Skip to main content
Log in

In Vitro Antibacterial Effects of Cephalosporins

  • Published:
Drugs Aims and scope Submit manuscript

Summary

Data from many studies on the antibacterial effects of cephalosporins are reviewed. Variations in reports from different workers occur because of the composition of the strains used to carry out determination of minimum inhibitory concentrations (MICs). For this reason, standard MIC50/MIC90 data are used sparingly. Where data are available, the activity has been expressed as the mode activity against fully sensitive strains of a species; and the activity against resistant strains is specified, as far as the data allow, for the mechanisms of resistance exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acar, J.F.; Goldstein, F.N.; Kitzis, M.D. and Eyquem, M.T.: Resistance pattern of anaerobic bacteria isolated in a general hospital during a two-year period. Journal of Antimicrobial Chemotherapy 8(Suppl. D): 9 (1981).

    PubMed  CAS  Google Scholar 

  • Allan, J.D.; Eliopoulos, G.M.; Ferraro, M.J. and Moellering, R.C. Jr: Comparative in vitro activities of cefpiramide and apalcillin individually and in combination. Antimicrobial Agents and Chemotherapy 27: 782 (1985).

    PubMed  CAS  Google Scholar 

  • Anthony, B.F. and Concepcion, N.F.: Group B Streptococcus in a general hospital. Journal of Infectious Diseases 132: 561 (1975).

    PubMed  CAS  Google Scholar 

  • Ayliffe, G.A.J.; Lilly, H.A. and Lowbury, E.J.L.: Decline of the hospital staphylococcus? Incidence of multi-resistant Staph. aureus in three Birmingham hospitals. Lancet 1: 538 (1979).

    PubMed  CAS  Google Scholar 

  • Baker, C.J.; Webb, B.J. and Barrett, F.F.: Antimicrobial susceptibility of Group B streptococci isolated from a variety of clinical sources. Antimicrobial Agents and Chemotherapy 10: 128 (1976).

    PubMed  CAS  Google Scholar 

  • Barber, M. and Waterworth, P.M.: Penicillinase-resistant penicillins and cephalosporins. British Medical Journal 2: 344 (1964).

    PubMed  CAS  Google Scholar 

  • Barbour, A.G.: Properties of penicillin-binding proteins in Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy 19: 316 (1981).

    PubMed  CAS  Google Scholar 

  • Barry, A.L.; Jones, R.N.; Thomsberry, C.; Fuchs, P.C.; Gerlack, E.H. and Sommers, H.M.: Ceftizoxime: collaborative multiphased in vitro evaluation including tentative interpretive standards for disc susceptibility tests, beta-lactamase stability and inhibition. Journal of Antimicrobial Chemotherapy 10(Suppl. C): 25 (1982).

    PubMed  CAS  Google Scholar 

  • Basker, M.J.; Edmonson, R.A. and Sutherland, R.: Comparative stabilities of penicillins and cephalosporins to staphylococcal beta-lactamase and activities against Staph. aureus. Journal of Antimicrobial Chemotherapy 6: 333 (1980).

    PubMed  CAS  Google Scholar 

  • Bauernfeind, A.: Cefotetan: profile and in vitro activity. Journal of Antimicrobial Chemotherapy 11(Suppl. A): 19 (1983).

    PubMed  CAS  Google Scholar 

  • Bauernfeind, A. and Petermuller, C.: Ceftizoxime activity alone and in combination with monobactam. Proceedings of the 13th International Congress of Chemotherapy, Tom. 4, SS4.2/6.4 (1983).

    Google Scholar 

  • Benlloch, M.; Tomasz, A. and Sorian, A.F.: Cefmetazole (CS-1170): a new cephamycin with activity against Gram-negative bacilli and staphylococci. Journal of Antimicrobial Chemotherapy 10: 347 (1982).

    PubMed  CAS  Google Scholar 

  • Bill, N.J. and Washington, J.A. II: Comparison of in vitro activity of cephalexin, cephradine and cefaclor. Antimicrobial Agents and Chemotherapy 11: 470 (1977).

    PubMed  CAS  Google Scholar 

  • Bourbeau, P. and Campos, J.M.: Current antibiotic susceptibility of group A beta-haemolytic streptococci. Journal of Infectious Diseases 145: 916 (1982).

    PubMed  CAS  Google Scholar 

  • Bourgault, A.M.; Wilson, W.R. and Washington, J.A. II: Antimicrobial susceptibilities of species of viridans streptococci. Journal of Infectious Diseases 140: 316 (1979).

    PubMed  CAS  Google Scholar 

  • Brown, W.J. and Waatti, P.E.: Susceptibility testing of clinically isolated anaerobic bacteria by an agar dilution technique. Antimicrobial Agents and Chemotherapy 17: 629 (1980).

    PubMed  CAS  Google Scholar 

  • Bulger, R. and Sherris, J.C.: Decreased incidence of antibiotic resistance among Staph. aureus. A study via a university hospital over a nine year period. Annals of Internal Medicine 69: 1099 (1968).

    PubMed  CAS  Google Scholar 

  • Chen, H.Y. and Williams, J.D.: The killing effects of cefathiamidine or ampicillin alone and in combination with gentamicin against enterococci. Journal of Antimicrobial Chemotherapy 12: 19 (1983).

    PubMed  CAS  Google Scholar 

  • Chow, A.W. and Bednorz, D.: Comparative in vitro activity of newer cephalosporins against anaerobic bacteria. Antimicrobial Agents and Chemotherapy 14: 668 (1978).

    PubMed  CAS  Google Scholar 

  • Chow, A.W. and Finegold, S.M.: In-vitro activity of ceftizoxime against anaerobic bacteria and comparison with other cephalosporins. Journal of Antimicrobial Chemotherapy 10(Suppl. C): 45 (1982).

    PubMed  CAS  Google Scholar 

  • Clarke, A.M. and Zemcov, S.J.V.: In vitro activity of ceftazidime compared with other beta-lactam antibiotics. Journal of Antimicrobial Chemotherapy 8(Suppl. B): 57 (1981).

    PubMed  CAS  Google Scholar 

  • Clarke, A.M.; Zemcov, S.J.V. and Wright, J.M.: HR810 and BMY 28142: two new cephalosporins with broad spectrum activity: an in vitro comparison with other beta-lactam antibiotics. Journal of Antimicrobial Chemotherapy 15: 305 (1985).

    PubMed  CAS  Google Scholar 

  • Cuchural, G.J.; Tally, F.P.; Jacobus, N.V.; Marsh, P.K. and Mayhew, J.W.: Cefoxitin inactivation by Bacteroides fragilis. Antimicrobial Agents and Chemotherapy 24: 936 (1983).

    PubMed  CAS  Google Scholar 

  • Cullman, W.; Dalhoff, A. and Dick, W.: Nonspecific induction of beta-lactamases in Enterobacter cloacae. Journal of General Microbiology 130: 1781 (1984).

    Google Scholar 

  • Curtis, N.A.C.; Orr, D.; Ross, G.W. and Boulton, M.G.: Affinities of penicillin and cephalosporins for the penicillin-binding proteins of Escherichia coli K-12 and their antibacterial activity. Antimicrobial Agents and Chemotherapy 16: 533 (1979a).

    PubMed  CAS  Google Scholar 

  • Curtis, N.A.C.; Ross, G.W. and Boulton, M.G.: Effect of 7-alpha-methoxy substitution of cephalosporins upon their affinity for the penicillin binding proteins of E. coli K12. Comparison with antibacterial activity and inhibition of membrane bound model transpeptidase activity. Journal of Antimicrobial Chemotherapy 5: 391 (1979b).

    PubMed  CAS  Google Scholar 

  • Dalhoff, A.: Interaction of mezlocillin and cefoxitin against Proteus morganii in the granuloma pouch model. European Journal of Clinical Microbiology 1: 243 (1982).

    PubMed  CAS  Google Scholar 

  • Datta, N. and Kontomichalou, P.: Penicillinase synthesis controlled by infectious R-factors in Enterobacteriaceae. Nature (London) 208: 239 (1965).

    CAS  Google Scholar 

  • Dette, G.A.; Knothe, H. and Henckel, S.: Cefotetan: antimicrobial activity in vitro compared with that of cefotaxime. Journal of Antimicrobial Chemotherapy 11(Suppl. A): 11 (1983).

    PubMed  CAS  Google Scholar 

  • Dornbusch, K.; Nord, C.E. and Olsson-Liljequist, B.: Antibiotic susceptibility of anaerobic bacteria with special reference to Bacteroides fragilis. Scandinavian Journal of Infectious Diseases 19 (Suppl.): 17 (1979).

    PubMed  CAS  Google Scholar 

  • Dougherty, T.J.; Koller, A.G. and Tomasz, A.: Penicillin-binding proteins of penicillin-susceptible and intrinsically-resistant Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy 18: 730 (1980).

    PubMed  CAS  Google Scholar 

  • Drulak, M.W. and Chow, A.E.: Comparative in vitro activity of ceftizoxime, cefoperazone and cefoxitin against anaerobic bacteria. Antimicrobial Agents and Chemotherapy 5: 683 (1981).

    Google Scholar 

  • Dubois, J. and Pechere, J.C.: Activity of ten antimicrobial agents against anaerobic bacteria. Journal of Antimicrobial Chemotherapy 4: 329 (1978).

    PubMed  CAS  Google Scholar 

  • Eagle, H. and Musselman, A.D.: The rate of bactericidal action of penicillin in vitro as a function of its concentration, and its paradoxically reduced activity at high concentrations against certain organisms. Journal of Experimental Medicine 88: 99 (1948).

    PubMed  CAS  Google Scholar 

  • Editorial: Methicillin against Staphylococcus aureus. Journal of Hospital Infection 4: 327 (1983).

  • Ernst, E.C.; Berger, S.; Barza, M.; Jacobus, N.V. and Tally, F.P.: Activity of cefamandole and other cephalosporins against aerobic and anaerobic bacteria. Antimicrobial Agents and Chemotherapy 9: 852 (1976).

    PubMed  CAS  Google Scholar 

  • Eykyn, S.; Jenkins, C.; King, A. and Phillips, I.: Antibacterial activity of cefuroxime, a new cephalosporin antibiotic, compared with that of cephaloridine, cephalothin and cefamandole. Antimicrobial Agents and Chemotherapy 9: 690 (1976).

    PubMed  CAS  Google Scholar 

  • Finland, M.; Gamer, C.; Wilcox, C. and Sabath, L.D.: Susceptibility of beta-haemolytic streptococci to 65 antibacterial agents. Antimicrobial Agents and Chemotherapy 9: 11 (1976a).

    PubMed  CAS  Google Scholar 

  • Finland, M.; Gamer, C.; Wilcox, C. and Sabath, L.D.: Susceptibility of pneumococci and Haemophilus influenzae to antimicrobial agents. Antimicrobial Agents and Chemotherapy 9: 274 (1976b).

    PubMed  CAS  Google Scholar 

  • Fu, K.P. and Neu, H.C.: Synergistic activity of cefoperazone in combination with β-lactamase inhibitors. Journal of Antimicrobial Chemotherapy 7: 287 (1980).

    Google Scholar 

  • Fuchs, P.C.; Jones, R.N.; Barry, A.L. and Thomsberry, C.: Evaluation of the in vitro activity of BMYT-28142, a new broad spectrum cephalosporin. Antimicrobial Agents and Chemotherapy 27: 679 (1985).

    PubMed  CAS  Google Scholar 

  • Georgopapadakou, N.H. and Liu, F.Y.: Penicillin binding proteins in bacteria. Antimicrobial Agents and Chemotherapy 18: 148 (1980).

    PubMed  CAS  Google Scholar 

  • Goldstein, E.J.C. and Citron, D.M.: Comparative in vitro activity of cefbuperazone against anaerobic bacteria isolated from community hospitals. Antimicrobial Agents and Chemotherapy 27: 162 (1985).

    PubMed  CAS  Google Scholar 

  • Gootz, T.D.; Sanders, C.C. and Sanders, W.E.: In vitro activity of furazlocillin (Bay k4999) compared with that of mezlocillin, piperacillin and standard beta-lactam antibiotics. Antimicrobial Agents and Chemotherapy 15: 783 (1979).

    PubMed  CAS  Google Scholar 

  • Goto, S.; Ogawa, M.; Kaneko, Y.; Kuwahara, W.; Tsuchiya, K.; Kondo, M.; Nishi, T. and Nagatomo, H.: SCE-129, a new antipseudomonal cephalosporin, in vitro and in vivo antibacterial activity; in Siegenthaler and Luthy (Eds) Current Chemotherapy, Proceedings of the 13th International Congress of Chemotherapy, p. 835 (American Society for Microbiology, Washington DC 1978).

    Google Scholar 

  • von Graevenitz, A.: Clinical role of infrequently encountered non-fermenters; in Gilardi (Ed.) Glucose non-fermentative gramnegative bacteria in clinical microbiology (CRC Press, Florida, 1978).

    Google Scholar 

  • von Graevenitz, A. and Bucher, C.: The effect of N-formimidoyl thienamycin, ceftazidime, cefotiam, ceftriaxone and cefotaxime on non-fermentative Gram-negative rods, Aeromonas, Plesiomonas and Enterobacter agglomerans. Infection 10: 293 (1982).

    Google Scholar 

  • von Graevenitz, A. and Zollinger-Iten, J.: Resistance patterns of non-fermentative Gram-negative rods and aeromonads to betalactam antibiotics: a diagnostic aid. Zentralblatt für Bakteriologie und Hygiene A259: 201 (1985).

    Google Scholar 

  • Greenwood, D.; Pearson, N.; Eley, A. and O’Grady, F.: Comparative in vitro activity of cefotaxime and ceftizoxime (FK 749); new cephalosporins with exceptional potency. Antimicrobial Agents and Chemotherapy 17: 397 (1980).

    PubMed  CAS  Google Scholar 

  • Grimm, H.: In vitro activity of azlocillin and other beta-lactam antibiotics against enterococci. Journal of Antimicrobial Chemotherapy 11(Suppl. B): 43 (1983).

    PubMed  CAS  Google Scholar 

  • Gutmann, L. and Tomasz, A.: Penicillin-resistant and penicillintolerant mutants of Group A streptococci. Antimicrobial Agents and Chemotherapy 22: 128 (1982).

    PubMed  CAS  Google Scholar 

  • Gwynn, M.N. and Rolinson, G.N.: Selection of variants of Gramnegative bacteria with elevated production of type I beta-lactamases. Journal of Antimicrobial Chemotherapy 11: 577 (1983).

    PubMed  CAS  Google Scholar 

  • Hall, W.H. and Opfer, B.J.: Influence of inoculum size on comparative susceptibilities of penicillinase-positive and negative Neisseria gonorrhoeae to 31 antimicrobial agents. Antimicrobial Agents and Chemotherapy 26: 192 (1984).

    PubMed  CAS  Google Scholar 

  • Hamilton-Miller, J.M.T.: Comparative activity of ampicillin and seven cephalosporins against group D streptococci. Journal of Clinical Pathology 27: 828 (1974).

    PubMed  CAS  Google Scholar 

  • Hamilton-Miller, J.M.T.: Microbial investigation of cephalosporins. Drugs 34(Suppl. 2) 23 (1987).

    PubMed  CAS  Google Scholar 

  • Hamilton-Miller, J.M.T.; Brumfitt, W. and Reynolds, A.V.: Cefotaxime (HR756) a new cephalosporin with exceptional broad spectrum activity in vitro. Journal of Antimicrobial Chemotherapy 4: 4376 (1978).

    Google Scholar 

  • Handwerger, S. and Tomasz, A.: Antibiotic tolerance among clinical isolates of bacteria. Reviews of Infectious Diseases 7: 368 (1985).

    PubMed  CAS  Google Scholar 

  • Hansen, S.L.: Variation in susceptibility patterns of species within the Bacteroides fragilis group. Antimicrobial Agents and Chemotherapy 17: 686 (1980).

    PubMed  CAS  Google Scholar 

  • Hansman, D. and Bullen, M.M.: A resistant pneumococcus. Lancet 2: 264 (1967).

    Google Scholar 

  • Hansman, D.; Glasgow, H.N.; Sturt, J.; Devitt, L. and Douglas, R.: Pneumococci insensitive to penicillin. Nature (London) 230: 407 (1971).

    CAS  Google Scholar 

  • Heimdahl, A.; von Konow, L. and Norel, C.E.: Isolation of betalactamase-producing Bacteroides strains associated with clinical failures with penicillin treatment of human orofacial infections. Archives of Oral Biology 25: 689 (1980).

    PubMed  CAS  Google Scholar 

  • Hennessey, T.D.: Cefotetan: a compilation of susceptibility data of clinical isolates; in Lode, Periti and Strachan (Eds) Cefotetan, a long acting antibiotic, p. 14 (Churchill Livingstone, Edinburgh 1985).

    Google Scholar 

  • Howes, V.J. and Mitchell, R.G.: Meningitis due to relatively penicillin-resistant pneumococcus. British Medical Journal 1: 996 (1976).

    PubMed  CAS  Google Scholar 

  • Jacobs, J.Y.; Livermore, D.M. and Davy, K.W.M.: Pseudomonas aeruginosa beta-lactamase as a defence against azlocillin, mezlocillin and piperacillin. Journal of Antimicrobial Chemotherapy 14: 229 (1984).

    Google Scholar 

  • Jones, R.N. and Gerlach, H.E.: Antimicrobial activity of HR 810 against 419 strict anaerobic bacteria. Antimicrobial Agents and Chemotherapy 27: 413 (1985).

    PubMed  CAS  Google Scholar 

  • Jones, R.N.; Thomsberry, C. and Barry, A.L.: In vitro evaluation of HR810, a new wide-spectrum aminothiazolyl alpha-methoxyimino cephalosporin. Antimicrobial Agents and Chemotherapy 25: 710 (1984).

    PubMed  CAS  Google Scholar 

  • Jones, W.F. Jr; Fieldman, H.A. and Finland, M.: Susceptibility of haemolytic streptococci; other than those of group D, to eleven antibiotics in vitro. American Journal of Clinical Pathology 27: 159 (1957).

    PubMed  Google Scholar 

  • Jorgensen, J.H.; Crawford, S.A. and Alexander, G.A.: Comparison of moxalactam (LY127935) and cefotaxime against anaerobic bacteria. Antimicrobial Agents and Chemotherapy 17: 901 (1980).

    PubMed  CAS  Google Scholar 

  • King, A.; Warren, C.; Shannon, K. and Phillips, I.: The in vitro antibacterial activity of cefotaxime compared with that of cefuroxime and cefoxitin. Journal of Antimicrobial Chemotherapy 6: 479 (1980).

    PubMed  CAS  Google Scholar 

  • King, A.; Warren, C.; Shannon, I. and Phillips, I.: In vitro antibacterial activity of cefoperazone, a piperazine cephalosporin. Journal of Antimicrobial Chemotherapy 8: 107 (1981).

    PubMed  CAS  Google Scholar 

  • Knothe, H. and Dette, G.A.: The in vitro activity of ceftazidime against clinically important pathogens. Journal of Antimicrobial Chemotherapy 8(Suppl. B): 33 (1981).

    PubMed  CAS  Google Scholar 

  • Lacey, R.W. and Stokes, A.: Susceptibility of the ‘penicillinase-resistant’ penicillins and cephalosporins to penicillinase of Staph. aureus. Journal of Clinical Pathology 30: 35 (1977).

    PubMed  CAS  Google Scholar 

  • Leung, T. and Williams, J.D.: β-Lactamases of subspecies of Bacteroides fragilis. Journal of Antimicrobial Chemotherapy 4: 47 (1978).

    PubMed  CAS  Google Scholar 

  • Livermore, D.M.: Beta-lactamase induction in P. aeruginosa by imipenem and its influences on susceptibility tests. Abstract S-78-3, 14th International Congress of Chemotherapy, Kyoto, Japan, 1985.

    Google Scholar 

  • Livermore, D.M.: Mechanisms of resistance to cephalosporin antibiotics. Drugs 34(Suppl. 2): 64 (1987).

    PubMed  CAS  Google Scholar 

  • Livermore, D.M.; Williams, R.J. and Williams, J.D.: Comparison of the beta-lactamase stability of cefoperazone, cefotaxime, cefsulodin, ceftazidime, moxalactam and ceftriaxone against Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy 8: 323 (1981a).

    PubMed  CAS  Google Scholar 

  • Livermore, D.M.; Williams, R.J. and Williams, J.D.: In vitro activity of MK0787 (N-formimidoyl thienamycin) against Pseudomonas aeruginosa and other Gram-negative rods and its stability to their beta-lactamases. Journal of Antimicrobial Chemotherapy 8: 355 (1981b).

    PubMed  CAS  Google Scholar 

  • Livermore, D.M. and Williams, R.J.: Role of plasmid-mediated beta-lactamases in the resistance of Pseudomonas aeruginosa to new beta-lactams; in Periti and Grassi (Eds) Current chemotherapy and immunotherapy, p. 754 (American Society for Microbiology, Washington DC, 1982).

    Google Scholar 

  • Livermore, D.M.; Williams, J.D. and Davy, K.W.M.: Cephalosporin resistance in Pseudomonas aeruginosa with special reference to the proposed trapping of antibiotics by beta-lactamase. Chemioterapia 4: 28 (1985).

    PubMed  CAS  Google Scholar 

  • Maskell, J.P.; Nasu, M. and Williams, J.D.: Cephalosporin-resistance in the Bacteroides fragilis group and the effect of clavulanic acid. Journal of Antimicrobial Chemotherapy 13: 23 (1984).

    PubMed  CAS  Google Scholar 

  • Medeiros, A.A.: Beta-lactamases. British Medical Bulletin 40: 18 (1984).

    PubMed  CAS  Google Scholar 

  • Medeiros, A.A. and O’Brien, T.F.: Mechanisms of resistance to cephalosporins in ampicillin-resistant Escherichia coli. Journal of Infectious Diseases 128 (Suppl.): S335 (1973).

    PubMed  CAS  Google Scholar 

  • Moellering, R.C. Jr; Watson, B.K. and Kunz, L.J.: Endocarditis due to group D streptococci. Comparison of disease caused by Streptococcus bovis with that produced by the enterococci. American Journal of Medicine 57: 239 (1974).

    PubMed  Google Scholar 

  • Moellering, R.C. Jr; Korzeniowski, O.M.; Sande, M.A. and Wennerstein, C.B.: Species-specific resistance to antimicrobial synergism in Streptococcus faecium and Streptococcus faecalis. Journal of Infectious Diseases 140: 203 (1979).

    PubMed  CAS  Google Scholar 

  • Moosdeen, F.; Maskell, J.; Philpott-Howard, J. and Williams, J.D.: Cefotetan activity against Gram-negative aerobes and anaerobes. Journal of Antimicrobial Chemotherapy 11(Suppl. A): 59 (1983).

    PubMed  CAS  Google Scholar 

  • Murray, B.E. and Mederski-Samoraj, B.: Transferable beta-lac-tamase. A new mechanism for in vitro penicillin resistance in Streptococcus faecalis. Journal of Clinical Investigation 72: 1168 (1983).

    PubMed  CAS  Google Scholar 

  • Nasu, M.; Maskell, J.P.; Williams, R.J. and Williams, J.D.: In vitro activity of MK0787 (N-formimidoyl thienamycin) and other beta-lactam compounds against Bacteroides spp. Antimicrobial Agents and Chemotherapy 20: 433 (1981a).

    PubMed  CAS  Google Scholar 

  • Nasu, M.; Nakatomi, M.; Saito, A. and Hara, K.: Susceptibility of the species of genus Bacteroides recently isolated from clinical specimens to 20 antimicrobial agents. Arzneimittel-Forschung/Drug Research 31: 764 (1981b).

    CAS  Google Scholar 

  • Neu, H.C. and Fu, K.P.: In vitro antibacterial activity and betalactamase stability of SCE-129, a new cephalosporin. Antimicrobial Agents and Chemotherapy 15: 646 (1979).

    PubMed  CAS  Google Scholar 

  • Neu, H.C. and Labthavikul, P.: In vitro activity and beta-lactamase stability of cefmenoxime. Antimicrobial Agents and Chemotherapy 22: 316 (1982).

    PubMed  CAS  Google Scholar 

  • Neu, H.C.; Meropol, N.J. and Fu, K.P.: Antibacterial activity of ceftriaxone (Ro 13-9904), a beta-lactamase-stable cephalosporin. Antimicrobial Agents and Chemotherapy 19: 414 (1981).

    PubMed  CAS  Google Scholar 

  • Nikaido, H.; Rosenberg, E.Y. and Foulds, J.: Porin channels in Escherichia coli: Studies with beta-lactams and intact cells. Journal of Bacteriology 153: 232 (1983).

    PubMed  CAS  Google Scholar 

  • Nord, C.E. and Olsson-Liljequist, B.: Resistance to beta-lactam antibiotics in Bacteroides species. Journal of Antimicrobial Chemotherapy 8(Suppl. D): 33 (1981).

    PubMed  CAS  Google Scholar 

  • O’Callaghan, C.H.: Classification of cephalosporins by their antibacterial activity and pharmacokinetic properties. Journal of Antimicrobial Chemotherapy 1 (Suppl.): 1 (1975).

    PubMed  Google Scholar 

  • O’Callaghan, C.H.: Description and classification of the newer cephalosporins and their relationships with the established compounds. Journal of Antimicrobial Chemotherapy 5: 635 (1979).

    PubMed  Google Scholar 

  • O’Callaghan, C.H.; Sykes, R.B.; Griffiths, A. and Thornton, J.E.: Cefuroxime, a new cephalosporin antibiotic: activity in vitro. Antimicrobial Agents and Chemotherapy 9: 511 (1976).

    PubMed  Google Scholar 

  • Owens, W.E. and Finegold, S.M.: Comparative in vitro susceptibilities of anaerobic bacteria to cefmenoxime, cefotetan and N-formimidoyl thienamycin. Antimicrobial Agents and Chemotherapy 23: 626 (1983).

    PubMed  CAS  Google Scholar 

  • Parker, M.T.; Ashehov, E.H.; Hewitt, J.H.; Nakhla, L.S. and Brock, B.M.: Endemic staphylococcal infection in hospitals. Annals of the New York Academy of Sciences 236: 466 (1974).

    PubMed  CAS  Google Scholar 

  • Parker, M.T. and Hewitt, J.H.: Methicillin resistance in Staphylococcus aureus. Lancet 1: 800 (1970).

    PubMed  CAS  Google Scholar 

  • Percival, A. and Cumberland, N.: Antimicrobial susceptibilities of Gram-negative anaerobes. Journal of Antimicrobial Chemotherapy 4(Suppl. C): 3 (1978).

    PubMed  CAS  Google Scholar 

  • Phillips, I.: Beta-lactamase-producing penicillin-resistant gonococcus. Lancet 2: 656 (1976).

    PubMed  CAS  Google Scholar 

  • Phillips, I. and Shannon, K.: Beta-lactamase producing Neisseria gonorrhoeae, in Norrby (Ed.) New Aspects of Cephalosporins, p. 23 (Glaxo, Sweden 1978).

    Google Scholar 

  • Phillips, I.; Warren, C.; Shannon, K.; King, A. and Hanslow, D.: Ceftazidime: in vitro antibacterial activity and susceptibility to beta-lactamases compared with that of cefotaxime, moxalactam and other beta-lactam antibiotics. Journal of Antimicrobial Chemotherapy 8(Suppl. B): 23 (1981a).

    PubMed  CAS  Google Scholar 

  • Phillips, I.; Warren, C.; Taylor, E.; Timewell, R. and Eykyn, S.: The antimicrobial susceptibility of anaerobic bacteria in a London teaching hospital. Journal of Antimicrobial Chemotherapy 8(Suppl. D): 17 (1981b).

    PubMed  CAS  Google Scholar 

  • Phillips, I.; King, A.; Shannon, K. and Warren, C.: Cefotetan: in vitro antibacterial activity and susceptibility to beta-lactamases. Journal of Antimicrobial Chemotherapy 11(Suppl. A): 1 (1983).

    PubMed  CAS  Google Scholar 

  • Philpott-Howard, J. and Williams, J.D.: Activity of cephalosporin antibiotics against Haemophilus influenzae. Scandinavian Journal of Infectious Diseases (Suppl. 39): 109 (1983).

    Google Scholar 

  • Pickett, M.J.: New methodology for identification of non-fermenters: rapid methods; in Gilardi (Ed.) Glucose Non-Fermentative Gram-Negative Bacteria in Clinical Microbiology, p. 155 (CRC Press, Florida, 1978).

    Google Scholar 

  • Piddock, L.J.V. and Wise, R.: Cefoxitin resistance in Bacteroides species: evidence indicating two mechanisms causing decreased susceptibility. Journal of Antimicrobial Chemotherapy 19: 161 (1987).

    PubMed  CAS  Google Scholar 

  • Piot, P.; van Dyck, E.; Cofaert, J. and Ursi, J.P.: In vitro activity of cefotaxime and other cephalosporins against Neisseria gonorrhoeae. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 47 (1980).

    PubMed  CAS  Google Scholar 

  • Prabhala, R.H.; Thadepalli, H.; Ras, B.; Bansal, M.B. and Marshall, R.: In vitro activity of cefbuperazone, a new cephamycin, against anaerobic bacteria. Antimicrobial Agents and Chemotherapy 27: 640 (1985).

    PubMed  CAS  Google Scholar 

  • Rashtchian, R.; Dukes, G.R. and Booth, S.J.: Transferable resistance to cefoxitin in Bacteroides thetaiotaomicron. Antimicrobial Agents and Chemotherapy 22: 701 (1982).

    PubMed  CAS  Google Scholar 

  • Richmond, M.H.: Antibiotic inactivation and its genetic basis; in Brown (Ed.) Resistance of Pseudomonas aeruginosa, p.1 (John Wiley & Sons, London 1975).

    Google Scholar 

  • Richmond, M.H. and Sykes, R.B.: The beta-lactamases of Gramnegative bacteria and their possible physiological role; in Tempest and Rose (Eds) Advances in Microbial Physiology 9, p.31 (Academic Press, London 1973).

    Google Scholar 

  • Rolfe, R.D. and Finegold, S.M.: Comparative in vitro activity of new beta-lactam antibiotics against anaerobic bacteria. Antimicrobial Agents and Chemotherapy 20: 600 (1981).

    PubMed  CAS  Google Scholar 

  • Rolston, K.V.I.; LeFrock, J.L. and Schell, R.F.: Activity of nine antimicrobial agents against Lancefield Group C and Group G streptococci. Antimicrobial Agents and Chemotherapy 22: 930 (1982).

    PubMed  CAS  Google Scholar 

  • Rossi, L.; Tonin, E.; Cheng, Y.R. and Fontana, R.: Regulation of penicillin-binding protein activity: description of a methicillininducible penicillin-binding protein in Staph. aureus. Antimicrobial Agents and Chemotherapy 27: 828 (1985).

    PubMed  CAS  Google Scholar 

  • Sabath, L.D.; Garner, C.; Wilcox, C. and Finland, M.: Effect of inoculum and of beta-lactamase on the anti-staphylococcal activity of 13 penicillins and cephalosporins. Antimicrobial Agents and Chemotherapy 8: 344 (1975).

    PubMed  CAS  Google Scholar 

  • Sanders, C.C.: Novel resistance selected by the new expanded cephalosporins. Journal of Infectious Diseases 147: 585 (1983).

    PubMed  CAS  Google Scholar 

  • Sanders, C.C. and Sanders, W.E.: Microbial resistance to newer generation beta-lactam antibiotics: clinical and laboratory implications. Journal of Infectious Diseases 151: 399 (1985).

    PubMed  CAS  Google Scholar 

  • Sanders, C.C.; Sanders, W.E. and Goering, R.V.: In vitro antagonism of beta-lactam antibiotics by cefoxitin. Antimicrobial Agents and Chemotherapy 21: 968 (1982).

    PubMed  CAS  Google Scholar 

  • Schell, R.F.; Smith, B.R.; LeFrock, J.L. and Fransisco, M.: Antimicrobial activity of cefmenoxime compared to those of other cephalosporins. Antimicrobial Agents and Chemotherapy 23: 774 (1983).

    PubMed  CAS  Google Scholar 

  • Schell, R.F.; Fransisco, M.; Bihl, J.A. and LeFrock, J.L.: The activity of ceftazidime compared with those of aztreonam, newer cephalosporins and Sch 29482 against non-fermentative Gramnegative bacilli. Chemotherapy 31: 181 (1985).

    PubMed  CAS  Google Scholar 

  • Schrinner, E.; Limbert, M.; Penasse, L. and Lutz, A.: Antibacterial activity of cefotaxime and other newer cephalosporins (in vitro and in vivo). Journal of Antimicrobial Chemotherapy 6(Suppl. A): 25 (1980).

    PubMed  CAS  Google Scholar 

  • Shadomy, S.; Wagner, G. and Carver, M.: In vitro activity of five oral cephalosporins against aerobic pathogenic bacteria. Antimicrobial Agents and Chemotherapy 12: 609 (1977).

    PubMed  CAS  Google Scholar 

  • Stamm, J.M.: Cefmenoxime: in vitro activity and properties; in Spitzy and Karrer (Eds) Proceedings of the 13th International Congress of Chemotherapy, Tom. 4, SS4.2/12-1 (Verlag H. Egermann, Vienna 1983).

  • Sutherland, R.; Croydon, E.A.P. and Rollinson, G.N.: Amoxycillin: a new semi-synthetic penicillin. British Medical Journal 3: 13 (1972).

    PubMed  CAS  Google Scholar 

  • Sutter, V.L. and Finegold, S.M.: Susceptibility of anaerobic bacteria to 23 antimicrobial agents. Antimicrobial Agents and Chemotherapy 10: 736 (1976).

    PubMed  CAS  Google Scholar 

  • Sykes, R.C.B. and Matthew, M.: The beta-lactamases of Gramnegative bacteria and their role in resistance to beta-lactam antibiotics. Journal of Antimicrobial Chemotherapy 2: 115 (1976).

    PubMed  CAS  Google Scholar 

  • Thabaut, A.; Durasoir, J.L. and Saliou, P.: Comparative in vitro activity of seven semi-synthetic penicillins against aerobic Gram-negative bacteria and enterococci. Infection 3(Suppl. 1): 249 (1982).

    Google Scholar 

  • Thabaut, A.; Philippon, A. and Meyran, M.: Beta-lactamases of Pseudomonas aeruginosa and susceptibility against beta-lactam antibiotics. Chemioterapia 4: 36 (1985).

    PubMed  CAS  Google Scholar 

  • Timewell, R.; Taylor, E. and Phillips, I.: The beta-lactamases of Bacteroides species. Journal of Antimicrobial Chemotherapy 7: 137 (1981).

    PubMed  CAS  Google Scholar 

  • Toala, P.; McDonald, A.; Wilcox, C. and Finland, M.: Susceptibility of group D Streptococcus (Enterococcus) to 21 antibiotics in vitro, with special reference to 2 species differences. American Journal of Medical Science 258: 416 (1969).

    CAS  Google Scholar 

  • Tolxdorff-Neutzling, R.M. and Wiedemann, B.: HR810, a cephalosporin with low affinity for Enterobacter cloacae beta-lactamase. European Journal of Clinical Microbiology 2: 352 (1982).

    Google Scholar 

  • Tomasz, A.: On the mechanism of the irreversible antimicrobial effects of beta-lactams. Philosophical Transactions of the Royal Society of London B 289: 303 (1980).

    CAS  Google Scholar 

  • Tomasz, A.; Albino, A. and Zanati, E.: Multiple antibiotic resistance in a bacterium with suppressed autolytic system. Nature 227: 138 (1970).

    PubMed  CAS  Google Scholar 

  • Tuner, K.; Lindqvist, L. and Nord, C.E.: Purification and properties of a novel beta-lactamase from Fusobacterium nucleatum. Antimicrobial Agents and Chemotherapy 27: 943 (1985).

    PubMed  CAS  Google Scholar 

  • Ubukata, K.; Yamashita, N. and Konno, M.: Occurrence of a beta-lactam-inducible penicillin binding protein in methicillinresistant staphylococci. Antimicrobial Agents and Chemotherapy 27: 851 (1985).

    PubMed  CAS  Google Scholar 

  • Udea, Y.: Cephazoli. (Shinryo Sinsha Ltd., Osaka 1977).

    Google Scholar 

  • Ward, J.L.; Koomhof, H.; Jacobs, M. and Appelbaum, P.C.: Clinical and epidemiological feature of multiply resistant pneumococci, South Africa; in Schlessinger (Ed.) Microbiology — 1979. (American Society for Microbiology, Washington DC 1979).

    Google Scholar 

  • Watt, B. and Brown, F.V.: The comparative activity of cefsulodin against anaerobic bacteria of clinical interest: synergy with cefoxitin. Journal of Antimicrobial Chemotherapy 7: 269 (1981).

    PubMed  CAS  Google Scholar 

  • Watt, B. and Brown, F.V.: The comparative activity of cefotetan against anaerobic bacteria. Journal of Antimicrobial Chemotherapy 15: 671 (1985).

    PubMed  CAS  Google Scholar 

  • Whitaker, S.; Hajipieris, P. and Williams, J.D.: Distribution and type of beta-lactamase amongst 1,000 Gram-negative rod bacteria; in Spitzy and Karrer (Eds) Proceedings of the 13th International Congress of Chemotherapy, Tom. 2, PS.2.5/1-3. (Verlag H. Egermann, Vienna 1983).

  • Williams, R.J. and Livermore, D.M.: Bactericidal activity of a thienamycin against Pseudomonas aeruginosa, in Periti, P. and Grassi, G.G. (Eds) Current Chemotherapy and Immunotherapy, p. 719 (American Society for Microbiology, Washington DC 1982).

    Google Scholar 

  • Williams, J.D.; Kattan, S. and Cavanagh, P.: Penicillinase production in H. influenzae. Lancet 2: 103 (1974).

    PubMed  CAS  Google Scholar 

  • Williams, R.J.; Lindridge, M.A.; Said, A.A.; Livermore, D.M. and Williams, J.D.: National Survey of antibiotic resistance in Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy 14: 9 (1984a).

    PubMed  CAS  Google Scholar 

  • Williams, R.J.; Livermore, D.M.; Lindridge, M.A.; Said, A.A. and Williams, J.D.: Mechanisms of resistance to beta-lactam antibiotics in British isolates of Pseudomonas aeruginosa. Journal of Medical Microbiology 17: 283 (1984b).

    PubMed  CAS  Google Scholar 

  • Williamson, R. and Tomasz, A.: Antibiotic-tolerant mutants of Streptococcus pneumoniae that are not deficient in autolytic activity. Journal of Bacteriology 144: 105 (1980).

    PubMed  CAS  Google Scholar 

  • Wise, R.; Andrews, J.M.; Cross, C. and Piddock, L.J.V.: The antimicrobial activity of cefpirome, a new cephalosporin. Journal of Antimicrobial Chemotherapy 15: 449 (1985).

    PubMed  CAS  Google Scholar 

  • Wise, R.; Gillett, A.P.; Andrews, J.M. and Bedford, K.A.: Ro 13-9904: a cephalosporin with a high degree of activity and broad antibacterial activity: an in vitro comparative study. Journal of Antimicrobial Chemotherapy 6: 595 (1980).

    PubMed  CAS  Google Scholar 

  • Yoshikawa, T.T.; Shibata, S.A.; Habert, P. and Qill, P.A.: In vitro activity of Ro 13-9904, cefuroxime, cefoxitin and ampicillin against Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy 18: 355 (1980).

    PubMed  CAS  Google Scholar 

  • Yoshimura, F. and Nikaido, H.: Diffusion of beta-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrobial Agents and Chemotherapy 27: 84 (1985).

    PubMed  CAS  Google Scholar 

  • Yotsuji, A.; Minami, S.; Inoue, M. and Mitsuhashi, S.: Properties of novel beta-lactamase produced by Bacteroides fragilis. Antimicrobial Agents and Chemotherapy 24: 925 (1983).

    PubMed  CAS  Google Scholar 

  • Zak, O.: Antibiotics and Pseudomonas aeruginosa; In Sabath (Ed.) Pseudomonas aeruginosa, the Organism, the Diseases it causes and their Treatment, p. 133 (Hans Huber, Berne 1979).

    Google Scholar 

  • Zak, O.; Konopka, E.A.; Tosch, W.; Ahren, T.; Zimmermann, W. and Kradolfe, F.: Experimental evaluation CGP 7174/E (SCE 129), a new injectable cephalosporin antibiotic active against Pseudomonas aeruginosa. Drugs under Experimental and Clinical Research 5: 45 (1979).

    CAS  Google Scholar 

  • Zimmermann, W. and Rosselet, A.: Function of the outer membrane of Escherichia coli as a permeability barrier to beta-lactam antibiotics. Antimicrobial Agents and Chemotherapy 12: 368 (1977).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, J.D., Moosdeen, F. In Vitro Antibacterial Effects of Cephalosporins. Drugs 34 (Suppl 2), 44–63 (1987). https://doi.org/10.2165/00003495-198700342-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-198700342-00006

Keywords

Navigation