Skip to main content
Log in

Emergence of Resistance during β-Lactam Therapy of Gram-Negative Infections

Bacterial Mechanisms and Medical Responses

  • Section 1: The Current Situation on Bacterial Resistance to Third Generation Cephalosporins
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Some Gram-negative, non-fastidious bacilli, although classified as susceptible by conventional susceptibility testing methods, become resistant during therapy with the newer β-lactam compounds. Emergence of resistance results primarily from the selection of resistant clones pre-existing within the susceptible bacterial populations. Most of the resistant clones produce large amounts of β-lactamases which inhibit the β-lactam antibiotics by hydrolysis, rather than by binding. In addition, resistant clones can limit the penetration of β-lactam molecules through the outer membrane by a decreased expression of their porins. Less commonly, when β-lactamase activity together with alteration of the permeability barrier does not prevent the access of the antibiotic molecules to their target, altered penicillin-binding proteins (PBPs) can produce resistance. However, the risk of resistance emerging during therapy varies with the β-lactam drug administered. Some compounds such as cefpirome, BMY28142, SCH 34343, or imipenem appear to be associated with a low risk. In addition, emergence of resistance can be reduced by using higher dosages of β-lactam agents, or by combining them with other drugs such as aminoglycosides or quinolones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronoff SC, Shlaes DM. Factors that influence the evolution of β-lactam resistance in β-lactamase-inducible strains of Enterobacter cloacae and Pseudomonas aeruginosa. Journal of Infectious Diseases 155: 936–941, 1987

    Article  PubMed  CAS  Google Scholar 

  • Bayer AS, Norman D, Kim KS. Efficacy of amikacin and ceftazidime in experimental aortic valve endocarditis due to Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 28: 781–785, 1985

    Article  PubMed  CAS  Google Scholar 

  • Bryson L, Szybalski W. Microbial Selection. Science 116: 45–51, 1952

    Article  Google Scholar 

  • Bush K, Tanaky SH, Bonner DP, Sykes RB. Resistance caused by decreased penetration of Ã-lactam antibiotics into Enterobacter cloacae. Antimicrobial Agents and Chemotherapy 25: 555–560, 1985

    Article  Google Scholar 

  • Godfrey AJ, Bryan LE, Rabin HR. β-Lactam resistant Pseudomonas aeruginosa with modified penicillin-binding proteins emerging during cystic fibrosis treatment. Antimicrobial Agents and Chemotherapy 19: 705–711, 1981

    Article  PubMed  CAS  Google Scholar 

  • Gutmann L, Williamson R, Moreau N, Kitzis MD, Collatz E, et al. Cross-resistance to nalidixic acid, trimethoprim and chloramphenicol associated with alterations in outer membrane proteins of Klebsiella, Enterobacter and Serratia. Journal of Infectious Diseases 151: 501–507, 1985

    Article  PubMed  CAS  Google Scholar 

  • Johnson DE, Thompson B, Calia FM. Comparative activities of piperacillin, ceftazidime and amikacin, alone and in all possible combinations, against experimental Pseudomonas aeruginosa infections in neutropenic rats. Antimicrobial Agents and Chemotherapy 27: 735–739, 1985

    Article  Google Scholar 

  • Krcmery V, Antal M, Langsadl L, Knothe H. Transferable resistance to 2nd and 3rd generation cephalosporin in a strain of Enterobacter cloacae. Journal of Antimicrobial Chemotherapy 16: 533–543, 1985

    Article  PubMed  CAS  Google Scholar 

  • Levesque R, Roy P, Letarte R, Pechére JC. A plasmid-mediated cephalosporinase from Achromobacter species. Journal of Infectious Diseases 145: 753–761, 1982

    Article  PubMed  CAS  Google Scholar 

  • Livermore DM, Young YT. β-Lactamase lability and inducer power of newer β-lactam antibiotics in relation to their activity against β-lactamase-inducibility mutants of Pseudomonas aeruginosa. Journal of Infectious Diseases 155: 775–782, 1987

    Article  PubMed  CAS  Google Scholar 

  • Livermore DM, Riddle SJ, Davy KWM. Hydrolytic model for cefotaxime and ceftriaxone resistance in β-lactamase-derepressed Enterobacter cloacae. Journal of Infectious Diseases 153: 619–620, 1986

    Article  PubMed  CAS  Google Scholar 

  • Maier TW. Zubrzycki L, Coyle MB, Chila M, Warner P. Genetic analysis of drug resistance in Neisseria gonorrhoeae: production of increased resistance by the combination of two antibiotic resistance loci. Journal of Bacteriology 124: 834–842, 1975

    PubMed  CAS  Google Scholar 

  • Malouin F, Bryan LE. Modification of penicillin-binding proteins as mechanisms of β-lactam resistance. Antimicrobial Agents and Chemotherapy 30: 1–5, 1986

    Article  PubMed  CAS  Google Scholar 

  • Marchou B, Bellido F, Charnas R, Lucain C, Pechère JC. Contribution of β-lactamase hydrolysis and outer membrane permeability to ceftriaxone resistance in Enterobacter cloacae. Antimicrobial Agents and Chemotherapy 31: 1589–1595, 1987a

    Article  PubMed  CAS  Google Scholar 

  • Marchou B, Michéa-Hamzehpour M, Lucain C, Pechère JC. Resistance after β-lactam therapy in a murine model of Enterobacter cloacae infection. Journal of Infectious Diseases 156: 369–373, 1987b

    Article  PubMed  CAS  Google Scholar 

  • Michéa-Hamzehpour M, Pechère JC, Marchou N, Auckenthaler R. Combination therapy: a way to limit emergence of resistance? American Journal of Medicine 80(6B): 138–142, 1986

    Article  PubMed  Google Scholar 

  • Parr TR, Bryan LE. Mechanism of resistance of an ampicillin-resistant, β-lactamase negative clinical isolate of Haemophilus influenzae type b to β-lactam antibiotics. Antimicrobial Agents and Chemotherapy 25: 747–753, 1984

    Article  PubMed  CAS  Google Scholar 

  • Pechère JC, Guay R, Dubois J, Letarte R. Hydrolysis of cefotaxime by a β-lactamase from Bacteroides fragilis. Antimicrobial Agents and Chemotherapy 17: 1001–1003, 1980

    Article  PubMed  Google Scholar 

  • Pechère JC, Marchou B, Michéa-Hamzehpour M, Auckenthaler R. Emergence of resistance after therapy with antibiotics used alone or combined in a murine model. Journal of Antimicrobial Chemotherapy 17 (Suppl. A): 11–18, 1986

    PubMed  Google Scholar 

  • Sanders CC. Novel resistance selected by the new expanded-spectrum cephalosporins: a concern. Journal of Infectious Diseases 147: 585–589, 1983

    Article  PubMed  CAS  Google Scholar 

  • Sanders CC, Sanders Jr WE, Goering RV. In vitro antagonism of β-lactam antibiotics by cefoxitin. Antimicrobial Agents and Chemotherapy 21: 968–975, 1982

    Article  PubMed  CAS  Google Scholar 

  • Sirot D, Sirot J, Labia R, Morand A, Courvalin P, et al. Resistance transférable aux céphalosporines de 3éme génération et aux aminosides chez des souches hospitaliéres de Klebsiella pneumoniae; identification d’une nouvelle β-lactamase. Réunion Interdisciplinaire de Chimiothérapie Antiinfectieuse, Paris, 44C5, 1986

  • Takahashi I, Sawai T, Ando T, Yamagishi S. Cefoxitin resistance by a chromosomal cephalosporinase in Escherichia coll. Journal of Antibiotics 33: 1037–1042, 1980

    Article  PubMed  CAS  Google Scholar 

  • Then RL, Angehrn P. Trapping of non-hydrolyzable cephalosporins by cephalosporinases in Enterobacter cloacae and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 21: 711–717, 1982

    Article  PubMed  CAS  Google Scholar 

  • Vu H, Nikaido H. Role of Ã-lactam hydrolysis in the mechanism of resistance of a β-lactamase constitutive Enierobacter cloacae strain to expanded-spectrum β-lactams. Antimicrobial Agents and Chemotherapy 27: 393–398, 1985

    Article  PubMed  CAS  Google Scholar 

  • Werner W, Sanders CC, Sanders Jr WE, Goering RV. Role of β-lactamase and outer membrane proteins in multiple β-iactam resistance of Enterobacter cloacae. Antimicrobial Agents and Chemotherapy 27: 455–459, 1985

    Article  PubMed  CAS  Google Scholar 

  • Yotsuji A, Minami S, Inoue M, Mitsuhashi S. Properties of novel β-lactamase produced by Bacteroides fragilis. Antimicrobial Agents and Chemotherapy 24: 925–930, 1983

    Article  PubMed  CAS  Google Scholar 

  • Young L. Aminoglycosides in combination therapy. Chemotherapia 3 (Suppl.): 38–41, 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pechère, JC. Emergence of Resistance during β-Lactam Therapy of Gram-Negative Infections. Drugs 35 (Suppl 2), 22–28 (1988). https://doi.org/10.2165/00003495-198800352-00007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-198800352-00007

Keywords

Navigation