Skip to main content
Log in

History and Rationale of Oral Rehydration and Recent Developments in Formulating an Optimal Solution

  • Published:
Drugs Aims and scope Submit manuscript

Summary

Oral rehydration therapy with glucose-electrolyte solutions has been one of the major therapeutic advances of the century. This alarmingly simple intervention developed from a basic scientific observation in the laboratory, when it was shown that sodium and glucose transport in the small intestine are coupled and thus the presence of glucose in an electrolyte solution promotes absorption of both sodium ions and water. Even more important, sodium/glucose co-transport continues despite the secretory diarrhoea of cholera and enterotoxigenic E. coli and after intestinal damage due to rotavirus. Despite widespread use of the oral rehydration solutions (ORS) recommended by the World Health Organization (WHO), controversy continues about the optimal composition of these solutions. Discussion centres around the sodium and glucose concentrations, the osmolality and whether base (bicarbonate) or base-precursor (citrate) is necessary. Already there is a clear divide between the developing world, where the WHO solution (Na 90, glucose 111 and bicarbonate 30 mmol/L) is widely used, and the industrialised world, where solutions with lower sodium and until recently higher glucose concentrations have been favoured. Recently, attempts have been made to optimise ORS using animal and human model systems before submitting new candidate ORS to clinical trial. Results to date suggest that hypotonic ORS containing 50–60 mmol/L sodium and 90–100 mmol/L glucose produce maximal water absorption. The presence of base or base-precursor appears to offer little with regard to the promotion of sodium and water absorption and its role in combating acidosis remains controversial. Complex substrates such as rice powder and glucose polymers may eventually replace glucose in ORS, since their addition reduces ORS osmolality still further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhargava SK, Sachdev HPS, Das Gupta B, Daral TS, Singh HP, Mohan M. Oral rehydration of neonates and young infants with dehydrating diarrhea: comparison of low and standard sodium content in oral rehydration solutions. Journal of Pediatric Gastroenterology and Nutrition 3: 500–505, 1984

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee A, Mahalanabis D, Jalan KN, Maitra TK, Agarwal SK, et al. Oral rehydration in infantile diarrhoea. Controlled trial of low sodium glucose-electrolyte solution. Archives of Disease in Childhood 53: 284–289, 1978

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee HN. Control of vomiting in cholera and oral replacement of fluid. Lancet 2: 1063, 1953

    Article  Google Scholar 

  • Colle E, Ayoub E, Raile R. Hypertonic dehydration (hypernatremia): the role of feedings high in solutes. Pediatrics 22: 5–12, 1958

    PubMed  CAS  Google Scholar 

  • Crane RK. Hypothesis for mechanism of intestinal active transport of sugars. Federation Proceedings 21: 891–895, 1962

    PubMed  CAS  Google Scholar 

  • Csaky TZ, Thale M. Effect of ionic environment on intestinal sugar transport. Journal of Physiology 151: 59–65, 1960

    PubMed  CAS  Google Scholar 

  • Curran PF. Na, Cl and water transport by rat ileum in vitro. Journal of General Physiology 43: 1137–1148, 1960

    Article  PubMed  CAS  Google Scholar 

  • Cutting WAM, Ellerbrock TV. Homemade oral solutions for diarrhoea. Lancet 1: 998, 1981

    Article  PubMed  CAS  Google Scholar 

  • Darrow DC. The retention of electrolyte during recovery from severe dehydration due to diarrhea. Journal of Pediatrics 28: 515, 1946

    Article  PubMed  CAS  Google Scholar 

  • Darrow DC, Pratt EL, Flett J, Gamble AH, Wiese HF. Disturbances of water and electrolytes in infantile diarrhea. Pediatrics 3: 129–156, 1949

    PubMed  CAS  Google Scholar 

  • Davidson GP, Gall DG, Petri M, Butler DG, Hamilton JR. Human rotavirus enteritis induced in conventional piglets. Intestinal structure and transport. Journal of Clinical Investigation 60: 1402–1409, 1977

    Article  PubMed  CAS  Google Scholar 

  • Editorial. Water with sugar and salt. Lancet 2: 300, 1978

  • Elliott EJ, Watson AJ, Walker-Smith JA, Farthing MJG. Search for the ideal glucose-electrolyte oral rehydration solution (ORS) studies: in an animal model. Gastroenterology 90: 1405, 1986

    Google Scholar 

  • Elliott EJ, Walker-Smith JA, Farthing MJG. The role of bicarbonate and base-precursors in the treatment of acute gastroenteritis. Archives of Disease in Childhood 62: 91–95, 1987a

    Article  PubMed  CAS  Google Scholar 

  • Elliott EJ, Armitstead JCM, Walker-Smith JA, Farthing MJG. Experimental and clinical evidence against the need for base in oral rehydration solutions (ORS). Pediatric Research 22: 109, 1987b

    Article  Google Scholar 

  • Elliott EJ, Watson AJM, Walker-Smith JA, Farthing MJG. Effect of bicarbonate on efficacy of oral rehydration therapy: studies in an experimental model of secretory diarrhoea. Gut in press

  • Elliott EJ, Armitstead JCM, Farthing MJG, Walker-Smith JA. Oral rehydration therapy without bicarbonate. A double-blind controlled trial in children with acute gastroenteritis in the United Kingdom. Alimentary Pharmacology and Therapeutics 2: 253–262, 1988

    Article  PubMed  CAS  Google Scholar 

  • Farthing MJG, Rolston DDK, Borodo MM, Kelly MJ. Efficacy of oral rehydration solutions (ORS) in an animal model of secretory diarrhoea. Gastroenterology 88(2): 1379, 1985

    Google Scholar 

  • Finberg L. The role of oral electrolyte-glucose solutions in hydration for children: international and domestic aspects. Journal of Pediatrics 96: 51–54, 1980

    Article  PubMed  CAS  Google Scholar 

  • Fisher RB. The absorption of water and of some small solute molecules from the isolated small intestine of the rat. Journal of Physiology (London) 130: 655–664, 1955

    CAS  Google Scholar 

  • Fordtran JS, Rector FC, Carter NW. The mechanisms of sodium absorption in the human small intestine. Journal of Clinical Investigation 47: 884–900, 1968

    Article  PubMed  CAS  Google Scholar 

  • Greenough WB. Super ORT. Journal of Diarrhoeal Disease Research 1: 74–75, 1983

    CAS  Google Scholar 

  • Harrison HE. The treatment of diarrhoea in infancy. Pediatric Clinics of North America 1: 335–348, 1954

    Google Scholar 

  • Hirschhorn N. The treatment of acute diarrhea in children. An historical and physiological perspective. American Journal of Clinical Nutrition 33: 637–663, 1980

    PubMed  CAS  Google Scholar 

  • Hirschhorn N, Kinzie JL, Sachar DB, Northrup RS, Taylor JO, et al. Decrease in net stool output in cholera during intestinal perfusion with glucose-containing solutions. New England Journal of Medicine 279: 176–181, 1968

    Article  PubMed  CAS  Google Scholar 

  • Hunt JB, Elliott EJ, Fairclough PD, Farthing MJG. Effects of [Na] on water and Na absorption from hypotonie oral rehydration solutions (ORS). Clinical Science 74 (Suppl. 18): 2P, 1987a

    Google Scholar 

  • Hunt JB, Watson AJM, Elliott EJ, Walker-Smith JA, Farthing MJG. Oral rehydration solutions (ORS): a comparison of efficacy in rat and human models. Gastroenterology 92: 1443, 1987b

    Google Scholar 

  • Islam MR, Samadi AR, Ahmed SM, Bardhan PK, AH A. Oral rehydration therapy: efficacy of sodium citrate equals to sodium bicarbonate for correction of acidosis in diarrhoea. Gut 25: 900–904, 1984

    Article  PubMed  CAS  Google Scholar 

  • Isolauri E. Evaluation of an oral rehydration solution with Na+ 60mmol/L in infants hospitalized for acute diarrhoea or treated as outpatients. Acta Paediatrica Scandinavica 74: 643–649, 1985

    Article  PubMed  CAS  Google Scholar 

  • Kappy MS, Morrow G. Pediatrics for the clinician. A diagnostic approach to metabolic acidosis in children. Pediatrics 65: 351–356, 1980

    PubMed  CAS  Google Scholar 

  • Levine MM, Clements ML, Black RE, Hughes TP, Blum D, et al. A practical, reliable method for preparing simple sugar/salt oral rehydration solution. Journal of Tropical Medicine and Hygiene 84: 73–76, 1981

    PubMed  CAS  Google Scholar 

  • Lifshitz F, Wapnir RA. Oral hydration solutions: experimental optimization of water and sodium absorption. Journal of Pediatrics 106: 383–389, 1985

    Article  PubMed  CAS  Google Scholar 

  • Mehta MN, Subramanian S. Comparison of rice water, rice electrolyte solution and glucose-electrolyte solution in the management of infantile diarrhoea. Lancet 1: 843–845, 1986

    Article  PubMed  CAS  Google Scholar 

  • Molla MA, Rahman M, Sarker SA, Sach DA, Molla A. Stool electrolyte content and purging rates in diarrhoea caused by rotavirus, enterotoxigenic E. coli and V. cholera in children. Journal of Pediatrics 98: 835–838, 1981

    Article  PubMed  CAS  Google Scholar 

  • Molla AM, Sarker SA, Hossain M, Molla A, Greenough WB. Ricepowder electrolyte solution as oral therapy in diarrhoea due to Vibrio cholerae and Escherichia coli. Lancet 1: 1317–1319, 1982

    Article  PubMed  CAS  Google Scholar 

  • Nalin DR, Cash RA, Islam R, Molla M, Phillips RA. Oral maintenance therapy for cholera in adults. Lancet 2: 370–373, 1968

    Article  PubMed  CAS  Google Scholar 

  • Nalin DR, Cash RA, Rahman M, Yunus MD. Effect of glycine and glucose on sodium and water absorption in patients with cholera. Gut 11: 768–772, 1970

    Article  PubMed  CAS  Google Scholar 

  • Nalin DR, Levine MM, Mata LJ, De Cespedes C, Vargas W, et al. Oral rehydration and maintenance of children with rotavirus and bacterial diarrhoeas. Bulletin of the World Health Organization 57: 453–459, 1979

    PubMed  CAS  Google Scholar 

  • Nalin DR, Harland E, Ramlal A, Swaby D, McDonald J, et al. Comparison of low and high sodium and potassium content in oral rehydration solutions. Journal of Pediatrics 97: 848–853, 1980

    Article  PubMed  CAS  Google Scholar 

  • Patra FC, Mahalanabis D, Jalan KN, Sen A, Banerjee P. Is oral rice electrolyte solution superior to glucose electrolyte solution in infantile diarrhoea? Archives of Disease in Childhood 57: 910–912, 1982a

    Article  PubMed  CAS  Google Scholar 

  • Patra FC, Mahalanabis D, Jalan KN, Sen A, Banerjee P. Can acetate replace bicarbonate in oral rehydration solution for infantile diarrhoea? Archives of Disease in Childhood 57: 625–637, 1982b

    Article  PubMed  CAS  Google Scholar 

  • Patra FC, Mahalanabis D, Jalan KN. Stimulation of sodium and water absorption by sucrose in the rat small intestine. Acta Paediatrica Scandinavica 71: 103–107, 1982c

    Article  PubMed  CAS  Google Scholar 

  • Patra FC, Mahalanabis D, Jalan KN, Sen A, Banerjee P. In search of a super solution: controlled trial of glycine-glucose oral rehydration solution in infantile diarrhoea. Acta Paediatrica Scandinavica 73: 18–21, 1984

    Article  PubMed  CAS  Google Scholar 

  • Phillips RA. Water and electrolyte losses in cholera. Federation Proceedings 23: 705–712, 1964

    PubMed  CAS  Google Scholar 

  • Pierce NF, Banwell JG, Mitra RC, Caranasos GJ, Keimowitz RJ, et al. Effect of intragastric glucose-electrolyte infusion upon water and electrolyte balance in Asiatic cholera. Gastroenterology 55: 333–343, 1968

    PubMed  CAS  Google Scholar 

  • Pradera FS, Fernandez E, Colderin O. Coconut water: a clinical and experimental study. American Journal of Diseases in Childhood 64: 977, 1942

    CAS  Google Scholar 

  • Rabbani GH, Gilman RH, Spira WM. Intestinal fluid loss in shigella dysentery: role of oral rehydration therapy. Lancet 1: 654, 1983

    Article  PubMed  CAS  Google Scholar 

  • Raghu MB, Deshpande AP, Chintu C. Oral rehydration for diarrhoeal diseases in children. Transactions of the Royal Society of Tropical Medicine and Hygiene 75: 552–555, 1981

    Article  PubMed  CAS  Google Scholar 

  • Riklis E, Quastel JH. Effects of cations on sugar absorption by isolated surviving guinea pig intestine. Canadian Journal of Biochemistry and Physiology 36: 347–363, 1958

    Article  PubMed  CAS  Google Scholar 

  • Rolston DDK, Kelly MJ, Borodo MM, Farthing MJG, Clark ML, Dawson AM. Acetate and bicarbonate enhance cholera toxin induced secretion in the rat proximal small intestine. Gut 25: 1163, 1984

    Google Scholar 

  • Rolston DDK, Moriarty KJ, Farthing MJG, Kelly MJ, Clark ML, Dawson AM. Acetate and citrate stimulate water and sodium absorption in the human jejunum. Digestion 34: 101–104, 1986

    Article  PubMed  Google Scholar 

  • Rolston DDK, Borodo MM, Kelly MJ, Dawson AM, Farthing MJG. Efficacy of oral rehydration solutions in a rat model of secretory diarrhoea. Journal of Pediatric Gastroenterology and Nutrition 6: 624–630, 1987

    Article  PubMed  CAS  Google Scholar 

  • Sack DA, Chowdhury AMAK, Eusof A, Ali MA, Merson MH, et al. Oral rehydration of rotavirus diarrhoea: a double blind comparison of sucrose with glucose electrolyte solution. Lancet 2: 280–283, 1978

    Article  PubMed  CAS  Google Scholar 

  • Sandhu BK, Jones BJM, Brook CGD, Silk DBA. Oral rehydration in acute infantile diarrhoea with a glucose-polymer electrolyte solution. Archives of Disease in Childhood 57: 152–154, 1982

    Article  PubMed  CAS  Google Scholar 

  • Santosham M, Daum RS, Dillman L, Rodriguez JL, Luque S, et al. A controlled study of well-nourished children hospitalized in the United States and Panama. New England Journal of Medicine 306: 1070–1076, 1982

    Article  PubMed  CAS  Google Scholar 

  • Saunders DR, Sillery JK. Absorption of carbohydrate-electrolyte solutions in rat duodenojejunum. Implications for the composition of oral electrolyte solutions in man. Digestive Diseases and Science 30: 154–160, 1985

    Article  CAS  Google Scholar 

  • Schedl HP, Clifton JA. Solute and water absorption by human small intestine. Nature 199: 1264–1267, 1963

    Article  PubMed  CAS  Google Scholar 

  • Schmitt MG, Soergel KH, Wood CM. Absorption of short chain fatty acids from the human jejunum. Gastroenterology 70: 211–215, 1976

    PubMed  CAS  Google Scholar 

  • Schultz SG, Zalusky R. Ion transport in isolated rat ileum II. The interaction between active sodium and active sugar transport. Journal of General Physiology 47: 1043–1059, 1964

    Article  PubMed  CAS  Google Scholar 

  • Sladen GE, Dawson AM. Interrelationships between the absorptions of glucose, sodium and water by the normal human jejunum. Clinical Science 36: 119–132, 1969

    PubMed  CAS  Google Scholar 

  • Turnberg LA, Fordtran JS, Carter NW, Rector FC. Mechanism of bicarbonate absorption and its relationship to sodium transport in the human jejunum. Journal of Clinical Investigation 49: 548–556, 1970

    Article  PubMed  CAS  Google Scholar 

  • Vesikari T, Isolauri E. Glycine supplemented oral rehydration solutions for diarrhoea. Archives of Disease in Childhood 61: 372–376, 1986

    Article  PubMed  CAS  Google Scholar 

  • Wapnir RA, Lifshitz F. Osmolality and solute concentration: their relationship with oral hydration solution effectiveness: an experimental assessment. Pediatric Research 19: 894–898, 1985

    Article  PubMed  CAS  Google Scholar 

  • Wong HB. Rice water in the treatment of infantile gastroenteritis in Singapore. Journal of the Singapore Paediatric Society 23: 3–4, 1981

    Google Scholar 

  • World Health Organization. A manual for the treatment of acute diarrhoea. WHO/CDD/SER/80.2 Rev 1/WHO, Geneva, Switzerland, 1984

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farthing, M.J.G. History and Rationale of Oral Rehydration and Recent Developments in Formulating an Optimal Solution. Drugs 36 (Suppl 4), 80–90 (1988). https://doi.org/10.2165/00003495-198800364-00011

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-198800364-00011

Keywords

Navigation