Skip to main content
Log in

Factors Involved in the Pathogenesis of Hypertensive Cardiovascular Hypertrophy

A Review

  • Section 1: Cardiovascular Hypertrophy
  • Published:
Drugs Aims and scope Submit manuscript

Summary

All tissues can rapidly adapt their structural design whenever prolonged changes of load/activity occur within the limits characteristic of each tissue. This structural adaptation, however, is modified by various genetic and trophic influences. When antihypertensive therapy is considered in the hypertensive patient, such changes are usually well established and the cardiovascular system is structurally adapted to maintain a higher pressure than normal.

Increased blood pressure and afterload cannot solely explain the development of cardiac hypertrophy. Permissive actions from the sympathetic nervous system and the circulating angiotensin II are likely, but conflicting results still exist. There is evidence for a functional renin-angiotensin system in the heart, which may be involved in the genesis of left ventricular hypertrophy. Also, a soluble factor in the hypertrophied myocardium that stimulates protein synthesis may play a key role in modulation of myocardial structure during development or regression of myocardial hypertrophy in hypertension.

Hypertrophy of both the large and smaller arterial vessels has been shown to follow the same general pattern of development and regression as in the heart. The vascular hypertrophy (predominantly of the media in the arterioles) can be considered as the ultimate structural factor behind the progression of hypertension independent of the initiating factor. A vicious circle with the increased resistance as the key factor can be identified. There are at least 3 possible initiating factors: a small rise in arterial pressure, an abnormal or reinforced response to pressure, or trophic/mitogenic stimuli acting directly on the vascular smooth muscle cell.

The ultimate goal in the treatment of high blood pressure is to reduce hypertensionrelated morbidity and mortality. Normalisation of structural cardiovascular changes is also important and easier to evaluate in the individual. Understanding of the pathogenesis of structural adaptation may help in the selection of the best treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abboud FM. The sympathetic system in hypertension. State-of-the-art review. Hypertension 4 (Suppl. 2): II208–II225, 1982

    Google Scholar 

  • Abel PW, Hermsmeyer K. Sympathetic cross-innervation of SHR and genetic controls suggests a trophic influence on vascular muscle membranes. Circulation Research 49; 1311–1318, 1981

    PubMed  CAS  Google Scholar 

  • Baker G, Zeller N, Weitzner S, Leach JK. Pheochromocytoma without hypertension presenting as cardiomyopathy. American Heart Journal 83: 688-693, 1971

    Google Scholar 

  • Beretta-Piccoli C, Davies DL, Brown JJ, Ferriss B, Fraser R, et al. Relation of blood pressure with body and plasma electrolytes in Conn’s syndrome. Journal of Hypertension 1: 197–205, 1983

    PubMed  CAS  Google Scholar 

  • Bevan RD. Trophic effects of peripheral adrenergic nerves on vascular structure. Hypertension 6 (Suppl. 3): 19–26, 1984

    Google Scholar 

  • Birkenhäger WH, de Leeuw PW. Editorial review. Cardiac aspects of essential hypertension. Journal of Hypertension 2: 121–124, 1984

    PubMed  Google Scholar 

  • Blaes N, Boissel JP. Growth stimulating effect on catecholamines on rat aortic smooth muscle cells in culture. Journal of Cellular Physiology 116: 167–172, 1983

    PubMed  CAS  Google Scholar 

  • Boadle-Biber MC, Hughes J, Roth RH. Acceleration of catecholamine biosynthesis in sympathetically innervated tissues by angiotensin II-amide. British Journal of Pharmacology 46: 289–299, 1972

    PubMed  CAS  Google Scholar 

  • Bohlen HG. Intestinal microvascular adaptation during maturation of spontaneously hypertensive rats. Hypertension 5: 739–745, 1983

    PubMed  CAS  Google Scholar 

  • Brayden JE, Halpern W, Brann LR. Biochemical and mechanical properties of resistance arteries from normotensive and hypertensive rats. Hypertension 5: 17–25, 1983

    PubMed  CAS  Google Scholar 

  • Bright R. Tabular view of the morbid appearance in 100 cases connected with albuminous urine. With observations. Guy’s Hospital Report I: 380, 1836

    Google Scholar 

  • Brock TA, Lewis LJ, Smith JB. Angiotensin increases Na+ entry and Na+/H+ pump activity in cultures of smooth muscle from rat aorta. Proceedings of the National Academy of Sciences of the United States of America 79: 1438–1442, 1982

    PubMed  CAS  Google Scholar 

  • Brody MJ, Zimmerman BG. Peripheral circulation in arterial hypertension. Progress in Cardiovascular Disease 18: 323–340, 1976

    CAS  Google Scholar 

  • Brown JJ, Lever AF, Robertson JIS, Beretta-Piccoli C, Davies DL, et al. Blood pressure and sodium: a personal view. In Genest, Kuchel, Hamet & Contin (Eds) Hypertension, Physiopathology and Treatment, McGraw-Hill, New York pp. 632–645, 1983

    Google Scholar 

  • Campbell-Boswell M, Robertson Jr AL. Effects of angiotensin II and vasopressin on human smooth muscle cells in vitro. Experimental and Molecular Pathology 35: 265–276, 1981

    PubMed  CAS  Google Scholar 

  • Cannon PJ, Leeming JM, Sommers SC, Winters RS, Laragh JH. Juxtaglomerular cell hyperplasia and secondary hyperaldosteronism (Bartter’s syndrome), a re-evaluation of the pathophysiology. Medicine 47: 107–131, 1968

    PubMed  CAS  Google Scholar 

  • Carr AA, Prisant LM, Watkins LO. Detection of hypertensive left ventricular hypertrophy. Hypertension 7: 948–954, 1985

    PubMed  CAS  Google Scholar 

  • Chanutin A, Barksdale EE. Experimental renal insufficiency produced by partial nephrectomy. Archives of Internal Medicine 52: 739–751, 1933

    Google Scholar 

  • Christlieb AR, Krolewski AS, Warram JH, Soeldner JS. Is insulin the link between hypertension and obesity. Hypertension 7 (Suppl. II): II54–II57, 1985

    PubMed  CAS  Google Scholar 

  • Corea L, Bentivoglio M, Verdecchia P, Motolese M. Left ventricular wall thickness and plasma catecholamines in borderline and stable essential hypertension. European Heart Journal 3: 164–170, 1982

    PubMed  CAS  Google Scholar 

  • Cruz AB, Amatuzio DS, Grande F, Hay LJ. Effect of intra-arterial insulin on tissue cholesterol and fatty acids in alloxan-diabetic dogs. Circulation Research 9: 39–43, 1961

    PubMed  CAS  Google Scholar 

  • Culpepper III WS, Sodt PC, Messerli FH, Ruschhaupt DG, Arcilla RA. Cardiac status in juvenile borderline hypertension. Annals of Internal Medicine 98: 1–7, 1983

    PubMed  Google Scholar 

  • Curtis ASG, Seehar GM. The control of cell division by tension or diffusion. Nature 274: 52–53, 1978

    PubMed  CAS  Google Scholar 

  • Dahlöf B. The role of antihypertensive pharmacologic treatment in countering adverse pathophysiological profiles: Influence on small arteries. American Heart Journal 114: 984–991, 1987

    PubMed  Google Scholar 

  • Dahlöf B, Hansson L, Lindholm L, Schersten B, Wester P-O. STOP-Hypertension — preliminary communication from the pilot study of the Swedish Trial in Old Patients with Hypertension. Journal of Hypertension 5 (Suppl. 5), in press

  • Danielson M, Lundbäck M. Withdrawal of antihypertensive drugs in mild hypertension. Acta Medical Scandinavica (Suppl. 646): 127–131, 1982

    Google Scholar 

  • de Leeuw PW, Kho TL, Birkenhäger WH. Pathophysiologic features of hypertension in young men. Chest 83 (Suppl. 2): 312–314, 1983

    PubMed  Google Scholar 

  • Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass in man: anatomic validation of the method. Circulation 55: 613–618, 1977

    PubMed  CAS  Google Scholar 

  • Devereux RB, Case DB, Cody RJ, Sachs I, Laragh JH. Captopril treatment of hypertension increases low but not normal cardiac index. Clinical Research 29: 356A, 1981

    Google Scholar 

  • Devereux RB, Savage DD, Drayer JIM, Laragh JH. Left ventricular hypertrophy and function in high, normal, and low-renin forms of essential hypertension. Hypertension 4: 524–531, 1982

    PubMed  CAS  Google Scholar 

  • Devereux RB, Alonso DR, Lutas EM, Pickering TG, Harshfield GA, et al. Sensitivity of echocardiography for detection of left ventricular hypertrophy. In ter Keurs & Schipperheyn (Eds) Cardiac left ventricular hypertrophy, pp. 16–37, Martinus Nijhoff, The Hague, 1983a

    Google Scholar 

  • Devereux RB, Pickering TG, Harshfield GA, Kleinen HD, Denby L, et al. Left ventricular hypertrophy in patients with hypertension: importance of blood pressure response to regularly recurring stress. Circulation 68: 470–476, 1983b

    PubMed  CAS  Google Scholar 

  • Devereux RB, Savage DD, Sachs I, Laragh JH. Relation of hemodynamic load to left ventricular hypertrophy and performance in hypertension. American Journal of Cardiology 51: 171–176, 1983c

    PubMed  CAS  Google Scholar 

  • Devereux RB, Drayer JIM, Chien S, Pickering TG, Letcher RL, et al. Whole blood viscosity as a determinant of cardiac hypertrophy in systemic hypertension. American Journal of Cardiology 54: 592–595, 1984

    PubMed  CAS  Google Scholar 

  • Devereux RB, Pickering TG, Alderman MH, Chien S, Borer JS, et al. Left ventricular hypertrophy in hypertension. Prevalence and relationship to pathophysiological variables. Hypertension 9 (Suppl. II): II53–II60, 1987a

    PubMed  CAS  Google Scholar 

  • Devereux RB, Pickering TG, Cody RJ, Laragh JH, Relation of renin-angiotensin system activity to left ventricular hypertrophy and function in experimental and human hypertension. Journal of Clinical Hypertension 3: 87–103, 1987b

    PubMed  CAS  Google Scholar 

  • Dons RF, Corash LM, Gorden P. The insulin receptor is an agedependent integral component of the human erythrocyte membrane. Journal of Biological Chemistry 256: 2982–2987, 1981

    PubMed  CAS  Google Scholar 

  • Drayer JIM, Weber MA, De Young JL. Blood pressure as a determinant of cardiac left ventricular muscle mass. Archives of Internal Medicine 143: 90–92, 1983

    PubMed  CAS  Google Scholar 

  • Duff RS. Adrenaline sensitivity of peripheral blood vessels in human hypertension. British Heart Journal 19: 45–52, 1956

    Google Scholar 

  • Dunn FG, Oigman W, Ventura HO, Messerli FH, Kobrin I, et al. Enalapril improves systemic and renal hemodynamics and allows regression of left ventricular mass in essential hypertension. American Journal of Cardiology 53: 105–108, 1984

    PubMed  CAS  Google Scholar 

  • Eliasson K, Hjemdahl P, Kahan T. Circulatory and sympathoadrenal responses to stress in borderline and established hypertension. Journal of Hypertension 1: 131–139, 1983

    PubMed  CAS  Google Scholar 

  • Escobales N, Canessa M. Amiloride-sensitive Na+ transport in human red cells: evidence for a Na+/H+ exchange system. Journal of Membrane Biology 90: 21–28, 1986

    PubMed  CAS  Google Scholar 

  • Evans G. A contribution of the study of arteriosclerosis, with special references to its relation to chronic renal disease. Quarterly Journal of Medicine 14: 215–282, 1921

    Google Scholar 

  • Ferguson JJ, Julius S, Randall OS. Stroke volume pulse pressure relationship in borderline hypertension: a possible indicator of decreased arterial compliance. Journal of Hypertension 2 (Suppl. 3): 397–399, 1984

    Google Scholar 

  • Ferrannini E, Buzzigoli G, Bonadonna R, Giorico MA, Oleggini M, et al. Insulin resistance in essential hypertension. New England Journal of Medicine 317: 350–357, 1987

    PubMed  CAS  Google Scholar 

  • Finnerty Jr FA. Step-down treatment of mild systemic hypertension. American Journal of Cardiology 53: 1304–1307, 1984

    PubMed  Google Scholar 

  • Fischer JE, Horst W, Kopin IJ. Norepinephrine metabolism in hypertrophied rat hearts. Nature 207: 951–953, 1965

    PubMed  CAS  Google Scholar 

  • Folkow B. Structural, myogenic, humoral and nervous factors controlling peripheral resistance. In Harington (Ed.) Hypotensive drugs, pp. 163–174, Pergamon, London, 1956

    Google Scholar 

  • Folkow B. Central neurohormonal mechanisms in spontaneously hypertensive rats compared with human essential hypertension. Clinical Science and Molecular Medicine 48: 205S–214S, 1975

    Google Scholar 

  • Folkow B. The Fourth Volhard Lecture. Cardiovascular structural adaptation; its role in the initiation and maintenance of primary hypertension. Clinical Science and Molecular Medicine 55 (Suppl. 4): 3S–22S, 1978

    Google Scholar 

  • Folkow B. Physiological aspects of primary hypertension. Physiological Review 62: 347–504, 1982

    CAS  Google Scholar 

  • Folkow B. ‘Stuctural autoregulation’ — the local adaptation of vascular beds to chronic changes in pressure. In Development of the vascular system (Ciba Foundation Symposium 100), pp. 56–79, Pitman, London, 1983

    Google Scholar 

  • Folkow B. The structural cardiovascular factor in primary hypertension — pressure dependence and genetic reinforcement. Journal of Hypertension 4 (Suppl. 3): S51–S56, 1986

    PubMed  CAS  Google Scholar 

  • Folkow B, Sivertsson R. Adaptive changes in ‘reactivity’ and wall/ lumen ratio in cat blood vessels exposed to prolonged transmural pressure difference. Life Sciences 7: 283, 1968

    Google Scholar 

  • Folkow B, Grimby G, Thulesius O. Adaptive structural changes of the vascular wall in hypertension and their relation to the control of the peripheral resistance. Acta Physiologica Scandinavica 44: 255–272, 1958

    PubMed  CAS  Google Scholar 

  • Folkow B, Gurèvich M, Hallbäck M, Lundgren Y, Weiss L. The haemodynamic consequences of regional hypotension in spontaneously hypertensive and normotensive rats. Acta Physiologica Scandinavica 83: 532–541, 1971

    PubMed  CAS  Google Scholar 

  • Folkow B, Hansson L, Sivertsson R. Structural vascular factors in the pathogenesis of hypertension. In Robertson (Ed.) Handbook of hypertension: clinical aspects of essential hypertension, Vol. 1, pp. 133–150, Elsevier, Amsterdam, 1983

    Google Scholar 

  • Folkow B, Nordlander M, Strauer B-E, Wikstrand J (Eds). Pathophysiology and clinical implications of early structural changes. Hypertension 6 (Part II): vii–viii, 1984

  • Freis ED. Hemodynamics of hypertension. Physiological Reviews 40: 27–54, 1960

    PubMed  CAS  Google Scholar 

  • Freslon JL, Giudicelli JF. Compared myocardial and vascular effects of captopril and dihydralazine during hypertension development in spontaneously hypertensive rats. British Journal of Pharmacology 80: 533–543, 1983

    PubMed  CAS  Google Scholar 

  • Friberg P, Folkow B, Nordlander M. Structural adaptation of the rat left ventricle in response to changes in pressure and volume loads. Acta Physiologica Scandinavica 125: 67–79, 1985

    PubMed  CAS  Google Scholar 

  • Friberg P, Folkow B, Nordlander M. Cardiac dimensions in spontaneously hypertensive rats following different modes of blood pressure reduction by antihypertensive treatment. Journal of Hypertension 4: 85–92, 1986

    PubMed  CAS  Google Scholar 

  • Frohlich ED. Hemodynamics and other determinants in development of left ventricular hypertrophy. Federation Proceedings 42: 2709–2715, 1983

    PubMed  CAS  Google Scholar 

  • Frohlich ED. Potential mechanisms explaining the risk of left ventricular hypertrophy. American Journal of Cardiology 59: 91A–97A, 1987

    PubMed  CAS  Google Scholar 

  • Fujita T, Sakaguchi H, Sibagaki M, Fukui T, Nomura M, et al. The pathogenesis of Bartter’s syndrome. Functional and histological studies. American Journal of Medicine 63: 467–474, 1977

    PubMed  CAS  Google Scholar 

  • Furuyama M. Histometrical investigations of arteries in reference to arterial hypertension. Tohoku Journal of Experimental Medicine 76: 388–414, 1962

    PubMed  CAS  Google Scholar 

  • Garcia R, Jennings JM. Pheochromocytoma masquerading as a cardiomyopathy. American Journal of Cardiology 29: 568–571, 1972

    PubMed  CAS  Google Scholar 

  • Gerstenblith G, Frederiksen J, Yin FCP, Fortuin NJ, Lakatta EG, et al. Echocardiographic assessment of a normal adult aging population. Circulation 56: 273–278, 1977

    PubMed  CAS  Google Scholar 

  • Goetz RH, Keen EN. Some aspects of the cardiovascular system in the giraffe. Angiology 8: 542, 1957

    PubMed  CAS  Google Scholar 

  • Gordon AL, Inchiosa Jr. MA, Lehr D. Isoproterenol-induced cardiomegaly: Assessment of myocardial protein content, actomyosin ATPase, and heart rate. Journal of Molecular and Cellular Cardiology 4: 543–557, 1972

    PubMed  CAS  Google Scholar 

  • Gould KL, Lipscomb K, Hamilton GW, Kennedy JW. Left ventricular hypertrophy in coronary heart disease. American Journal of Medicine 55: 595–601, 1973

    PubMed  CAS  Google Scholar 

  • Gretzer I, Duner H, Lagerbäck B. Haemodynamic effects of pindolol in essential hypertension with special reference to resistance vessels in the forearm during maximal vasodilation. Journal of Hypertension 3 (Suppl. 3): S215–S217, 1985

    PubMed  CAS  Google Scholar 

  • Grinstein S, Rothstein A. Mechanisms of regulation of the Na/ H exchanger. Journal of Membrane Biology 90: 1–12, 1986

    PubMed  CAS  Google Scholar 

  • Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. Journal of Clinical Investigation 56: 56–64, 1975

    PubMed  CAS  Google Scholar 

  • Gull WW, Sutton HG. On the pathology of the morbid state commonly called chronic Bright’s disease with contracted kidney. Med Chir Trans 55: 273–326, 1872

    PubMed  CAS  Google Scholar 

  • Hansson L, Svensson A, Gudbrandsson T, Sivertsson R. Treatment of hypertension with beta-blockers with and without intrinsic sympathomimetic activity. Journal of Cardiovascular Pharmacology 5 (Suppl. 1): 26S–29S, 1983

    Google Scholar 

  • Hart MN, Heistad DD, Broody MJ. Effect of chronic hypertension and sympathetic denervation on wall-lumen ratio of cerebral vessels. Hypertension 2: 419–423, 1980

    PubMed  CAS  Google Scholar 

  • Hizuka N, Takano K, Tanaka I, Honda N, Tsushima T, et al. Characterization of insulin-like growth factor I receptor on human erythrocytes. Journal of Clinical Endocrinology and Metabolism 61: 1066–1070, 1985

    PubMed  CAS  Google Scholar 

  • Holt JP, Rhode EA, Kines H. Ventricular volumes and body weight in mammals. American Journal of Physiology 215: 704–715, 1968

    PubMed  CAS  Google Scholar 

  • Hulthén UL, Bolli P, Kiowski W, Buhler FR. Forearm vasoconstrictor response to ouabain: studies in patients with mild and moderate essential hypertension. Journal of Cardiovascular Pharmacology 6 (Suppl. 1): s75–s81, 1984

    PubMed  Google Scholar 

  • Hume WR. Proline and thymidine uptake in rabbit ear artery segments in vitro increased by chronic tangential load. Hypertension 2: 738–743, 1980

    PubMed  CAS  Google Scholar 

  • Jespersen LT, Baandrup U, Nyborg NCB, Mikkelsen EL, Lederballe O. Aggressive long-term antihypertensive therapy with pinacidil does not cause regression of cardiovascular hypertrophy in the spontaneously hypertensive rat. Journal of Hypertension 4: 223–227, 1986

    PubMed  CAS  Google Scholar 

  • Johnson G. On certain points in the anatomy of Bright’s disease of the kidney. Trans R Med Chir Soc 51: 57–58, 1868

    CAS  Google Scholar 

  • Julius S, Conway W. Hemodynamic studies in patients with borderline blood pressure elevation. Circulation 32: 282–288, 1968

    Google Scholar 

  • Julius S, Hansson L. Hemodynamics of prehypertension and hypertension. Verhandlungen der Deutschen Gesellshaft für Innere Medizin 80: 49–58, 1974

    CAS  Google Scholar 

  • Julius S, Esler M. Autonomic nervous cardiovascular regulation in borderline hypertension. American Journal of Cardiology 36: 685–696, 1975

    PubMed  CAS  Google Scholar 

  • Julius S, Pascual AV, Reiliy K, London R. Abnormalities of plasma volume in borderline hypertension. Archives of Internal Medicine 127: 116–119, 1971

    PubMed  CAS  Google Scholar 

  • Kaiser N, Tur-Sinai A, Hasin M, Cerasi E. Binding, degradation and biological activity of insulin in vascular smooth muscle cells. American Journal of Physiology 249: E292–E298, 1985

    PubMed  CAS  Google Scholar 

  • Kannel WB. Role of blood pressure in cardiovascular morbidity and mortality. Progress in Cardiovascular Diseases 17: 5–24, 1974

    PubMed  CAS  Google Scholar 

  • Kannel WB. Prevalence and natural history of electrocardiographic left ventricular hypertrophy. American Journal of Medicine 75 (Suppl. 3A): 4–11, 1983

    PubMed  CAS  Google Scholar 

  • Kannel WB, Gordon T, Offutt D. Left ventricular hypertrophy by electrocardiogram: prevalence, incidence and mortality in the Framingham Study. Annals of Internal Medicine 71: 89–105, 1969

    PubMed  CAS  Google Scholar 

  • Kannel WB, Gordon T, Castelli WP, Margolis JR. Electrocardiographic left ventricular hypertrophy and risk of coronary heart disease: the Framingham Study. Annals of Internal Medicine 72: 813–822, 1970

    PubMed  CAS  Google Scholar 

  • Khairallah PA, Kanabus J. Angiotensin and myocardial protein synthesis. In Tarazi & Dunbar (Eds) Perspectives in cardiovascular research, Vol. 8, pp. 337–347, Raven Press, New York, 1983

    Google Scholar 

  • Khairallah PA, Robertson AL, Darilla D. Effect of angiotensin II on DNA, RNA and protein synthesis. In Genest & Koiw (Eds) Hypertension’ 72, pp. 212–220, Springer-Verlag, New York. 1972

    Google Scholar 

  • King GL, Goodman D, Buzney S, Moses A. Kahn CR. Receptors and growth-promoting effects of insulin and insulin-like growth factors on cells from bovine retinal capillaries and aorta. Journal of Clinical Investigation 75: 1028–1036, 1985

    PubMed  CAS  Google Scholar 

  • Kleinert HD, Harshfield GA, Pickering TG, Devereux RB, Sullivan PA, et al. What is the value of home blood pressure measurement in patients with mild hypertension? Hypertension 6: 574–578, 1984

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Tarazi RC. Effect of long-tern nitrendipine therapy on coronary blood flow and left ventricular hypertrophy in renovascular hypertension. Hypertension 5 (Suppl. II): 11-–45–11-–51, 1983

    Google Scholar 

  • Korecky B, Rakusan K. Morphological and physiological aspects of cardiac atrophy. In Alpert (Ed.) Myocardial hypertrophy and failure. Perspectives in cardiovascular research. Vol. 7, pp. 293–309, Raven Press, New York, 1983

    Google Scholar 

  • Korner PI. Causal and homeostatic factors in hypertension. Clinical Science 63: 5S–26S, 1982

    PubMed  Google Scholar 

  • Korner PI, Fletcher PJ. The role of the heart in causing and maintaining hypertension. Cardiovascular Medicine 2: 139–155, 1977

    Google Scholar 

  • Korner PI, Jennings GL, Esler MD. Pathogenesis of human primary hypertension: a new approach to the identification of casual factors and to therapy. Journal of Hypertension 4 (Suppl. 3): S149–S153, 1984

    Google Scholar 

  • Laks MM, Morady F, Surant HSC. Myocardial hypertrophy produced by chronic infusion of subhypertensive dose of norepinephrine in the dog. Chest 64: 75–80, 1973

    PubMed  CAS  Google Scholar 

  • L’Allemain G, Franchi A, Cragoe Jr E, Pouysségur J. Blockade of the Na+/H+ antiport abolishes growth factor-induced DNA synthesis in fibroblasts. Structure-activity relationships in the amiloride series. Journal of Biological Chemistry 259: 4313–4319, 1984

    PubMed  Google Scholar 

  • Lawrie GM, Lie JT. Morris JR GC, Beazley HL. Vein graft patency and intimai proliferation after aortocoronary bypass: early and long-term angiopathologic correlations. American Journal of Cardiology 38: 856–862, 1976

    PubMed  CAS  Google Scholar 

  • Ledet T. Growth hormone stimulating the growth of arterial medial cells in vitro. Absence of effect of insulin. Diabetes 25: 1011–1017, 1976

    PubMed  CAS  Google Scholar 

  • Lee RMKW, Garfield RE, Forrest JB, Daniel EE. Morphometric study of structural changes in the mesenteric blood vessels of spontaneously hypertensive rats. Blood Vessels 20: 57–71, 1983

    PubMed  CAS  Google Scholar 

  • Leung DYM, Glagov S, Mathews MB. A new in vitro system for studying cell response to mechanical stimulation: different effect of cyclic stretching and agitation on smooth muscle cell biosynthesis. Experimental Cellular Research 109: 285–298, 1977

    CAS  Google Scholar 

  • Levenson J, Simon A. Heterogeneity of response of peripheral arteries to antihypertensive drugs in essential hypertension: basic effects and functional consequences. Drugs 35 (Suppl. 5): 34–39, 1988

    PubMed  Google Scholar 

  • Lever AF. Editorial review. Slow pressor mechanisms in hypertension: a role for hypertrophy of resistance vessels? Journal of Hypertension 4: 515–524, 1986

    PubMed  CAS  Google Scholar 

  • Lie AT. Pathology of the heart in acromegaly. Anatomic findings in 27 autopsied patients. American Heart Journal 100: 41–52, 1980

    PubMed  CAS  Google Scholar 

  • Linzbach AJ, Akuamoa-Boateng E. Die Altesvervänderungen des menschlichen Herzen. I. Das Herzgemicht im alter. Klinische Wochenschrift: 51, 156, 1973

  • Lombardo M, Zaini G, Pastori F, Fusco M, Pacini S, et al. Left ventricular mass and function before and after antihypertensive treatment. Journal of Hypertension 1: 215–219, 1983

    PubMed  CAS  Google Scholar 

  • London GM, Safar ME, Sassard JE, Levenson JA, Simon AC. Renal and systemic hemodynamics in sustained essential hypertension. Hypertension 6: 743–754, 1984

    PubMed  CAS  Google Scholar 

  • Lundgren Y. Adaptive changes of cardiovascular design in spontaneous and renal hypertension. Hemodynamic studies in rats. Acta Physiologica Scandinavica 1 (Suppl. 408): 1–62, 1974a

    Google Scholar 

  • Lundgren Y. Regression of structural cardiovascular changes after reversal of experimental renal hypertension in rats. Acta Physiologica Scandinavica 91: 275–285, 1974b

    PubMed  CAS  Google Scholar 

  • Lundgren Y, Weiss L. Cardiovascular design after ‘reversal’ of long-standing renal hypertension in rats. Clinical Science 57: 19, 1979

    Google Scholar 

  • Lundgren Y, Hallbäck M, Weiss L, olkow B. Rate and extent of adaptive cardiovascular changes in rats during experimental renal hypertension. Acta Physiologica Scandinavica 91: 103–115, 1974

    PubMed  CAS  Google Scholar 

  • Lundin S, Friberg P, Ricksten SE. Diastolic properties of the hypertrophied left ventricule in spontaneously hypertensive rats. Acta Physiologica Scandinavica 118: 1–9, 1983

    PubMed  CAS  Google Scholar 

  • Lundin SA, Hallbäck-Nordlander MIL. Regression of structural cardiovascular changes by antihypertensive therapy in sponeously hypertensive rats. Journal of Hypertension 2: 11–18, 1984 auLund-Johansen P. Hemodynamics in early essential hypertension. Acta Medical Scandinavica (Suppl. 482): 9–101, 1967

    PubMed  CAS  Google Scholar 

  • Lund-Johansen P. Spontaneous changes in central hemodynamics in essential hypertension — a 10 year follow-up study. In Onesti & Klimt (Eds) Hypertension: determinants, complications and intervention, pp. 201–209, Grune and Stratton, New York, 1977

    Google Scholar 

  • Lund-Johansen P. Haemodynamics in essential hypertension. Clinical Science 59: 343S–354S, 1980

    PubMed  Google Scholar 

  • Lutas EM, Reis G, Devereux RB, Alderman MH, Crowley J, et al. Left ventricular function in hypertensive and normotensive subjects from a natural population. Abstract, Clinical Research 30: 337A, 1982

    Google Scholar 

  • Messerli FH, Sundgaard-Riise K, Reisin ED, Dreslinski GR, Dunn FG, et al. Disparate cardiovascular effects of obesity and arterial hypertension. American Journal of Medicine 74: 808–812, 1983

    PubMed  CAS  Google Scholar 

  • Miall WE, Chinn S. Blood pressure and ageing: results of a 15–17] year follow-up study in South Wales. Clinical Science and Molecular Medicine 45 (Suppl. 1): 23S–33S, 1973

    Google Scholar 

  • Mirsky I. Elastic properties of the myocardium: a quantitative approach with physiological and clinical applications. In Berne, Sperelakis & Geiger (Eds) Handbook of physiology, section 2 Vol. I, pp. 497–531, Williams and Wilkins (for the American Physiological Society), Baltimore, 1979

    Google Scholar 

  • Modan M, Halkin H, Almog S, Lusky A, Eshkol A, et al. Hyperinsulinaemia: a link between hypertension, obesity and glucose intolerance. Journal of Clinical Investigation 75: 809–817, 1985

    PubMed  CAS  Google Scholar 

  • Moore TJ, Williams GH. Clinical aspects of secondary hypertension. Acromegaly and hypertension. In Roberson (Ed.) Handbook of hypertension Vol. 2, pp. 222–237, Elsevier, Amsterdam, 1983

    Google Scholar 

  • Moulds RFW. Reduced responses to noradrenaline of isolated digital arteries from hypertensives. Clinical and Experimental Pharmacology and Physiology 7: 505–508, 1980

    PubMed  CAS  Google Scholar 

  • Mulvany MJ. Editorial review. The fourth Sir George Pickering Memorial Lecture: the structure of the resistance vasculature in essential hypertension. Journal of Hypertension 5: 129–136, 1987

    PubMed  CAS  Google Scholar 

  • Mulvany MJ, Hansen PK, Aalkjaer C. Direct evidence that the greater contractility of resistance vessels in spontaneously hypertensive rats is associated with a narrowed lumen, a thickened media, and an increased number of smooth muscle cell layers. Circulation Research 43: 854–864, 1978

    PubMed  CAS  Google Scholar 

  • Mulvany MJ, Baandrup V, Gundersen HJG. Evidence for hyperplasia in mesenteric resistance vessels of spontaneously hypertensive rats using a three-dimensional disector. Circulation Research 57: 794–800, 1985

    PubMed  CAS  Google Scholar 

  • Nakashima Y, Fouad FM, Tarazi RC. Regression of left ventricular hypertrophy from systemic hypertension by enalapril. American Journal of Cardiology 53: 1044–1049, 1984

    PubMed  CAS  Google Scholar 

  • Newling R, Fletcher PJ, Duggin GG. The renin-angiotensin system and hypertensive left ventricular hypertrophy in the rat. Clinical and Experimental Pharmacology and Physiology 11: 419–422, 1984

    PubMed  CAS  Google Scholar 

  • Niarchos AP, Pickering TG, Case DB, Sullivan P. Laragh JH. Role of the reninangiotensin system in blood pressure regulation: The cardiovascular effects of converting enzyme inhibition in normotensive subjects. Circulation Research 45: 829–837, 1979

    PubMed  CAS  Google Scholar 

  • Nusserberg J, Re RN, Matsueda GR, Haber E. A simplified radioimmunoassay for physiologically active angiotensin peptides [(1–8) octa- and (2–8) hepto-peptides]. Hormonal and Metabolic Research 16:606–610, 1984

    Google Scholar 

  • Olivetti G, Melissari M, Marchetti G, Anversa P. Quantitative structural changes of the rat thoracic aorta in early spontaneous hypertension. Tissue composition, and hypertrophy and hyperplasia of smooth muscle cells. Circulation Research 51: 19–26,1982

    PubMed  CAS  Google Scholar 

  • Östman-Smith I. Cardiac sympathetic nerves as the final common pathway in the induction of adaptive cardiac hypertrophy. Clinical Science 61: 265–272, 1981

    PubMed  Google Scholar 

  • Overbeck HW. Pressure-independent increases in vascular resistance to hypertension: role of sympathoadrenergic influences. Hypertension 2: 780–786, 1980

    PubMed  CAS  Google Scholar 

  • Owens GK. Influence of blood pressure on development of aortic medial smooth muscle hypertrophy in spontaneously hypertensive rats. Hypertension 9: 178–187, 1987

    PubMed  CAS  Google Scholar 

  • Peart S, Barnes GR, Broughton PMG, Dollery CT, Green KG, et al. Course of blood pressure in mild hypertension after withdrawal of long term antihypertensive treatment. British Medical Journal 293: 988–992, 1986

    Google Scholar 

  • Pfeffer JM, Pfeffer MA, Mirsky I, Braunwald E. Regression of left ventricular hypertrophy and prevention of left ventricular dysfunction by captopril in the spontaneously hypertensive rat. Proceedings of the National Academy of Sciences of the United States of America 79: 3310–3314, 1982

    PubMed  CAS  Google Scholar 

  • Pickering GW. High blood pressure, 2nd ed., J. & A. Churchill Ltd, London, 1968

    Google Scholar 

  • Plunkett WC, Overbeck HW. Increased arteriolar wall-to-lumen ratio in a normotensive vascular bed in coarctation hypertension. American Journal of Physiology 249: H859–H866, 1985

    PubMed  CAS  Google Scholar 

  • Pooling Project Research Group. Relationship of blood pressure, serum cholesterol, smoking habit, relative weight, and ECG abnormalities to incidence of major coronary events: Final report of the Pooling Project. Journal of Chronical Disease 31: 201–306, 1978

    Google Scholar 

  • Pouyssegur J. The growth factor-activatable Na+/H+ exchange system: a genetic approach. Trends in Biochemical Sciences 10: 453–455, 1985

    CAS  Google Scholar 

  • Pouyssegur J, Franchi A, L’Allemain G, Paris S. Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts. FEBS Letters 190: 115–119. 1985

    PubMed  CAS  Google Scholar 

  • Radtke W, Kazmier F, Rutherford B, Sheps SG. Cardiovascular complications of pheochromocytoma crisis. American Journal of Cardiology 35: 701–705, 1975

    PubMed  CAS  Google Scholar 

  • Re RN. Cellular biology of the renin-angiotensin system. Archives of Internal Medicine 144: 2037–2047, 1984

    PubMed  CAS  Google Scholar 

  • Re R. The myocardial intracellular renin-angiotensin system. American Journal of Cardiology 59: 56A–58A, 1987

    PubMed  CAS  Google Scholar 

  • Re R, Parab M. Effect of angiotensin II on RNA synthesis by isolated nuclei. Life Science 34: 647–651, 1984

    CAS  Google Scholar 

  • Re R, Fallon JT, Dzau V, Quay SC, Haber E. Renin synthesis by canine aortic smooth muscle cells in culture. Life Science 30: 99–106, 1982

    CAS  Google Scholar 

  • Re RN, Mickalic R, Dzau VJ. Cardiac myocytes contain renin. Abstract, Clinical Research 31: A845, 1983

    Google Scholar 

  • Reichek N, Devereux RB. Reliable estimation of peak left ventricular systolic pressure by M-mode echographic-determined end-diastolic realtive wall thickness; identification of severe valvular aortic stenosis in adult patients. American Heart Journal 103: 202–203, 1982

    PubMed  CAS  Google Scholar 

  • Robertson Jr AL, Khairallah PA. Angiotensin II: Rapid localization in nuclei of smooth and cardiac muscle. Science 172: 1138–1139, 1971

    PubMed  CAS  Google Scholar 

  • Roth RH, Hughes J. Acceleration of protein biosynthesis by angiotensin correlation with angiotensin’s effect on catecholamine biosynthesis. Biochemical Pharmacology 21: 3182–3187, 1972

    PubMed  CAS  Google Scholar 

  • Rowlands DB, Glover DR, Ireland MA, McLeay RAD, Stallard TJ, et al. Assessment of left-ventricular mass and its response to antihypertensive treatment. Lancet I: 467–470, 1982

    Google Scholar 

  • Ruskoaho H. Regression of cardiac hypertrophy with drug treatment in spontaneously hypertensive rats. Medical Biology 62: 263–276, 1984

    PubMed  CAS  Google Scholar 

  • Safar ME, Lehner JP, Vincent MI, Plainfosse MT, Simon AC. Echocardiographic dimensions in borderline and sustained hypertension. American Journal of Cardiology 44: 930–935, 1979

    PubMed  CAS  Google Scholar 

  • Safar ME, Bouthier JA, Levenson JA, Simon AC. Peripheral large arteries and the response to antihypertensive treatment. Hypertension 5 (Part 2): III63–III68, 1983

    PubMed  CAS  Google Scholar 

  • Safar ME, Laurent SL, Bouthier JD, London GM, Mimran AR. Effect of converting enzyme inhibitors on hypertensive large arteries in humans. Journal of Hypertension 4 (Suppl. 5): S285–S289, 1986

    PubMed  CAS  Google Scholar 

  • Sannerstedt R, Sivertsson R, Lundgren Y. tHemodynamic studies in young men with mild blood pressure elevation. Acta Medica Scandinavica (Suppl. 602): 61–67, 1976

    Google Scholar 

  • Savage DD, Drayer JIM, Henry WL, Mathews EC Jr, Ware JH, et al. Echocardiographic assessment of cardiac anatomy and function in hypertensive patients. Circulation 59: 623–632, 1979

    PubMed  CAS  Google Scholar 

  • Schalekamp MADH, Wenting GJ, Man in’t Veld AJ. Pathogenesis of mineralocorticoid hypertension. Clinical Endocrinology 10: 397–418, 1981

    CAS  Google Scholar 

  • Schelling P, Ganten D, Speck G, Fisher H. Effects of Ang II and Ang II antagonist, saralasin on cell growth and renin in 3T3 and SV 3T3 cells. Journal of Cellular Physiology 98: 503–514, 1979

    PubMed  CAS  Google Scholar 

  • Schreiber SS, Evans CD, Oratz M, Rotschild MA. Protein synthesis and degradation in cardiac stress. Circulation Research 48: 601–611, 1981

    PubMed  CAS  Google Scholar 

  • Schwartz SM, Campbell GR, Campbell JH. Replication of smooth muscle cells in vascular disease. Circulation Research 58: 427–444, 1986

    Google Scholar 

  • Scoggins BA, Denton DA, Withworth JA, Coghlan JP. ACTH dependent hypertension. Clinical and Experimental Hypertension [A] 6: 599–646, 1984

    CAS  Google Scholar 

  • Seidel CL, Lewis RM, Bowers R, Bukowski RD, Kim H-S, et al. Adaption of canine saphenous veins to grafting. Correlation of contractility and contractile protein content. Circulation Research 55: 102–109, 1984

    PubMed  CAS  Google Scholar 

  • Sen S, Bumpus FM. Collagen synthesis in development and reversal of cardiac hypertrophy in spontaneously hypertensive rats. American Journal of Cardiology 44: 954–958, 1979

    PubMed  CAS  Google Scholar 

  • Sen S, Tarazi RC. Regression of cardiac hypertrophy and influence of β-adrenergic system. American Journal of Physiology 244: H97–H101, 1983

    PubMed  CAS  Google Scholar 

  • Sen S, Tarazi RC, Khairallah PA, Bumpus FM. Cardiac hypertrophy in spontaneously hypertensive rats. Circulation Research 35: 775–781, 1974

    PubMed  CAS  Google Scholar 

  • Sen S, Tarazi RC, Bumpus FM. Cardiac hypertrophy and antihypertensive therapy. Cardiovascular Research 11: 427–433, 1977

    PubMed  CAS  Google Scholar 

  • Sen S, Tarazi RC, Bumpus FM. Cardiac effects of angiotensin antagonists in normotensive rats. Clinical Science 56: 439–443, 1979

    PubMed  CAS  Google Scholar 

  • Sen S, Tarazi RC, Bumpus FM. Effects of converting enzyme inhibitor (SQ 14, 225) on myocardial hypertrophy in spontaneously hypertensive rats. Hypertension 2: 169–176, 1980

    PubMed  CAS  Google Scholar 

  • Sen S, Tarazi RC, Bumpus FM. Reversal of cardiac hypertrophy in renal hypertensive rats: medical versus surgical therapy. American Journal of Physiology 240: H409–H412, 1981

    Google Scholar 

  • Sen S, Petscher C, Ratliff. A factor that initiates myocardial hypertrophy in hypertension. Hypertension 9: 261–267, 1987

    PubMed  CAS  Google Scholar 

  • Shkhvatsabaya IK, Usubaliyer NN, Yurenev AP, Panfilow VV. The interrelation of cardiac and vascular wall hypertrophy in arterial hypertension. Cardiovascular Review Report 2: 1145–1149, 1981

    Google Scholar 

  • Simon A, Levenson J, Bouthier J, Maarek B. Haemodynamic basis of early modifications of the large arteries in borderline hypertension. Journal of Hypertension 5: 179–184, 1987

    PubMed  CAS  Google Scholar 

  • Singer P, Godicke W, Voigt S, Hajdu I, Weiss M. Postprandial hyperinsulinaemia in patients with mild essential hypertension. Hypertension 7: 182–186, 1985

    PubMed  CAS  Google Scholar 

  • Sivertsson R. The hemodynamic importance of structural vascular changes in essential hypertension. Acta Physiologica Scandinavica 1 (Suppl. 343): 1–56, 1970

    Google Scholar 

  • Sivertsson R, Hansson L. Effects of blood pressure reduction on the structural vascular abnormality in skin and muscle vascular beds in human essential hypertension. Clinical Science and Molecular Medicine 51 (Suppl. 3): 77–79, 1976

    Google Scholar 

  • Smith JB, Brock TA. Analysis of angiotensin stimulated sodium transport in cultured smooth muscle cells from rat aorta. Journal of Cellular Physiology 114: 284–290, 1983

    PubMed  CAS  Google Scholar 

  • Smith JB, Ash KO, Hentschel WM, Sprowell W, Dadone MM, et al. Three red cell sodium transport systems in hypertensive and normotensive Utah adults. Hypertension 6: 159–166, 1984

    PubMed  CAS  Google Scholar 

  • Sokolow M, Werdegar D, Kain HK, Hinman AT. Relationship between level of blood pressure measured casually and by portable recorder and severity complications in essential hypertension. Circulation 34: 279–291, 1966

    PubMed  CAS  Google Scholar 

  • Spann Jr JF, Sonnenblick EH, Harris Jr ED, Buccion RA. Connective tissue of the hypertrophied heart. In Alpert (Ed.) Cardiac hypertrophy, pp. 141–145, Academic Press, New York, 1971

    Google Scholar 

  • Spray TL, Roberts WC. Changes in saphenous veins used as aortocoronary bypass grafts. American Heart Journal 94: 500–516, 1977

    PubMed  CAS  Google Scholar 

  • Stout RW. Relationship of abnormal circulating insulin to atherosclerosis. Atherosclerosis 27: 1–13, 1977

    PubMed  CAS  Google Scholar 

  • Stout RW, Bierman EC, Ross R. Effect of insulin on the proliferation of cultured primate arterial smooth muscle cells. Circulation Research 36: 319–327, 1975

    PubMed  CAS  Google Scholar 

  • Swales JD. Arterial wall or plasma renin in hypertension? Clinical Science 56: 293–298, 1979

    PubMed  CAS  Google Scholar 

  • Talafih K, Briden KL, Weiss HR. Thyroxine-induced hypertrophy of the rabbit heart. Effect on regional oxygen extraction, flow and oxygen consumption. Circulation Research 52: 272–279, 1983

    PubMed  CAS  Google Scholar 

  • Tarazi RC, Sen S, Saragoca M, Khairallah PA. The multifactorial role of catecholamines in hypertensive cardiac hypertrophy. European Heart Journal 3: 103–110, 1982

    PubMed  CAS  Google Scholar 

  • Thulesius O, Gjordes JE, Berlin E. Vascular reactivity of normotensive and hypertensive human arteries. General Pharmacology 14: 153–154, 1983

    PubMed  CAS  Google Scholar 

  • Thyberg J, Palmberg L, Nilsson J, Ksiazek T, Sjölund M. Phenotype modulation in primary cultures of arterial smooth muscle cells. On the role of platelet-derived growth factor. Differentiation 25: 156–167, 1983

    PubMed  CAS  Google Scholar 

  • Tomanek RJ, Davies JR, Anderson SC. The effect of α-methyldopa on cardiac hypertrophy in SHR. Cardiovascular Research 13: 172–182, 1979

    Google Scholar 

  • Turnbull HM. Alterations in arterial structure and their relation to syphylis. Quarterly Journal of Medicine 8: 201, 1915

    Google Scholar 

  • Vaughan-Williams JEM, Raine AEG, Cabrera AA, Whyte JM. The effects of prolonged β-adrenoceptor blockade on heart weight and cardiac intracellular potentials in rabbits. Cardiovascular Research 9: 579–592, 1975

    Google Scholar 

  • Ventura HO, Messerli FH, Oigman W, Suarez DH, Dreslinski GR, et al. Impaired systemic arterial compliance in borderline hypertension. American Heart Journal 108: 132–136, 1984

    PubMed  CAS  Google Scholar 

  • Ventura HO, Fröhlich ED, Messerli FH, Kobrin I, Kardon MB. Cardiovascular effects and regional blood flow distribution associated with angiotensin converting enzyme inhibition (captopril) in essential hypertension. American Journal of Cardiology 55: 1023–1026, 1985

    PubMed  CAS  Google Scholar 

  • Volpe M, Trimarco B, Mele A, Cuocolo A, De Luca N, et al. Relationships between left ventricular mass and clinical, biohumoral and hemodynamic parameters in human hypertension. Cardiology 71: 1–12, 1984

    PubMed  CAS  Google Scholar 

  • Walter F, Addis T. Organ work and organ weight. Journal of Experimental Medicine 69: 467–483, 1939

    PubMed  CAS  Google Scholar 

  • Weiss L. Aspects of the relation between functional and structural cardiovascular factors in primary hypertension: experimental studies in spontaneously hypertensive rats. Acta Physiologica Scandinavica 1 (Suppl. 409): 1–58, 1974a

    Google Scholar 

  • Weiss L. Long-term treatment with antihypertensive drugs in spontaneously hypertensive rats (SHR). Effects on blood pressure, survival rate and cardiovascular design. Acta Physiologica Scandinavica 91: 393–408, 1974b

    PubMed  CAS  Google Scholar 

  • Whitehorn WV. Effects of hypophyseal hormones on cardiac growth and function. In Alpert (Ed.) Cardiac hypertrophy, pp. 27–37, Academic Press, London, 1971

    Google Scholar 

  • Whitworth JA, Saines D, Scoggins BA. Blood pressure and metabolic effects of cortisol and deoxycorticosterone in man. Clinical and Experimental Hypertension [A] 6: 795–809, 1984

    CAS  Google Scholar 

  • Wicker P, Tarazi RC, Kobayashi K. Coronary blood flow during the development and regression of left ventricular hypertrophy in renovascular hypertensive rats. American Journal of Cardiology 51: 1744–1749, 1983

    PubMed  CAS  Google Scholar 

  • Wikman-Cofifelt J, Parmley WW, Mason DT. The cardiac hypertrophy process: analyses of factors determining pathological vsphysiological development. Circulation Research 45: 697–707, 1979

    Google Scholar 

  • Winkler MM, Steinhardt RA, Grainger JL, Minning L. Dual ionic controls for the activation of protein synthesis at fertilization. Nature 287: 558–560, 1980

    PubMed  CAS  Google Scholar 

  • Wolinsky H. Effects of hypertension and its reversal on the thoracic aorta of male and female rats. Circulation Research 28: 622–637, 1971

    PubMed  CAS  Google Scholar 

  • Wolinsky H. Long-term effects of hypertension on the rat aortic wall and their relation to concurrent aging changes. Circulation Research 30: 301–309, 1972

    PubMed  CAS  Google Scholar 

  • Wolinsky H. Response of the rat aortic media to hypertension. Morphological and chemical studies. Circulation Research 46: 507, 1980

    Google Scholar 

  • Wong M, Shan PM, Taylor RD. Reproducibility of left ventricular internal dimensions with M-mode echocardiography: effects of heart size, body position and transducer angulation. American Journal of Cardiology 47: 1068–1074, 1981

    PubMed  CAS  Google Scholar 

  • Yamori Y, Nakada T, Lovenberg W. Effect of antihypertensive therapy on lysine incorporation into vascular protein of the spontaneously hypertensive rat. European Journal of Pharmacology 38: 349–355, 1976

    PubMed  CAS  Google Scholar 

  • Yamori Y, Mori C, Nishio T, Ooshima A, Horie R, et al. Cardiac hypertrophy in early hypertension. American Journal of Cardiology 4: 964–969, 1979

    Google Scholar 

  • Yamori Y, Tarazi RC, Ooshima A. Effects of β-receptor blocking agents on cardiovascular structural changes in spontaneous and noradrenaline-induced hypertension in rats, Clinical Science 59: 457S–460S, 1981

    Google Scholar 

  • Yamori Y, Nara Y, Kanbe T, Imafuku H, Mori K, et al. Diversity of membrane abnormalities in spontaneous hypertension. Clinical Science 63: 27S–29S, 1982

    Google Scholar 

  • Yamori Y, Igawa T, Tagami M, Kanbe T, Nara Y, et al. Humoral trophic influence on cardiovascular structural changes in hypertension. Hypertension 6 (Suppl. III): III27–III32, 1984

    PubMed  CAS  Google Scholar 

  • Zimmerman BG, Sybetz EJ, Vong PC. Editorial review. Interaction between sympathetic and renin-angiotensin system. Journal of Hypertension 2: 581–587, 1984

    PubMed  CAS  Google Scholar 

  • Zweifach BW, Kovalcheck S, De Lano F, Chen P. Micropressureflow relationships in a skeletal muscle of spontaneously hypertensive rats. Hypertension 3: 602–614, 1981

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahlöf, B. Factors Involved in the Pathogenesis of Hypertensive Cardiovascular Hypertrophy. Drugs 35 (Suppl 5), 6–26 (1988). https://doi.org/10.2165/00003495-198800355-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-198800355-00003

Keywords

Navigation