UP. Determination of aminoglutethimide and N-acctyl-aminoglutethimide in human plasma by high performance liquid chromatography. Journal of Chromotography 310: 431–437. 1984

    CAS  Google Scholar 

  • Miller WR. Steroid metabolism in breast cancer. In Stoll BA (Ed.) Breast cancer treatment and prognosis, pp. 156–172, Blackwell Scientific Publications. Oxford. 1986

    Google Scholar 

  • Millington D. Jenner DA, Jones T, Griffiths K. Endogenous steroid concentration in human breast tumours determined by high-resolution mass fragmentography. Biochemical Journal 139: 473–475, 1974

    PubMed  CAS  Google Scholar 

  • Murray FT, Santner S, Samojlik E, Santen RJ. Serum aminoglutcthimidc levels: studies of serum half-life, clearance, and patient compliance. Journal of Clinical Pharmacology 19: 704–711, 1979

    PubMed  CAS  Google Scholar 

  • Murray R, Pitt P. Aminoglutcthimidc in tamoxifen-rcsistant patients: the Melbourne experience. Cancer Research 42 (Suppl.): 3437S–3441S, 1982

    PubMed  CAS  Google Scholar 

  • Murray R, Pitt P. Low-dose aminoglutcthimidc without steroid replacement in the treatment of postmcnopausal women with advanced breast cancer. European Journal of Cancer and Clinical Oncology 21: 19–22. 1985

    CAS  Google Scholar 

  • Murray R, Pitt P. Treatment of advanced prostatic cancer, resistant to conventional therapy, with aminoglutethimide. European Journal of Cancer and Clinical Oncology 21: 453–458. 1985

    CAS  Google Scholar 

  • Nagel GA. Wander H-E. Blossey H-C. Phase II study of aminoglutethimide and medroxyprogesterone acetate in the treatment of patients with advanced breast cancer. Cancer Research 42 (Suppl.): 3442S–3444S. 1982

    PubMed  CAS  Google Scholar 

  • Newsome HH, Brown PW, Terz JJ. Lawrence Jr W. Medical and surgical adrenalcctomy in patients with advanced breast carcinoma. Cancer 39: 542–546. 1977

    PubMed  CAS  Google Scholar 

  • Newsomc HH. Brown PW. Terz JJ. Lawrence Jr W. Medical adrenalcctomy and plasma steroids in advanced breast carcinoma. Surgery 83: 83–89. 1978

    Google Scholar 

  • Nicholls PJ. Dalrymple PD. Ewciss N. Douglas JS. Aminoglutcthimidc: absorption, physiological disposition and pharmacokinctics. In Nagel & Santcn (Eds) Aminoglutethimide as an aromatasc inhibitor, pp. 58–67. H ns Huber Publishers. Stuttgart. 1984

    Google Scholar 

  • Nimrod A. Ryan KJ. Aromatization of androgens by human abdominal and breast fat tissue. Journal of Clinical Endocrinology and Metabolism 40: 367–372. 1975

    PubMed  CAS  Google Scholar 

  • Nockc-Finck L. Breuer H. Reimers D. Wirkung von Rifampicin auf den Menstruationsyzyklus und die Østrogenausscheidung bei Einnahme oraler Kontrazcptiva. Deutsche Medizinische Wochenschrift 98: 1521–1523, 1973

    Google Scholar 

  • Notelovitz M. Tjapkes J, Ware M. Interaction between estrogen and dilantin in a menopausal woman. New England Journal of Medicine 304: 788–789. 1981

    PubMed  CAS  Google Scholar 

  • Nücsch H. Sicbenmann R. Die Wirkung von Aminoglutethimid auf die Zwischcnzellcn des Rattenhodens. Virchows Archiv. A. Pathological Anatomy and Histopathology 358: 149–162. 1973

    Google Scholar 

  • Ogilvic RJ. Clinical pharmacokinctics of thcophyllinc. Clinical Pharmacokinetics 3: 267–293. 1978

    Google Scholar 

  • Ohnhaus EE. Park BK. Measurement of urinary 6-β-hydroxycortisol excretion as an invivoparameter in the clinical assessment of the microsomal enzyme-inducing capacity of antipyrinc phenobarbitone and rifampicin. European Journal of Clinical Pharmacology 15: 139–145, 1979

    PubMed  CAS  Google Scholar 

  • O’Reilly RA. Interaction of sodium warfarin and rifampicin: studies in man. Annals of Internal Medicine 81: 337–340. 1974

    PubMed  Google Scholar 

  • Osawa Y. Tochigi B, Higashiyama T. Yarborough C. Nakamura T. et al. Multiple forms of aromatasc and response of breast cancer aromatasc to antiplaccntal aromatasc II antibodies. Cancer Research 42 (Suppl.): 3299S–3306S. 1982

    PubMed  CAS  Google Scholar 

  • Paridaens R. Leclercq G, Heuson JC. Estrogen receptor status and the clinical response to a combination of aminoglutethimide and cortisol in advanced breast cancer. Recent Results in Cancer Research 91: 248–252, 1984

    PubMed  CAS  Google Scholar 

  • Parker LN, Lifrak ET. Odell WD. A 60.000 molecular weight human pituitary glycopeptide stimulates adrenal androgen secretion. Endocrinology 113: 2092–2096, 1983

    PubMed  CAS  Google Scholar 

  • Patcl JK, Ncmoto T, Dao TL. Metastatic breast cancer in males. Cancer 53: 1344–1346. 1984

    Google Scholar 

  • Pcrel E, Killinger DW. The interconversion and aromatization of androgens by human adipose tissue. Journal of Steroid Biochemistry 10: 623–627. 1979

    Google Scholar 

  • Perrault DJ. Domovitch E. Aminoglutethimide and cholestasis. Annals of Internal Medicine 100: 160. 1984

    PubMed  CAS  Google Scholar 

  • Peters U, Hausamen T-U, Grosse-Brockhoff F. Einfluss von Tuberkulostatika auf die Pharmakokinetik des Digitoxins. Deutsche Medizinische Wochenschrift 99: 2381–2386. 1974

    PubMed  CAS  Google Scholar 

  • Piafsky KM, Sitar DS, Ogilvic RI. Effect of phenobarbital on the disposition of intravenous thcophyllinc Clinical Pharmacology and Therapeutics 22: 336–339. 1977

    PubMed  CAS  Google Scholar 

  • Pittman JA. Brown RW. Antithyroid and antiadrenocortical activity of aminoglutethimide Journal of Clinical Endocrinology and Metabolism 26: 1014–1016. 1966

    PubMed  CAS  Google Scholar 

  • Ponder BAJ, Shearer RJ. Pocock RD. Miller J. Easton D. et al. Response to aminoglutethimide and cortisone acetate in advanced prostatic cancer. British Journal of Cancer 50: 757–763. 1984

    PubMed  CAS  Google Scholar 

  • Poortman J, Thijsscn JHH, Schwarz F. Androgen production and conversion to estrogens in normal postmcnopausal women and in selected breast cancer patients. Journal of Clinical Endocrinology and Metabolism 37: 101–109. 1973

    PubMed  CAS  Google Scholar 

  • Powlcs TJ. Gordon C, Coombcs RC. Clinical trial of multiple endocrine therapy for mctastatic and locally advanced breast cancer with tamoxifcn-aminoglutcthimidc-danazol compared to tamoxifen used alone. Cancer Research 42 (Suppl.): 3458S–3460S. 1982

    Google Scholar 

  • Pronzato P. Ardizzoni A. Lionetto6R. Conte P. Rosso R. Aminoglutcthimide as second-line endocrine treatment in mctastatic breast cancer. Tumori 71: 297–300. 1985

    PubMed  CAS  Google Scholar 

  • Racela A, Azarnoff D. Svoboda. Mitochondrial cavitation and hypertrophy in rat adrenal cortex due to aminoglutethimide. Laboratory Investigation 21: 52–60. 1969

    PubMed  Google Scholar 

  • Rader MD, Flickinger GL. deVilla GO. Mikuta JJ. Mikhail G. Plasma estrogens in postmcnopausal women. American Journal of Obstetrics and Gynecology 116: 1069–1073, 1973

    PubMed  CAS  Google Scholar 

  • Rallison ML. Kumagai LF. Tyler FH. Goitrous hypothyroidism induced by aminoglutethimide. anticonvulsant drug. Journal of Clinical Endocrinology 27: 265–272. 1967

    CAS  Google Scholar 

  • Reed MJ. Beranek PA. Ghilchik MW. James VHT. Estrogen production and metabolism in normal postmcnopausal women and postmcnopausal women with breast or endometrial cancer. European Journal of Cancer and Clinical Oncology 22: 1395–1400. 1986

    CAS  Google Scholar 

  • Robinson BA. Cornell FN. Liquid-chromatographic determination of aminoglutcthimide in plasma. Clinical Chemistry 29: 1104–1106. 1983

    PubMed  CAS  Google Scholar 

  • Robinson MRG. Shearer RJ. Ferguson JD. Adrenal suppression in the treatment of carcinoma of the prostate. British Journal of Urology 46: 555–559. 1974

    PubMed  CAS  Google Scholar 

  • Robinson MRG. Thomas BS. Effect of hormonal therapy on plasma testosterone levels in prostatic carcinoma. British Medical Journal 4: 391–394. 1971

    PubMed  CAS  Google Scholar 

  • Rose DP. Postmcnopausal oestrogen production and its inhibition. In Stoll BA (Ed.) Endocrine relationships in breast cancer, pp. 187–214. William Heineman Medical Books Ltd. London, 1975

    Google Scholar 

  • Ruder HJ. Loriaux L, Lipsctt MB. Estrone-sulfate: production rate and metabolism in man. Journal of Clinical Investigation 51: 1020–1033. 1972

    PubMed  CAS  Google Scholar 

  • Salhanick HA. Basic studies on aminoglutethimide. Cancer Research 42 (Suppl.): 3315S–3321S, 1982

    PubMed  CAS  Google Scholar 

  • Samojlik E. Santen RJ. Adrenal suppression with aminoglutethimide. III. Comparison of plasma Δ4- and Δ5- steroids in postmcnopausal women treated for breast carcinoma. Journal of Clinical Endocrinology and Metabolism 47: 717–724. 1978

    PubMed  CAS  Google Scholar 

  • Samojlik E. Santcn RJ. Potency of the effect of D-stcrcoisomcr of aminoglutethimide on adrenal and extra-adrenal steroidogencsis. Journal of Clinical Endocrinology and Metabolism 51: 462–465. 1980

    PubMed  CAS  Google Scholar 

  • Samojlik E. Santcn RJ. Worgul TJ. Plasma estronc-sulfatc assessment of reduced estrogen production during treatment of mctastatic breast carcinoma. Steroids 39: 497–507, 1982

    PubMed  CAS  Google Scholar 

  • Samojlik E. Veldhuis JD. Wells SA. Preservation of androgen secretion during estrogen suppression with aminoglutcthimidc in the treatment of metastatic breast carcinoma. Journal of Clinical Investigation 65: 602–611. 1980

    PubMed  CAS  Google Scholar 

  • Sanford EJ. Drago JR. Ruhner TJ, Santcn RJ, Lipton A. Aminoglutcthimidc medical adrenalectomy for advanced prostatic carcinoma. Journal of Urology 115: 170–174, 1976

    PubMed  CAS  Google Scholar 

  • Santcn RJ. Suppression of estrogens with aminoglutethimide and hydrocortisone (medical adrenalcctomy) as treatment of advanced breast carcinoma: a review. Breast Cancer Research and Treatment 1: 183–202, 1981

    Google Scholar 

  • Santcn RJ. Aromatase inhibitors for treatment of breast cancer: current concepts and new perspectives. Breast Cancer Research and Treatment (Suppl.) 7: 23S-36S. 1986

    Google Scholar 

  • Santen RJ, Cohn N. Misbin R, Samojlik E. Foltz E. Acute effects of aminoglutcthimide on testicular sleroidogcnesis in normal men. Journal of Clinical Endocrinology and Metabolism 49: 631–634, 1979

    PubMed  CAS  Google Scholar 

  • Santen RJ, Lipton A, Kendall J. Successful medical adrenalectomy with aminoglutethimide: role of altered drug metabolism. Journal of the American Medical Association 230: 1661–1665, 1974

    PubMed  CAS  Google Scholar 

  • Santen RJ, Samojlik E. Medical adrenalcctomy for metastatic breast carcinoma. In McGuire WL (Ed.) Breast cancer: current topics, pp. 79–115. Plenum Medical Book Company, London. 1979

    Google Scholar 

  • Santen RJ, Samojlik E. Demers L, Badder E. Adrenal of male dog secretes androgens and estrogens. American Journal of Physiology 239: E109–112, 1980

    PubMed  CAS  Google Scholar 

  • Santen RJ, Samojlik E. Wells SA. Resistance of the ovary to blockade of aromatization with aminoglutethimidc Journal of Clinical Endocrinology and Metabolism 51: 473–477, 1980

    PubMed  CAS  Google Scholar 

  • Santcn RJ, Santner S, Davis B, Veldhuis J. Samojlik E, et al. Aminoglutcthimide inhibits extraglandular estrogen production in postmcnopausal women with breast carcinoma. Journal of Clinical Endocrinology and Metabolism 47: 1257–1265, 1978

    Google Scholar 

  • Santcn RJ, Santner SJ, Tilson-Mallet N, Rosen HR, Samojlik E, et al. In vivoand in vitropharmacological studies of aminoglutethimide as an aromatase inhibitor. Cancer Research (Suppl.) 42: 3353S-3359S. 1982

    Google Scholar 

  • Santen RJ, Wells SA, Cohn N, Demers LM, Misbin RI. et al. Compensatory increase in TSH secretion without effect on prolactin secretion in patients treated with aminoglutethimide Journal of Clinical Endocrinology and Metabolism 45: 739–746. 1977

    PubMed  CAS  Google Scholar 

  • Santen RJ, Wells SA, Runic S, Gupta C, Kendall J, et al. Adrenal suppression with aminoglutethimidc I. Differential effects of aminoglutethimide on glucocorticoid metabolism as a rationale for use of hydrocortisonc. Journal of Clinical Endocrinology and Metabolism 45: 469–479, 1977

    PubMed  CAS  Google Scholar 

  • Santcn RJ, Worgul TJ, Lipton A, Harvey H, Boucher AE, et al. Aminoglutethimide as treatment of postmcnopausal women with advanced breast carcinoma. Annals of Internal Medicine 96: 94–101, 1982

    Google Scholar 

  • Santen RJ, Worgul TJ, Samojlik E, Interrante A, Boucher AE, et al. A randomized trial comparing surgical adrenalectomy with aminoglutethimide plus hydrocortisone in women with advanced breast cancer. New England Journal of Medicine 305: 545–551, 1981

    PubMed  CAS  Google Scholar 

  • Santner SJ. Feil PD, Santen RJ. In situestrogen production via the estrone sulfatase pathway in breast tumours: relative importance versusthe aromatase pathway. Journal of Clinical Endoerinology and Metabolism 59: 29–33, 1984

    CAS  Google Scholar 

  • Schanche J-S, Lønning PE, Ueland PM, Kvinnsland S. Determination of aminoglutethimide and N-acetylaminoglutethimide in human plasma by rcvcrscd-phase liquid chromatography. Therapeutic Drug Monitoring 6: 221–226. 1984

    PubMed  CAS  Google Scholar 

  • Schteingart DE, Cash R, Conn JW. Aminoglutethimide and metastatic adrenal cancer. Journal of the American Medical Association 198: 1007–1010, 1966

    PubMed  CAS  Google Scholar 

  • Schteingart DE. Conn JW. Effects of aminoglutcthimide upon adrenal function and cortisol metabolism in Cushing’s syndrome. Journal of Clinical Endocrinology 27: 1657–1666. 1967

    CAS  Google Scholar 

  • Schwcikcrt HU, Milcwich L, Wilson JD. Aromatization of androstenedione by isolated human hairs. Journal of Clinical Endocrinology and Metabolism 40: 413–417, 1975

    Google Scholar 

  • Schweikert HU, Milewich L, Wilson JD. Aromatization of androstencdione by cultured human fibroblasts. Journal of Clinical Endocrinology and Metabolism 43: 785–795, 1976

    PubMed  CAS  Google Scholar 

  • Shcppard H, Bcaslcy J, Wacker JL. The influence of NADPH or its generating system on corticosteroid biosynthesis by rat adrenal homogenatcs. Federation Proceedings 25: 551, 1966

    Google Scholar 

  • Simpson ER, Ackerman GE, Smith ME, Mendelson CR. Estrogen formation in stromal cells of adipose tissue of women: induction by glucocorticosteroids. Proceedings of the National Academy of Science 78: 5690–5694. 1981

    CAS  Google Scholar 

  • Smith IE. Harris AL. Morgan M, Ford HT, Gazet JC, et al. Tamoxifen versusaminoglutethimide in advanced breast carcinoma: a randomized crossover trial. British Medical Journal 283: 1432–1434, 1981

    PubMed  CAS  Google Scholar 

  • Smuk M, Schwers J. Aromatization of androstenedione by human adult liver in vitro.Journal of Clinical Endocrinology and Metabolism 45: 1001–1012, 1977

    Google Scholar 

  • Solomon H, Reich S. Gaut Z. Pucelinka R, Abrams W. Induetion of the metabolism of digitoxin in man by phenobarbital. Clinical Research 19: 356. 1971

    Google Scholar 

  • Southren AL. Gordon GG, Tochimoto S. Krikun E. Krieger D. et al. Effect of N-phcnylbarbital (Phetharbital) on the metabolism of testosterone and cortisol in man. Journal of Clinical Endocrinlogy 29: 251–256. 1969

    CAS  Google Scholar 

  • Starka L. Motlik K. Horky K. The effect of aminoglutethimidc on the metabolism of testosterone in rat liver invitro.Journal of Steroid Biochemistry 2: 157–160, 1971

    CAS  Google Scholar 

  • Starka L, Motlik K. Marek J. Failure of aminoglutethimide to produce changes in morphology and steroid biosynthesis of rat testicles. Endocrinologia Expcrimentalis 6: 165–170. 1972

    CAS  Google Scholar 

  • Stuart-Harris R, Bradbrook I, Morrison P, Smith IE, Rogers HJ. Observations on the pharmacokinetics of low-dose aminoglutethimide in patients with advanced breast cancer. British Journal of Cancer 51: 485–492, 1985

    PubMed  CAS  Google Scholar 

  • Stuart-Harris R, Dowsett M, Bozek T, McKinna JA, Gazet J-C, et al. Low dose aminoglutethimide in treatment of breast cancer. Lancet ii: 604–607, 1984

    Google Scholar 

  • Stuart-Harris R, Dowsett M, D’Souza A, Donaldson A, Harris AL, et al. Endocrine effects of low-dose aminoglutethimide as an aromatase inhibitor in the treatment of breast cancer. Clinical Endocrinology 22: 219–226, 1985

    PubMed  CAS  Google Scholar 

  • Studer H, Kohler H, Burgi H, Dorner E, Forster R, et al. Goiters with high radioactive uptake and other characteristics of iodine deficiency in rats chronically treated with aminoglutethimide. Endocrinology 87: 905–914, 1970

    PubMed  CAS  Google Scholar 

  • Thompson EA, Siiteri PK. The involvement of human placental microsomal cytochrome p-450 in aromatization. Journal of Biological Chemistry 249: 5373–5378, 1974

    PubMed  CAS  Google Scholar 

  • Thompson TA, Vermeulen JD, Wagner WE, LeSher AR. Aminoglutethimide bioavailability, pharmacokinetics, and binding to blood constituents. Journal of Pharmaceutical Sciences 70: 1040–1043, 1981

    PubMed  CAS  Google Scholar 

  • Tilson-Mallett N, Santner SJ, Feil PD, Santen RJ. Biological significance of aromatase activity in human breast tumors. Journal of Clinical Endocrinology and Metabolism 57: 1125–1128, 1983

    PubMed  CAS  Google Scholar 

  • Touitou Y, Bogdan A, Legrand JC, Desgrez P. Aminoglutethimide and glutethimide: effects on 18-hydroxy-corticosterone biosynthesis by human and sheep adrenals in vitro.Acta Endocrinologica 80: 517–526, 1975

    PubMed  CAS  Google Scholar 

  • Toverud EL, Boobis AR, Brodie MJ, Murray S, Bennett PN, et al. Differential induction of antipyrine metabolism by rifampicin. European Journal of Clinical Pharmacology 21: 155–160, 1981

    PubMed  CAS  Google Scholar 

  • Troner MB. Aminoglutethimide in the treatment of metastatic breast cancer. Cancer Research 42 (Suppl.): 3402S–3404S, 1982

    PubMed  CAS  Google Scholar 

  • van Deijk WA, Blijham GH, Mellink WAM, Meulenberg PMM. Influence of aminoglutethimide on plasma levels of medroxyprogesterone acetate: its correlation with serum cortisol. Cancer Treatment Reports 69: 85–90, 1985

    PubMed  Google Scholar 

  • Vermeulen A. The hormonal activity of the postmenopausal ovary. Journal of Clinical Endocrinology and Metabolism 42: 247–253, 1976

    PubMed  CAS  Google Scholar 

  • Vermeulen A, Deslypere JP, Paridaens R, Leclercq G, Roy F, et al. Aromatase, 17β-hydroxysteroid dehydrogenase and intratissular sex hormone concentrations in cancerous and normal glandular breast tissue in postmenopausal women. European Journal of Cancer and Clinical Oncology 22: 515–525, 1986

    CAS  Google Scholar 

  • Vermeulen A, Paridaens R, Heusen JC. Effects of aminoglutethimide on adrenal steroid secretion. Clinical Endocrinology 19: 673–682, 1983

    PubMed  CAS  Google Scholar 

  • Vesell ES, Page JG. Genetic control of the phenobarbital-induced shortening of plasma antipyrine half-lives in man. Journal of Clinical Investigation 48: 2202–2209, 1969

    PubMed  CAS  Google Scholar 

  • Vincent MD, Clink HM, Coombes RC, Smith IE, Kandier R, et al. Aminoglutethimide (with hydrocortisone) induced agranulocytosis in primary breast cancer. British Medical Journal 291: 105–106, 1985

    PubMed  CAS  Google Scholar 

  • Volk H, Deupree RH, Goldenberg IS, Wilde RC, Carabas RA, et al. A dose response evaluation of delta-1-testololactone in advanced breast cancer. Cancer 33: 9–13, 1974

    PubMed  CAS  Google Scholar 

  • Wander HE, Blossey HC, Nagel GA. Aminoglutethimide in the treatment of premenopausal patients with metastatic breast cancer. European Journal of Cancer and Clinical Oncology 22: 1371–1374, 1986

    CAS  Google Scholar 

  • Wenzel M, Stahl H-J. Verstarkte Hydroxylierung von Østrogenen beim Menschen nach Arzneimittelgabe Nachweis durch HTO-Analysis des Kørperwassers. Hoppe-Seyler’s Zeitschrift für Physiologische Chemie 351: 761–762, 1970

    PubMed  CAS  Google Scholar 

  • Wilkinson GR, Shand DG. Commentary: a physiological approach to hepatic drug clearance. Clinical Pharmacology and Therapeutics 18: 377–390, 1975

    PubMed  CAS  Google Scholar 

  • Zilly W, Breimer DD, Richter E. Pharmacokinetic interactions with rifampicin. Clinical Pharmacokinetics 2: 61–70, 1977

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lønning, P.E., Kvinnsland, S. Mechanisms of Action of Aminoglutethimide as Endocrine Therapy of Breast Cancer. Drugs 35, 685–710 (1988). https://doi.org/10.2165/00003495-198835060-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-198835060-00005

Keywords

Navigation