Skip to main content
Log in

Interrelationship of Hypertension, Plasma Lipids and Atherosclerosis

  • Published:
Drugs Aims and scope Submit manuscript

Summary

The relationship between hypertension and atherosclerosis has been illustrated by epidemiological, clinical and experimental observations. Typical atherosclerotic lesions develop in arterial wall when hypercholesterolaemia is present. Hypertension aggravates these lesions by causing vascular structural changes.

In clinical studies, however, the correction of high blood pressure does not decrease the incidence of coronary heart disease. Several hypotheses have been formulated to account for this observation: one is that reversibility of the structural vascular changes induced by hypertension is not complete when the blood pressure is lowered; another is that antihypertensive drugs have a deleterious effect on the vascular wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames R. The effects of antihypertensive drugs on serum lipids and lipoproteins. I. Diuretics; II. Non-diuretic drugs. Drugs 32: 260–278; 335–357, 1986

    Article  PubMed  CAS  Google Scholar 

  • Armstrong M, Warner E, Connor W. Regression of coronary atheromatosis in rhesus monkeys. Circulation Research 27: 59–67, 1970

    Article  PubMed  CAS  Google Scholar 

  • Australian National Blood Pressure Study Management Committee. The Australian therapeutic trial in mild hypertension. Lancet 1: 1261–1267, 1980

    Google Scholar 

  • Barndt R, Blankenhorn D, Crawford D, Brooks S. Regression and progression of early femoral atherosclerosis in treated hyperlipoproteinemic patients. Annals of Internal Medicine 86: 139–146, 1977

    PubMed  Google Scholar 

  • Bell E, Clawson B. Primary essential hypertension. A study of four hundred and twenty cases. Archives of Pathology 5: 939–947, 1928

    Google Scholar 

  • Bevilacqua M, Pober JS, Cotran R, Gimbrone M. Interleukin-1 acts upon vascular endothelium to stimulate procoagulant activity and leukocyte adhesion (abstract). Journal of Cellular Biochemistry Suppl. 9a: 148, 1985

    Google Scholar 

  • Bjorkerud S, Eriksson L. Strain, injury, adaptation and repair in hypertensive macroangiopathy. In Rorive G, Van Cauwenberge H (Eds) The arterial hypertensive disease, pp. 39–49, Masson, Paris, 1975

    Google Scholar 

  • Block L. Atherogenesis and hypertension. Nephron 47(Suppl. 1): 68–70, 1987

    Article  PubMed  Google Scholar 

  • Bronte-Stewart B, Heptinstall R. The relationship between experimental hypertension and cholesterol induced atheroma in rabbits. Journal of Pathology and Bacteriology 48: 407–417, 1954

    Article  Google Scholar 

  • Brown M, Goldstein J. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annual Review of Biochemistry 52: 223–261, 1983

    Article  PubMed  CAS  Google Scholar 

  • Carlier P, Rorive G. Evolution of aortic hyperplasia after reversal of renovascular hypertension in the rat. Archives Internationales de Physiologie et de Biochimie 96: 205–213, 1983

    Google Scholar 

  • Carlier P, Rorive G, Barbason H. Kinetics of proliferation of rat aortic smooth muscle cells in Goldblatt one-kidney, one-clip hypertension. Clinical Science 65: 351–354, 1983a

    PubMed  CAS  Google Scholar 

  • Carlier P, Barbason H, Rorive G. Outcome and role of the early proliferation wave in the aortic media of renovascular hypertensive rat: possible implication in atherogenesis? Journal of Hypertension 1(Suppl. 2): 171–173, 1983b

    Google Scholar 

  • Carlier P, Radelet M, Montrieux C, Greimers R, Rorive G. Réponse proliferative de la paroi artérielle dans l’H.T.A.: hyperplasie versus Polyploïdie. Archives des Maladies du Coeur et des Vaisseaux 11: 1710–1715, 1985

    Google Scholar 

  • Carlier P, Jacobstein M, Portman M, Fouad F, Tarazi R, et al. Alterations of energy metabolism in the spontaneously hypertensive rat. A 31P nuclear magnetic resonance study. Journal of Hypertension 4(Suppl. 6): S95–S98, 1986

    PubMed  CAS  Google Scholar 

  • Chait A, Ross R, Albers JJ, Bierman EL. Platelet-derived growth factor stimulates activity of low density lipoprotein receptors. Proceedings of the National Academy of Sciences of the USA 77: 4084–4088, 1980

    Article  PubMed  CAS  Google Scholar 

  • Chazov E, Tertov V, Orekhof A, Lyakishev A, Perova N, et al. Atherogenicity of blood serum from patients with coronary heart disease. Lancet 2: 595–598, 1986

    Article  PubMed  CAS  Google Scholar 

  • Chobanian A. The influence of hypertension and other hemodynamic factors in atherogenesis. Progress in Cardiovascular Diseases 26: 177–196, 1983

    Article  PubMed  CAS  Google Scholar 

  • Chobanian A, Becher P, Chan C. Effects of propranolol on atherogenesis in the cholesterol-fed rabbit. Circulation Research 56: 755–762, 1985

    Article  PubMed  CAS  Google Scholar 

  • De Duve C. The participation of lysozomes in the transformation of smooth muscle cells to foamy cells in the aorta of cholesterol fed rabbits. Acta Cardiologica 20(Suppl. 9): 25, 1974

    Google Scholar 

  • Duncan L, Cornfield J, Buck K. The effect of blood pressure on the passage of labelled plasma albumin into canine aortic wall. Journal of Clinical Investigation 41: 1537–1545, 1962

    Article  PubMed  CAS  Google Scholar 

  • Etingin O, Hajjar D. Nifedipine increases cholesteryl ester hydrolytic activity in lipid-laden rabbit arterial smooth muscle cells. A possible mechanism for its antiatherogenic effect. Journal of Clinical Investigation 75: 1554–1558, 1985

    Article  PubMed  CAS  Google Scholar 

  • Faggiotto A, Ross R. Studies of hypercholesterolemia in the non human primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis 4: 341–356, 1984

    Article  PubMed  CAS  Google Scholar 

  • Fischer-Dzoga K, Wissler R. Stimulation of proliferation in stationary primary cultures of monkey aortic smooth muscle cells. Part 2. Effect of varying concentrations of hyperlipidemic serum and low density lipoproteins of varying dietary fat origins. Atherosclerosis 24: 515–525, 1976

    Article  PubMed  CAS  Google Scholar 

  • Foidart JM, Rorive G, Nusgens B, Lapiere C. The relationship between blood pressure and aortic collagen metabolism in renal hypertensive rats. Clinical Science and Molecular Medicine 55: 27s–29s, 1978

    CAS  Google Scholar 

  • Framingham study. Systolic versus diastolic blood pressure and risk of coronary heart disease. American Journal of Cardiology 27: 335–346, 1971

    Article  Google Scholar 

  • Friedman R, Stemerman M, Wenz B, Moore S, Gauldie J, et al. The effect of thrombocytopenia on experimental arteriosclerotic lesion formation in rabbits. Journal of Clinical Investigation 60: 1191–1201, 1977

    Article  PubMed  CAS  Google Scholar 

  • Gajdusek C, Dicorleto P, Ross R, Schwartz S. An endothelial cell-derived growth factor. Journal of Cell Biology 85: 467–472, 1980

    Article  PubMed  CAS  Google Scholar 

  • Haudenschild C, Prescott M, Chobanian A. Effects of hypertension and its reversal on aortic intimal lesions of the rat. Hypertension 2: 33–44, 1980

    Article  PubMed  CAS  Google Scholar 

  • Henry P, Bentley K. Suppression of atherogenesis in cholesterol-fed rabbit treated with nifedipine. Journal of Clinical Investigation 68: 1366–1369, 1981

    Article  PubMed  CAS  Google Scholar 

  • Hollander W, Madoff I, Paddock J, Kirkpatrick B. Aggravation of atherosclerosis by hypertension in a subhuman primate model with coarctation of the aorta. Circulation Research 38(Suppl. II): 63–72, 1976

    Article  PubMed  CAS  Google Scholar 

  • Hollander W, Madoff JM, Paddock J, Kirkpatrick B. Biochemical pathology of atherosclerosis and relationship to hypertension. In Genest J, et al. (Eds) Hypertension: physiopathology and treatment, pp. 945–960, MacGraw Hill, New York, 1977

    Google Scholar 

  • Kannel W. Importance of hypertension as a major risk factor in cardiovascular disease. In Genest J, et al. (Eds) Hypertension: physiopathology and treatment, pp. 888–910, MacGraw Hill, New York, 1977

    Google Scholar 

  • Kannel W, Sorlie P. Hypertension in Framingham. In Paul O (Ed.) Epidemiology and control of hypertension, pp. 553–592, Stratton, New York, 1975

    Google Scholar 

  • Kober G, Nickelsen T, Jakobs B, Kaltenbach M. The influence of long-term therapy with verapamil on the development of coronary artery stenosis. In Rosenthal J (Ed.) Calcium antagonists and hypertension, current status, pp. 97–105, Excerpta Medica, Amsterdam, 1986

    Google Scholar 

  • Koletsky S, Roland C, Rivera-Velez J. Rapid acceleration of atherosclerosis in hypertensive rats on high fat diet. Experimental and Molecular Pathology 9: 322–338, 1968

    Article  PubMed  CAS  Google Scholar 

  • Lipid Research Clinics Program. The lipid research clinics coronary primary prevention trial results. II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. Journal of the American Medical Association 251: 365–374, 1984

    Article  Google Scholar 

  • Martin B, Gimbrone M, Unanue E, Cotran R. Stimulation of nonlymphoid mesenchymal cell proliferation by a macrophage-derived growth factor. Journal of Immunology 126: 1510–1515, 1981

    CAS  Google Scholar 

  • Medical Research Council Working Party. MRC trial of treatment of mild hypertension: principal results. British Medical Journal 291: 97–104, 1985

    Article  Google Scholar 

  • Mitchinson M, Path F, Ball R. Macrophages and atherogenesis: occasional survey. Lancet 2: 146–149, 1987

    Article  PubMed  CAS  Google Scholar 

  • Moore S. Thromboatherosclerosis in normolipemic rabbits: a result of continued endothelial damage. Laboratory Investigations 29: 478–487, 1973

    CAS  Google Scholar 

  • Moore S. Thrombosis and atherogenesis — the chicken and the egg. Contribution of platelets in atherogenesis. In Lee KT (Ed.) Atherosclerosis, pp. 146–153, Annals of the New York Academy of Science, 1985

    Google Scholar 

  • Multiple Risk Factor Intervention Trial. Risk factor changes and mortality results. Journal of the American Medical Association 248: 1465–1477, 1982

    Article  Google Scholar 

  • Newman W, Freedman D, Voors A, Gard P, Srinivasan J, et al. Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis: the Bogalusa heart study. New England Journal of Medicine 314: 138–144, 1986

    Article  PubMed  Google Scholar 

  • Ooshima A, Fuller G, Cardinale C, Spector S, Udenfriend S. Increased collagen synthesis in blood vessels of hypertensive rats and its reversal by antihypertensive agents. Proceedings of the National Academy of Sciences of the USA 71: 3019–3023, 1974

    Article  PubMed  CAS  Google Scholar 

  • Overturf M, Sybers H, Druilhet R, Kirkendall W. Renin as a risk factor for atherogenesis. Part 3. Effects of hypercholesterolemia, hyporeninemia and one-kidney one clip hypertension in the rabbit. Atherosclerosis 42: 141–160, 1982

    Article  PubMed  CAS  Google Scholar 

  • Peters T, Tuller M, De Duve C. Lysosomes of the arterial wall. I. Isolation and subcellular fractionation of cells from normal rabbit aorta. Journal of Experimental Medicine 136: 1117–1139, 1972

    Article  PubMed  CAS  Google Scholar 

  • Rorive G, Bovy P. Ionic composition of the arterial wall and experimental hypertension. In Rorive G, Van Cauwenberg H (Eds) The arterial hypertensive disease, pp. 109–125, Masson, Paris, 1975

    Google Scholar 

  • Ross R. The pathogenesis of atherosclerosis: an update. New England Journal of Medicine 314: 488–500, 1986

    Article  PubMed  CAS  Google Scholar 

  • Ross R, Glomset J. Atherosclerosis and the arterial smooth muscle cell. Science 180: 1332–1339, 1973

    Article  PubMed  CAS  Google Scholar 

  • Ross R, Glomset J. The pathogenesis of atherosclerosis. New England Journal of Medicine 295: 369–377, 1976

    Article  PubMed  CAS  Google Scholar 

  • Ruskoaho H, Savolainen E. Effects of long term verapamil treatment on blood pressure, cardiac hypertrophy and collagen metabolism in spontaneously hypertensive rats. Cardiovascular Research 19: 355–362, 1985

    Article  PubMed  CAS  Google Scholar 

  • Schwartz S, Benditt E. Aortic endothelial cell replication. I. Effects of age and hypertension in the rat. Circulation Research 41: 248–255, 1977

    Article  PubMed  CAS  Google Scholar 

  • Shepherd J, Packard C. Lipoprotein receptors and atherosclerosis. Clinical Science 70: 1–6, 1986

    PubMed  CAS  Google Scholar 

  • Society of Actuaries. Build and blood pressure study. Vol. 1, p. 16 Society of Actuaries, Chicago, 1959

    Google Scholar 

  • Spence J. Hemodynamic effects of antihypertensive drugs. Possible implications for the prevention of atherosclerosis. Hypertension 6(Suppl. 3): 163–168, 1984

    CAS  Google Scholar 

  • Spence J, Perkins D, Kline R, Adams M, Haust M. Hemodynamic modification of aortic atherosclerosis. Effect of propranolol vs hydralazine in hypertensive hyperlipidemic rabbits. Atherosclerosis 50: 325–333, 1984

    Article  PubMed  CAS  Google Scholar 

  • Spiro D, Lattes R, Wiener J. The cellular pathology of experimental hypertension. Hyperplastic arteriosclerosis. American Journal of Pathology 47: 19–49, 1965

    PubMed  CAS  Google Scholar 

  • Srinavasan S, Dolan P, Radhakrishnamurthy B, Berenson G. Lipoprotein acid mucopolysaccharide complexes of human atherosclerotic lesions. Biochimica et Biophysica Acta 388: 58–70, 1975

    Article  Google Scholar 

  • Stein O, Leitersdorf E, Stein Y. Verapamil enhances receptor-mediated endocytosis of low density lipoproteins by aortic cells in culture. Arteriosclerosis 5: 35–44, 1985

    Article  PubMed  CAS  Google Scholar 

  • Strandgaard S, Haunso S. Why does antihypertensive treatment prevent stroke but not myocardial infarction? Lancet 2: 658–661, 1987

    Article  PubMed  CAS  Google Scholar 

  • Strauer B, Mahmoud M. Coronary hemodynamics in hypertensive heart disease; basic concepts and clinical consequences. Journal of Cardiovascular Pharmacology 7: S62–S69, 1985

    Article  PubMed  Google Scholar 

  • Tammi M, Ronnemaa T, Vihersaari T, Lehtonen A, Viikari J. High density lipoproteinemia due to vigorous physical work inhibits the incorporation of 3H thymidine and the synthesis of glycosaminoglycans by human aortic smooth muscle cells in culture. Atherosclerosis 32: 23–32, 1979

    Article  PubMed  CAS  Google Scholar 

  • Tomita T, Shirasaki Y, Yamada K, Endo T, Hayashi E. Age and blood pressure related changes in cholesterol esterase activity and cholesterol content in aorta of stroke prone spontaneously hypertensive rats, spontaneously hypertensive rats and normotensive Wistar Kyoto rats. Paroi Artérielle 6: 19–25, 1980

    PubMed  CAS  Google Scholar 

  • Weinstein D, Heider J. Antiatherogenic properties of calcium antagonists. American Journal of Cardiology 59: 163B–172B, 1987

    Article  PubMed  CAS  Google Scholar 

  • Wissler R, Vesselinovitch D. Atherosclerosis: relationship to coronary blood flow. American Journal of Cardiology 52: 2A–7A, 1983

    Article  PubMed  CAS  Google Scholar 

  • Wolfbauer G, Glick J, Minor L, Rothblat G. Development of the smooth muscle foam cell: uptake of macrophage lipid inclusions. Proceedings of the National Academy of Sciences of the USA 83: 7760–7764, 1986

    Article  PubMed  CAS  Google Scholar 

  • Wolinsky H. Brief review: mesenchymal response of the blood vessel wall: a potential avenue for understanding and treating atherosclerosis. Circulation Research 32: 543–549, 1973

    Article  PubMed  CAS  Google Scholar 

  • Wolinsky H, Capron L, Goldfisher S, Capron F, Coltoff-Schiller B, et al. Hydrolase activities in the rat aorta. Effects of hypertension alone and in combination with diabetes mellitus. Circulation Research 42: 831–839, 1978

    Article  PubMed  CAS  Google Scholar 

  • Yamori Y, Hamashima Y, Horie R, Handa H, Sato M. Pathogenesis of acute arterial fat deposition in spontaneously hypertensive rats. Japanese Circulation Journal 39: 601–609, 1975

    Article  PubMed  CAS  Google Scholar 

  • Yamori Y, Nara Y, Tagami M, Mano M, Kihara M, et al. Common cellular disposition to hypertension and atherosclerosis. Journal of Hypertension 2(Suppl. 3): 213–215, 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krzesinski, JM., Carlier, P.G. & Rorive, G.L. Interrelationship of Hypertension, Plasma Lipids and Atherosclerosis. Drugs 36 (Suppl 2), 18–26 (1988). https://doi.org/10.2165/00003495-198800362-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-198800362-00005

Keywords

Navigation