Skip to main content
Log in

Detection, Distribution and Inhibition of Branhamella catarrhalis β-Lactamases

  • Section 2: β-Lactamases of Branhamella catarrhalis
  • Published:
Drugs Aims and scope Submit manuscript

Summary

β-Lactamase-producing isolates of Branhamella catarrhalis were first detected in France in 1977. The frequency of β-lactamase producers has increased, especially since 1980.

An agar iodometric test, a fast chromogenic test and an acidimetric test were used to assess the β-lactamase-producing capabilities of 188 isolates of B. catarrhalis obtained mainly from sputum and the pharynx. Data from the first 2 procedures indicated positive β-lactamase activity for all 49 strains of B. catarrhalis identified, but there were some discrepancies in the acidimetric test results. Evidence from a diffusion technique showed significant increases in the inhibition diameters surrounding filter discs impregnated with amoxycillin in the presence of clavulanic acid, or with ampicillin in the presence of sulbactam, compared with discs of the penicillins used alone.

Two types of enzyme activity emerged from examination of isoelectric focusing patterns. Type 1, having pI values of 5.35, 5.55 and 5.85, accounted for 87.2% of the enzyme-producing isolates. Type II, with pIs of 5.5, 5.9 and 6.25, occurred in 12.8% of isolates and appeared to be less widely distributed.

The β-lactamase inhibitors clavulanic acid and sulbactam in combination with benzylpenicillin produced potentiated effects, as demonstrated by significant reductions in MIC (33- and 44-fold decreases, respectively). Higher concentrations of each inhibitor similarly affected the MICs of amoxycillin. A weak synergy occurred with cefoxitin, a β-lactamase-resistant β-lactam antibiotic, and the 2 β-lactamase inhibitors.

Because B. catarrhalis has been shown to be a β-lactamase-producing pathogenic organism, the addition of enzyme inhibitors, such as clavulanic acid and sulbactam, to standard therapy may be beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez S, Jones M, Holtsclaw-Berck S, Guarderas J, Berck SL. In vitro susceptibilities and β-lactamase production of 53 clinical isolates of Branhamella catarrhalis. Antimicrobial Agents and Chemotherapy 27: 646–647, 1985

    Article  PubMed  CAS  Google Scholar 

  • Barthélémy M, Guionie M, Labia R. Beta-lactamases: determination of their isoelectric points. Antimicrobial Agents and Chemotherapy 13: 695–698, 1978

    Article  PubMed  Google Scholar 

  • Buu Hoi-Dang Van A, Brive-Le Bouguenec C, Barthélémy M, Labia R. Novel β-lactamase from Branhamella catarrhalis. Annales de Microbiologie 129B: 397–406, 1978

    Google Scholar 

  • Courvalin C, Golstein F, Philippon A, Sirot J. Détection de beta-lactamases. In Courvalin et al. (Eds) L’antibiogramme, pp. 225–236, MPC Videom, Brussels, 1985

    Google Scholar 

  • Doern GV, Sieberg KG, Hallick LM, Morse SA. Antibiotic susceptibility of beta-lactamase-producing strains of Branhamella (Neisseria) catarrhalis. Antimicrobial Agents and Chemotherapy 17: 24–29, 1980

    Article  PubMed  CAS  Google Scholar 

  • Doern GV, Miller MJ, Winn RE. Branhamella (Neisseria) catarrhalis systemic disease in humans. Case reports and review of the literature. Archives of Internal Medicine 141: 1690–1692, 1981

    Article  PubMed  CAS  Google Scholar 

  • Eliasson I, Kamme C. Characterization of the plasmid-mediated β-lactamase in Branhamella catarrhalis with special reference to substrate affinity. Journal of Antimicrobial Chemotherapy 15: 139–149, 1985

    Article  PubMed  CAS  Google Scholar 

  • Farmer T, Reading C. β-Lactamases of Branhamella catarrhalis and their inhibition by clavulanic acid. Antimicrobial Agents and Chemotherapy 21: 506–508, 1982

    Article  PubMed  CAS  Google Scholar 

  • Hunter PA, Coleman K, Fisher J, Taylor D. In vitro synergistic properties of clavulanic acid, with ampicillin, amoxycillin and ticarcillin. Journal of Antimicrobial Chemotherapy 6: 455–470, 1980

    Article  PubMed  CAS  Google Scholar 

  • Kamme C, Vang M, Stahl S. Transfer of beta-lactamase production in Branhamella catarrhalis. Scandinavian Journal of Infectious Diseases 15: 225–226, 1983

    PubMed  CAS  Google Scholar 

  • Labia R, Barthélémy M. L’enzymogramme des bêta-lactamases: adaptation en gel de la méthode iodométrique. Annales de Microbiologie 130B: 295–304, 1979

    PubMed  CAS  Google Scholar 

  • Labia R, Guionie M, Barthélémy M, Philippon A. Properties of three carbenicillin-hydrolyzing β-lactamases (CARB) from Pseudomonas aeruginosa: identification of a new enzyme. Journal of Antimicrobial Chemotherapy 7: 49–56, 1981

    Article  PubMed  CAS  Google Scholar 

  • Malmvall BE, Brirsson JE, Johnsson J. In vitro sensitivity to penicillin V and β-lactamase production of Branhamella catarrhalis. Journal of Antimicrobial Chemotherapy 3: 374–375, 1977

    Article  PubMed  CAS  Google Scholar 

  • Matthew M, Harris AM, Marshall MJ, Ross GW. The use of analytical isoelectric focusing for detection and identification of β-lactamases. Journal of General Microbiology 88: 169–178, 1975

    Article  Google Scholar 

  • Ninane G, Joly J, Piot P, Kraytman M. Branhamella (Neisseria) catarrhalis as pathogen. Lancet 2: 149, 1977

    Article  PubMed  CAS  Google Scholar 

  • Ninane G, Joly J, Kraytman M, Piot P. Bronchopulmonary infection due to β-lactamase-producing Branhamella catarrhalis treated with amoxycillin/clavulanic acid. Lancet 2: 257, 1978

    Article  PubMed  CAS  Google Scholar 

  • Percival A, Corkill JE, Rowlands J, Sykes RB. Pathogenicity of and β-lactamase production by Branhamella (Neisseria) catarrhalis. Lancet 2: 1175, 1977

    Article  PubMed  CAS  Google Scholar 

  • Riou JY, Guibourdenche M. Diagnostic bactériologique des espèces des genres Neisseria et Branhamella. Annales de Biologie Clinique 35: 73–87, 1977

    PubMed  CAS  Google Scholar 

  • Riou JY, Guibourdenche M, Courvalin P. Antibiotic susceptibility testing of Neisseria gonorrhoeae by disk-agar diffusion. Annales de Microbiologie 132B: 23–39, 1981

    PubMed  CAS  Google Scholar 

  • Stobberingh EE, Davies BI, van Boven CPA. Branhamella catarrhalis: antibiotic sensitivities and β-lactamases. Journal of Antimicrobial Chemotherapy 13: 55–64, 1984

    Article  PubMed  CAS  Google Scholar 

  • Sweeney KG, Verghese A, Needham CA. In vitro susceptibilities of isolates from patients with Branhamella catarrhalis pneumonia compared with those of colonizing strains. Antimicrobial Agents and Chemotherapy 27: 499–502, 1985

    Article  PubMed  CAS  Google Scholar 

  • Sykes RB, Matthew M. Detection, assay and immunology of beta-lactamases. In Hamilton-Miller & Smith (Eds) Beta-lactamases, pp. 17–49, Academic Press, London, 1979

    Google Scholar 

  • Vergez P, Riou JY. Etude de la flore bactérienne aérobie isolée des produits de l’expectoration dans les infections chroniques des bronches. Annales de Microbiologie 123: 201–222, 1972

    CAS  Google Scholar 

  • Wise R, Andrews JM, Bedford KA. Clavulanic acid and CP-45,899: a comparison of their in vitro activity in combination with penicillins. Journal of Antimicrobial Chemotherapy 6: 197–206, 1980

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philippon, A., Riou, J.Y., Guibourdenche, M. et al. Detection, Distribution and Inhibition of Branhamella catarrhalis β-Lactamases. Drugs 31 (Suppl 3), 64–69 (1986). https://doi.org/10.2165/00003495-198600313-00014

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-198600313-00014

Keywords

Navigation