α- and β-Adrenergic Receptor Subtypes

Properties, Distribution and Regulation

Summary

The effects of catecholamines in the central and peripheral nervous systems appear to be mediated through interactions with 2 major classes of receptor: α-adrenoceptors and β-adrenoceptors. Subtypes of both α- and β-adrenoceptors exist. In the periphery, α1-receptors are located postsynaptically, mediating the excitatory effects of catecholamines at α-receptors. α2-Adrenoceptors, on the other hand, are autoreceptors involved in the regulation of noradrenaline (norepinephrine) release. In the central nervous system, both α1- and α2-receptors exist on postsynaptic cells; there are also 2 principal subtypes of β-adrenoceptors. β1-Receptors have a high affinity for both noradrenaline and adrenaline (epinephrine) and are found in the heart, brain, and adipose tissue. β2-Receptors have a low affinity for noradrenaline and are involved in mediation of relaxation of vascular and other smooth muscles and in many of the metabolic effects of catecholamines.

A variety of effector systems have been implicated in the actions of catecholamines. Most, though not all, of the effects of catecholamines at β-receptors are mediated through activation of adenyl cyclase and increases in cyclic AMP accumulation. The effects of catecholamines at α-receptors generally involve other second messenger systems. Thus, in at least some systems, stimulation of α1-adrenoceptors mediates increases in phosphoinositide breakdown, while α2-adrenoceptors appear to act through inhibition of adenyl cyclase activity.

The pharmacological effects of α- and β-adrenoceptors were initially characterised by measuring responses observed in intact preparations. The advent of the use of radioligand binding techniques has allowed direct approaches to the characterisation of receptor properties. The use of radioligands makes it possible to determine the affinities of receptors for specific ligands, and it is possible to determine the density of receptors in a tissue. Finally, in vitro assays serve as a means through which receptors can be followed during solubilisation, isolation, and reconstitution.

Several ligands are now available for the study of α- and β-adrenoceptors. In general, relatively selective radioligands are available for the study of α-receptors. Thus, 3H-WB 4101 and 3H-prazosin are selective ligands for α1-receptors; the ligand 125I-IBE 2254 also shows high selectivity for α1-receptors. 3H-Yohimbine and 3H-rauwolscine are selective antagonists for the labelling of α2-receptors and 3H-clonidine is a selective agonist used for studying α2-receptors. Most of the radioligands available for the study of β-adrenoceptors are nonselective, in that both β1- and β2-receptors have the same affinity for these ligands. The most widely used are the antagonists 3H-dihydroalprenolol and 125I-iodopindolol. The agonist 3H-hydroxybenzylisoprenaline is a useful ligand which shows some selectivity for β2-compared with β1-receptors.

It is possible to use radioligands to study receptor subtypes quantitatively. In the case of α-receptors, where the radioligands are themselves selective, saturation curves followed by Scatchard analysis provide an estimate of the density and properties of a specific subtype of α-adrenoceptor. With β-receptor subtypes, the usual approach is to label all of the classes of receptors in a given tissue and then to inhibit selectively the binding of the radioligand with a highly selective competing ligand. Studies of receptor subtypes have revealed that in many cases multiple receptor subtypes coexist in the same tissue. In the central nervous system, receptor subtypes are independently regulated and heterogeneously distributed. In particular, manipulations which affect neuronal activity in rat cerebral cortex lead to apparently compensatory changes in the density of β1-adrenoceptors without any effect on the density of β2-receptors. These results led to the conclusion that β1-receptors are associated with neurons, while β2-receptors are associated with more homogeneously distributed tissue elements such as glia or blood vessels. The heart contains both β1- and β2-adrenoceptors and both subtypes are involved in mediating the effects of catecholamines on the heart.

The effects of prolonged administration of agonists and antagonists on the density of receptors in human circulating lymphocytes have been investigated. Administration of an antagonist such as propranolol led to an increase in the density of receptors, which may account for the delayed hypersensitivity observed after abrupt discontinuation of propranolol. In similar experiments in which the agonists ephedrine and terbutaline were administered long term to normal volunteers, there was a decrease in the density of receptors. This could explain any loss of efficacy observed during long term therapy with sympathomimetic agents.

This is a preview of subscription content, access via your institution.

References

  1. Aarons, R.D.; Nies, A.S.; Gal, J.; Hegstrand, L.R. and Molinoff, P.B.: Elevation of β-adrenergic receptor density in human lymphocytes after propranolol administration. Journal of Clinical Investigation 65: 949–957 (1980).

    PubMed  CAS  Google Scholar 

  2. Aarons, R.D. and Molinoff, P.B.: Changes in the density of beta adrenergic receptors in rat lymphocytes, heart and lung after chronic treatment with propranolol. Journal of Pharmacology and Experimental Therapeutics 221: 439–443 (1982).

    PubMed  CAS  Google Scholar 

  3. Aarons, R.D.; Nies, A.S.; Gerber, J.G. and Molinoff, P.B.: Decreased beta adrenergic receptor density on human lymphocytes after chronic treatment with agonists. Journal of Pharmacology and Experimental Therapeutics 224: 1–6 (1983).

    PubMed  CAS  Google Scholar 

  4. Ahlquist, R.P.: A study of the adrenotropic receptors. American Journal of Physiology 153: 586–600 (1948).

    PubMed  CAS  Google Scholar 

  5. Ahlquist, R.P.: Adrenergic beta-blocking agents. Progress in Drug Research 20: 27–42 (1976).

    PubMed  CAS  Google Scholar 

  6. Alexander, R.W.; Williams, L.T. and Lefkowitz, R.J.: Identification of cardiac β-adrenergic receptors by (-)(3H)alprenolol binding. Proceedings of the National Academy of Sciences USA 72: 1564–1568 (1975).

    CAS  Google Scholar 

  7. Aurbach, G.D.; Fedak, S.A.; Woodard, C.J.; Palmer, J.S.; Hauser, D. and Troxler, F.: β-Adrenergic receptor: Stereospecific interaction of iodinated β-blocking agent with high affinity site. Science 186: 1223–1224 (1974).

    PubMed  CAS  Google Scholar 

  8. Barovsky, K. and Brooker, G.: (-)-(125I)-Iodopindolol, a new highly selective radio-iodinated β-adrenergic receptor antagonist: Measurement of β-receptors on intact rat astrocytoma cells. Journal of Cyclic Nucleotide Research 6: 297–307 (1980).

    PubMed  CAS  Google Scholar 

  9. Bearer, C.F.; Knapp, R.D.; Kaumann, A.J.; Swartz, T.L. and Birnbaumer, L.: Iodohydroxybenzylpindolol: Preparation, purification, localization of its iodine to the indole ring, and characterization as a partial agonist. Molecular Pharmacology 17: 328–338 (1980).

    PubMed  CAS  Google Scholar 

  10. Bcrridge, M.J.: Phosphatidylinositol hydrolysis: A multifunctional transducing mechanism. Molecular and Cellular Endocrinology 24: 115–140 (1981).

    Google Scholar 

  11. Bcrthelsen, S. and Pettinger, W.A.: A functional basis for classification of α-adrenergic receptors. Life Sciences 21: 595–606 (1977).

    Google Scholar 

  12. Boudoulas, H.; Lewis, R.P.; Kates, R.E. and Dalamangas, G.: Hypersensitivity to adrenergic stimulation after propranolol withdrawal in normal subjects. Annals of Internal Medicine 87: 433–436 (1977).

    PubMed  CAS  Google Scholar 

  13. Bylund, D.B. and Snyder, S.H.: Beta adrenergic receptor binding in membrane preparations from mammalian brain. Molecular Pharmacology 12: 568–580 (1976).

    PubMed  CAS  Google Scholar 

  14. Carlsson, E.; Åblad, B.; Brändström, A. and Carlsson, B.: Differentiated blockade of the chronotropic effects of various adrenergic stimuli in the cat heart. Life Sciences 11(Part 1): 953–958 (1972).

    CAS  Google Scholar 

  15. Conolly, M.E.; Davies, D.S.; Dollery, C.T. and George, CF.: Resistance to β-adrenoceptor stimulants (a possible explanation for the rise in asthma deaths). British Journal of Pharmacology 43: 389–402 (1971).

    PubMed  CAS  Google Scholar 

  16. Conolly, M.E. and Greenacre, J.K.: The lymphocyte β-adrenoceptor in normal subjects and patients with bronchial asthma. The effect of different forms of treatment on receptor function. Journal of Clinical Investigation 58: 1307–1316 (1976).

    PubMed  CAS  Google Scholar 

  17. Daiguji, M.; Meltzer, H.Y. and U’Prichard, D.C.: Human platelet α2-adrenergic receptors: Labelling with 3H-yohimbine, a selective antagonist ligand. Life Sciences 28: 2705–2717 (1981).

    PubMed  CAS  Google Scholar 

  18. Dale, H.H.: On some physiological actions of ergot. Journal of Physiology 34: 163–206 (1906).

    PubMed  Google Scholar 

  19. Daly, J.: Role of cyclic nucleotides in the nervous system; in Iversen and Snyder (Eds) Handbook of Psychopharmacology, Vol. 5, pp. 47–130 (Plenum Press, New York 1975).

    Google Scholar 

  20. Davies, I.B.; Sudera, D. and Sever, P.S.: Endogenous agonist regulation of α-adrenoceptors in man. Clinical Science 61: 2075–2108 (1981a).

    Google Scholar 

  21. Davies, B.; Sudera, D.; Mathias, C.; Bannister, R. and Sever, P.: Beta-receptors in orthostatic hypotension. New England Journal of Medicine 305: 1017–1019 (1981b).

    Google Scholar 

  22. Davis, J.N.; Arnett, C.D.; Hoyler; E., Stalvey; L.P., Daly; J.W. and Skolnick, P.: Brain α-adrenergic receptors: Comparison of (3H)-WB-4101 binding with norepinephrine-stimulated cyclic AMP accumulation in rat cerebral cortex. Brain Research 159: 125–135 (1978).

    PubMed  CAS  Google Scholar 

  23. Davis, C. and Conolly, M.E.: Tachyphylaxis to beta-adrenoceptor agonists in human bronchial smooth muscle: Studied in vitro. British Journal of Clinical Pharmacology 10: 417 (1980).

    PubMed  CAS  Google Scholar 

  24. Diaz, R.G.; Somberg, J.C.; Freeman, E. and Levitt, B.: Withdrawal of propranolol and myocardial infarction. Lancet 1: 1068 (1973).

    PubMed  CAS  Google Scholar 

  25. Diaz, R.G.; Somberg, J.C.; Freeman, E. and Levitt, B.: Myocardial infarction after propranolol withdrawal. American Heart Journal 88: 257–258 (1974).

    PubMed  CAS  Google Scholar 

  26. Dunlop, D. and Shanks, R.G.: Selective blockade of adrenoceptive beta receptors in the heart. British Journal of Pharmacology and Chemotherapy 32: 201–218 (1968).

    PubMed  CAS  Google Scholar 

  27. Engel, G. and Hoyer, D.: (125I)-BE 2254, a new high affinity radioligand for α1-adrenoceptors. European Journal of Pharmacology 73: 221–224 (1981).

    PubMed  CAS  Google Scholar 

  28. Engel, G.; Hoyer, D; Berthold, R. and Wagner, H.: (±)(125I-iodo)cyanopindolol, a new ligand for β-adrenoceptors: Identification and quantitation of subclasses of β-adrenoceptors in guinea pig. Naunyn-Schmiedeberg’s Archives of Pharmacology 317: 277–285 (1981).

    PubMed  CAS  Google Scholar 

  29. Furchgott, R.F.: The classification of adrenoceptors (adrenergic receptors). An evaluation from the standpoint of receptor theory; in Blaschko and Muscholl (Eds) Handbook of Experimental Pharmacology: Catecholamines, Vol. 33, pp. 283–335 (Springer, Berlin 1972).

    Google Scholar 

  30. Galant, S.P.; Duriseti, L.; Underwood, S. and Insel, P.A.: Decreased β-adrenergic receptors on polymorphonuclear leukocytes after adrenergic therapy. New England Journal of Medicine 299: 933–936 (1978).

    PubMed  CAS  Google Scholar 

  31. Garcíá-Sáinz, J.A.; Hoffman, B.B.; Li, S.-Y.; Lefkowitz, R.J. and Fain, J.N.: Role of alpha1 adrenoceptors in the turnover of phosphatidylinositol and of alpha2 adrenoceptors in the regulation of cyclic AMP accumulation in hamster adipocytes. Life Sciences 27: 953–961 (1980).

    Google Scholar 

  32. Gerber, J.G. and Nies, A.S.: Abrupt withdrawal of cardiovascular drugs. New England Journal of Medicine 301: 1234–1235 (1979).

    PubMed  CAS  Google Scholar 

  33. Glaubiger, G. and Lefkowitz, R.J.: Elevated β-adrenergic receptor number after chronic propranolol treatment. Biochemical and Biophysical Research Communications 78: 720–725 (1977).

    PubMed  CAS  Google Scholar 

  34. Goldberg, N.D.; O’Dea, R.F. and Haddox, M.K.: Cyclic GMP. Advances in Cyclic Nucleotide Research 3: 155–223 (1973).

    PubMed  CAS  Google Scholar 

  35. Goldstein, R.E.; Corash, L.C. and Tallman, J.F. Jr.: Shortened platelet survival time and enhanced heart rate responses after abrupt withdrawal of propranolol from normal subjects. American Journal of Cardiology 47: 1115–1122 (1981).

    PubMed  CAS  Google Scholar 

  36. Harms, H.H.: Isoproterenol antagonism of cardioselective beta adrenergic receptor blocking agents: A comparative study of human and guinea-pig cardiac and bronchial beta adrenergic receptors. Journal of Pharmacology and Experimental Therapeutics 199: 329–335 (1976).

    PubMed  CAS  Google Scholar 

  37. Hedberg, A.; Minneman, K.P. and Molinoff, P.B.: Differential distribution of beta-1 and beta-2 adrenergic receptors in cat and guinea-pig heart. Journal of Pharmacology and Experimental Therapeutics 212: 503–508 (1980).

    PubMed  CAS  Google Scholar 

  38. Hui, K.K.P. and Conolly, M.E.: Increased numbers of beta receptors in orthostatic hypotension due to autonomic dysfunction. New England Journal of Medicine 304: 1473–1476 (1981).

    PubMed  CAS  Google Scholar 

  39. Innis, R.B.; Correa, F.M.A. and Snyder, S.H.: Carazolol, an extremely potent β-adrenergic blocker: Binding to β-receptors in brain membranes. Life Sciences 24: 2255–2264 (1979).

    PubMed  CAS  Google Scholar 

  40. Jard, S.; Cantau, B. and Jakobs, K.H.: Angiotensin II and α-adrenergic agonists inhibit rat liver adenylate cyclase. Journal of Biological Chemistry 256: 2603–2606 (1981).

    PubMed  CAS  Google Scholar 

  41. Jenne, J.W.; Chick, T.W.; Strickland, R.D. and Wall, F.J.: Sub-sensitivity of beta responses during therapy with a long-acting beta-2 preparation. Journal of Allergy and Clinical Immunology 59: 383–390 (1977).

    PubMed  CAS  Google Scholar 

  42. Johnson, G.L.; Wolfe, B.B.; Harden, T.K.; Molinoff, P.B. and Perkins, J.P.: Role of β-adrenergic receptors in catecholamineinduced desensitization of adenylate cyclase in human astrocytoma cells. Journal of Biological Chemistry 253: 1472–1480 (1978).

    PubMed  CAS  Google Scholar 

  43. Kebabian, J.W.; Zatz, M.; Romero, J.A. and Axelrod, J.: Rapid changes in rat pineal β-adrenerigic receptor: Alterations in 1-(3H)alprenolol binding and adenylate cyclase. Proceedings of the National Academy of Sciences USA 72: 3735–3739 (1975).

    CAS  Google Scholar 

  44. Kishimoto, A.; Takai, Y.; Mori, T.; Kikkawa, U. and Nishizuka, Y.: Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. Journal of Biological Chemistry 255: 2273–2276 (1980).

    PubMed  CAS  Google Scholar 

  45. Kristensen, B.O.; Steiness, E. and Weeke, J.: Propranolol withdrawal and thyroid hormones in patients with essential hypertension. Clinical Pharmacology and Therapeutics 23: 624–629 (1978).

    PubMed  CAS  Google Scholar 

  46. Lands, A.M.; Arnold, A.; McAuliff, J.P.; Luduena, F.P. and Brown Jr, T.G.: Differentiation of receptor systems activated by sympathomimetic amines. Nature 214: 597–598 (1967a).

    PubMed  CAS  Google Scholar 

  47. Lands, A.M.; Groblewski, G.E. and Brown Jr, T.G.: Comparison of the action of isoproterenol and several related compounds on blood pressure, heart, and bronchioles. Archives Internationales de Pharmacodynamic et de Therapie 161: 68–75 (1966).

    CAS  Google Scholar 

  48. Lands, A.M.; Luduena, F.P. and Buzzo, H.J.: Differentiation of receptors responsive to isoproterenol. Life Sciences 6: 2241–2249 (1967b).

    PubMed  CAS  Google Scholar 

  49. Langer, S.Z.: Presynaptic regulation of catecholamine release. Biochemical Pharmacology 23: 1793–1800 (1974).

    PubMed  CAS  Google Scholar 

  50. Langer, S.Z.: Presynaptic receptors and their role in the regulation of transmitter release. British Journal of Pharmacology 60: 481–497 (1977).

    PubMed  CAS  Google Scholar 

  51. Lavin, T.N.; Heald, S.L.; Jeffs, P.W.; Shorr, R.G.L.; Lefkowitz, R.J. and Caron, M.G.: Photoaffinity labeling of the β-adrenergic receptor. Journal of Biological Chemistry 256: 11944–11950 (1981).

    PubMed  CAS  Google Scholar 

  52. Lefkowitz, R.J.; Mukherjee, C.; Coverstone, M. and Caron, M.G.: Stereospecific (3H)(-)-alprenolol binding sites, β-adrenergic receptors and adenylate cyclase. Biochemical and Biophysical Research Communications 60: 703–709 (1974).

    PubMed  CAS  Google Scholar 

  53. Levy, B.: The adrenergic blocking activity of N-tert-butyl meth-oxamine (butoxamine). Journal of Pharmacology and Experimental Therapeutics 151: 413–422 (1966).

    PubMed  CAS  Google Scholar 

  54. Lyon, T.F. and Randall, W.C.: Multiple central WB-4101 binding sites and the selectivity of prazosin. Life Sciences 26: 1121–1129 (1980).

    PubMed  CAS  Google Scholar 

  55. Maguire, M.E.; Van Arsdale, P.M. and Gilman, A.G.: An agonist-specific effect of guanine nucleotides on binding to the beta adrenergic receptor. Molecular Pharmacology 12: 335–339 (1976).

    PubMed  CAS  Google Scholar 

  56. Michell, R.H.: Inositol phospholipids and cell surface receptor function. Biochimica et Biophysica Acta 415: 81–147 (1975).

    PubMed  CAS  Google Scholar 

  57. Mickey, J.; Tate, R. and Lefkowitz, R.J.: Subsensitivity of adenylate cyclase and decreased β-adrenergic receptor binding after chronic exposure to (-)-isoproterenol in vitro. Journal of Biological Chemistry 250: 5727–5729 (1975).

    PubMed  CAS  Google Scholar 

  58. Miller, R.R.; Olson, H.G.; Amsterdam, E.A. and Mason, D.T.: Propranolol withdrawal rebound phenomenon. New England Journal of Medicine 293: 416–418 (1975).

    PubMed  CAS  Google Scholar 

  59. Minneman, K.P.; Hedberg, A. and Molinoff, P.B.: Comparison of beta-adrenergic receptor subtypes in mammalian tissues. Journal of Pharmacology and Experimental Therapeutics 211: 502–508 (1979a).

    PubMed  CAS  Google Scholar 

  60. Minneman, K.P.; Hegstrand, L.R. and Molinoff, P.B.: The pharmacological specificity of beta-1 and beta-2 adrenergic receptors in rat heart and lung in vitro. Molecular Pharmacology 16: 21–23 (1979b).

    PubMed  CAS  Google Scholar 

  61. Minneman, K.P.; Pittman, R.N. and Molinoff, P.B.: β-Adrenergic receptor subtypes: Properties, distribution and regulation. Annual Review of Neuroscience 4: 419–461 (1981).

    PubMed  CAS  Google Scholar 

  62. Molinoff, P.B.: Methods of approach for the isolation of β-adrenergic receptors; in Usdin and Snyder (Eds) Frontiers in Catecholamine Research pp. 357–360 (Pergamon Press, New York 1973).

    Google Scholar 

  63. Molinoff, P.B. and Aarons, R.D.: Effects of drugs on β-adrenergic receptors on human lymphocytes. Journal of Cardiovascular Pharmacology 5: S63–S67 (1983).

    PubMed  Google Scholar 

  64. Molinoff, P.B.; Aarons, R.D.; Nies, A.S.; Gerber, J.G.; Wolfe, B.B. and Goens, M.B.: Effects of pindolol and propranolol on β-adrenergic receptors on human lymphocytes. British Journal of Clinical Pharmacology 13: 365S (1982).

    PubMed  CAS  Google Scholar 

  65. Molinoff, P.B.; Wolfe, B.B. and Weiland, G.A.: Quantitative analysis of drug-receptor interactions. II. Determination of the properties of receptor subtypes. Life Sciences 29: 427–443 (1981).

    PubMed  CAS  Google Scholar 

  66. Morris, H.G.: Drug-induced desensitization of beta-adrenergic receptors. Journal of Allergy and Clinical Immunology 68: 83–86 (1980).

    Google Scholar 

  67. Motulsky, H.J. and Insel, P.A.: Adrenergic receptors in man: Direct identification, physiologic regulation, and Clinical Alterations. New England Journal of Medicine 307: 18–29 (1982).

    PubMed  CAS  Google Scholar 

  68. Motulsky, H.J.; O’Connor, D.T. and Insel, P.A.: The number of alpha2-adrenergic receptors on human platelets is not altered by hypertension, adrenergic therapy, or phaeochromocytoma. Federation Proceedings (abstract) 41: 1646 (1982).

    Google Scholar 

  69. Mukherjee, C.; Caron, M.G. and Lefkowitz, R.J.: Catecholamine-induced subsensitivity of adenylate cyclase associated with loss of β-adrenergic receptor binding sites. Proceedings of the National Academy of Sciences USA 72: 1945–1949 (1975).

    CAS  Google Scholar 

  70. Murad, F.; Chi, Y.-M.; Rall, T.W. and Sutherland, E.W.: Adenyl cyclase. III. The effect of catecholamines and choline esters on the formation of adenosine 3′,5′-phosphate by preparations from cardiac muscle and liver. Journal of Biological Chemistry 237: 1233–1238 (1962).

    PubMed  CAS  Google Scholar 

  71. Nattel, S.; Rangno, R.E. and VanLoon, G.: Mechanism of propranolol withdrawal phenomena. Circulation 59: 1158–1164 (1979).

    PubMed  CAS  Google Scholar 

  72. Nelson, H.S.; Black, J.W.; Branch, L.B. et al.: Subsensitivity to epinephrine following the administration of epinephrine and ephedrine to normal individuals. Journal of Allergy and Clinical Immunology 55: 299–309 (1975).

    PubMed  CAS  Google Scholar 

  73. O’Donnell, S.R. and Wanstall, J.C.: The contribution of extrancuronal uptake to the trachea-blood vessel selectivity of β-adrenoceptor stimulants in vitro in guinea pigs. British Journal of Pharmacology 57: 369–373 (1976).

    PubMed  Google Scholar 

  74. Partington, C.R.; Edwards, M.W. and Daly, J.W.: Regulation of cyclic AMP formation in brain tissue by α-adrenergic receptors: Requisite intermediacy of prostaglandins of the E-series. Proceedings of the National Academy of Sciences USA 77: 3024–3028 (1980).

    CAS  Google Scholar 

  75. Perkins, J.P. and Moore, M.M.: Characterization of the adrenergic receptors mediating a rise in cyclic 3′5′-adenosine monophosphate in rat cerebral cortex. Journal of Pharmacology and Experimental Therapeutics 185: 371–378 (1973).

    PubMed  CAS  Google Scholar 

  76. Peroutka, S.J.; Greenberg, D.A.; U’Prichard, D.C. and Snyder, S.H.: Regional variations in alpha adrenergic receptor interactions of (3H)-dihydroergokryptine in calf brain: Implications for a two-site model of alpha receptor function. Molecular Pharmacology 14: 403–412 (1978).

    PubMed  CAS  Google Scholar 

  77. Perry, B.D. and U’Prichard, D.C.: 3H-Rauwolscine binding to α2-adrenergic receptors in bovine brain. Society for Neuroscience Abstracts 7: 424 (1981).

    Google Scholar 

  78. Petrack, B. and Czernick, A.J.: Inhibition of isoproterenol activation of adenylate cyclase by metoprolol, Oxprenolol, and the para isomer of Oxprenolol. Molecular Pharmacology 12: 203–207 (1976).

    PubMed  CAS  Google Scholar 

  79. Putney, J.W.; Weiss, S.J.; Van De Walle, CM. and Haddas, R.A.: Is phosphatidic acid a calcium ionophore under neurohumoral control? Nature 284: 345–347 (1980).

    PubMed  CAS  Google Scholar 

  80. Robison, G.A.; Butcher, R.W. and Sutherland, E.W.: Cyclic AMP (Academic Press, New York 1971).

    Google Scholar 

  81. Ruffolo Jr, R.R.; Waddell, J.E. and Yaden, E.L.: Postsynaptic alpha adrenergic receptor subtypes differentiated by yohimbine in tissues from the rat. Existence of alpha-2 adrenergic receptors in rat aorta. Journal of Pharmacology and Experimental Therapeutics 217: 235–240 (1981).

    PubMed  CAS  Google Scholar 

  82. Sabol, S.L. and Nirenberg, M.: Regulation of adenylate cyclase of neuroblastoma X glioma hybrid cells by α-adrenergic receptors. Journal of Biological Chemistry 254: 1913–1920 (1979).

    PubMed  CAS  Google Scholar 

  83. Salmon, D.M. and Honeyman, T.W.: Proposed mechanism of cholinergic action in smooth muscle. Nature 284: 344–345 (1980).

    PubMed  CAS  Google Scholar 

  84. Salzman, E.W. and Neri, L.L.: Cyclic 3′,5′-adenosine monophosphate in human blood platelets. Nature 224: 609–612 (1969).

    PubMed  CAS  Google Scholar 

  85. Scatchard, G.: The attractions of proteins for small molecules and ions. Annals of the New York Academy of Sciences 51: 660–672 (1949).

    CAS  Google Scholar 

  86. Schultz, G.; Hardman, J.G.; Schultz, K.; Baird, C.E. and Sutherland, E.W.: The importance of calcium ions for the regulation of guanosine 3′,5′-cyclic monophosphate levels. Proceedings of the National Academy of Sciences USA 70: 3889–3893 (1973).

    CAS  Google Scholar 

  87. Schultz, J. and Daly, J.W.: Adenosine 3′5′-monophosphate in guinea pig cerebral cortical slices: Effects of α- and β-adrenergic agents, histamine, serotonin, and adenosine. Journal of Neurochemistry 21: 573–579 (1973a).

    PubMed  CAS  Google Scholar 

  88. Shultz, J. and Daly, J.W.: Accumulation of cyclic adenosine 3′,5′-monophosphate in cerebral cortical slices from rat and mouse: Stimulatory effect of α- and β-adrenergic agents and adenosine. Journal of Neurochemistry 21: 1319–1326 (1973b).

    Google Scholar 

  89. Schwabe, U. and Daly, J.W.: The role of calcium ions in accumulations of cyclic adenosine monosphosphate elicited by alpha and beta adrenergic agonists in rat brain slices. Journal of Pharmacology and Experimental Therapeutics 202: 134–143 (1977).

    PubMed  CAS  Google Scholar 

  90. Shear, M.; Insel, P.A.; Melmon, K.L. and Coffino, P.: Agonist-specific refractoriness induced by isoproterenol: Studies with mutant cells. Journal of Biological Chemistry 251: 7572–7576 (1976).

    PubMed  CAS  Google Scholar 

  91. Slome, R.: Withdrawal of propranolol and myocardial infarction. Lancet 1: 156 (1973).

    PubMed  CAS  Google Scholar 

  92. Speizer, F.E.; Doll, R. and Heaf, P.: Observations on recent increase in mortality from asthma. British Medical Journal 1: 335–339 (1968a).

    PubMed  CAS  Google Scholar 

  93. Speizer, F.E.; Doll, R.; Heaf, P. and Strang, L.B.: Investigation into use of drugs preceding death from asthma. British Medical Journal 1: 339–343 (1968b).

    PubMed  CAS  Google Scholar 

  94. Sporn, J.R. and Molinoff, P.B.: β-adrenergic receptors in rat brain. Journal of Cyclic Nucleotide Research 2: 149–161 (1976).

    PubMed  CAS  Google Scholar 

  95. Sporn, J.R.; Wolfe, B.B.; Harden, T.K. and Molinoff, P.B.: Supersensitivity in rat cerebral cortex: Pre- and postsynaptic effects of 6-hydroxydopamine at noradrenergic synapses. Molecular Pharmacololgy 13: 1170–1180 (1977).

    CAS  Google Scholar 

  96. Stainforth, J.N. and Tattersfield, A.E.: Airway responsiveness to high dose nebulised salbutamol in chronic asthma. Clinical Science 64: 13 (1983).

    Google Scholar 

  97. Starke, K.; Borowski, E. and Endo, T.: Preferential blockade of presynaptic α-adrenoceptors by yohimbine. European Journal of Pharmacology 34: 385–388 (1975).

    PubMed  CAS  Google Scholar 

  98. Sutherland, E.W.; Oye, I. and Butcher, R.W.: The action of epinephrine and the role of the adenyl cyclase system in hormone action. Recent Progress in Hormone Research 21: 623–646 (1965).

    PubMed  CAS  Google Scholar 

  99. Sutherland, E.W. and Robison, G.A.: The role of cyclic AMP in the control of carbohydrate metabolism. Diabetes 18: 797–819 (1969).

    PubMed  CAS  Google Scholar 

  100. Takai, Y.; Kishimoto, A.; Kikkawa, U.; Mori, T. and Nishizuka, Y.: Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system. Biochemical and Biophysical Research Communications 91: 1218–1224 (1979).

    PubMed  CAS  Google Scholar 

  101. Tashkin, D.P.; Conolly, M.E.; Deutsch, R.I.; Hui, K.K.; Littner, M.; Scourpace, P. and Abrass, I.: Subsensitization of beta-adrenoceptors in airways and lymphocytes of healthy asthmatic subjects. American Review of Respiratory Disease 125: 185 (1982).

    PubMed  CAS  Google Scholar 

  102. Tattersfield, A.E.: Bronchodilators in the prevention of asthma; in Clarke, T.J.H. (Ed.) Bronchodilator Therapy (Adis Press, Auckland 1984).

    Google Scholar 

  103. U’Prichard, D.C.; Bechtel, W.D.; Rouot, B.M. and Snyder, S.H.: Multiple apparent alpha noradrenergic receptor binding sites in rat brain: Effect of 6-hydroxydopamine. Molecular Pharmacology 16: 47–60 (1979).

    PubMed  Google Scholar 

  104. U’Prichard, D.C.; Bylund, D.B. and Snyder, S.H.: (±)-(3H)Epinephrine and (-)-(3H)dihydroalprenolol bindidng to β1- and β2-noradrenergic receptors in brain, heart, and lung membranes. Journal of Biological Chemistry 253: 5090–5102 (1978).

    PubMed  Google Scholar 

  105. U’Prichard, D.C.; Greenberg, D.A. and Snyder, S.H.: Binding characteristics of a radiolabeled agonist and antagonist at central nervous system alpha noradrenergic receptors. Molecular Pharmacololgy 13: 454–473 (1977).

    Google Scholar 

  106. Weiland, G.A. and Molinoff, P.B.: Quantitative analysis of drug-receptor interactions: I. Determination of kinetic and equilibrium properties. Life Sciences 29: 313–330 (1981).

    PubMed  CAS  Google Scholar 

  107. Williams, L.T.; Jarett, L. and Lefkowitz, R.J.: Adipocyte β-adrenergic receptors. Identification and subcellular localization by (-)-(3H)dihydroalprenolol binding. Journal of Biological Chemistry 251: 3096–3104 (1976a).

    PubMed  CAS  Google Scholar 

  108. Williams, L.T. and Lefkowitz, R.J.: Alpha-adrenergic receptor identification by (3H)dihydroergocryptine binding. Science 192: 791–793 (1976).

    PubMed  CAS  Google Scholar 

  109. Williams, L.T.; Snyderman, R. and Lefkowitz, R.J.: Identification of β-adrenergic receptors in human lymphocytes by (-)(3H)-alprenolol binding. Journal of Clinical Investigation 57: 149–155 (1976b).

    PubMed  CAS  Google Scholar 

  110. Wolfe, B.B.; Harden, T.K. and Molinoff, P.B.: In vitro study of β-adrenergic receptors. Annual Review of Pharmacology and Toxicology 17: 575–604 (1977).

    PubMed  CAS  Google Scholar 

  111. Wolfe, B.B.; Harden, T.K.; Sporn, J.R. and Molinoff, P.B.: Presynaptic modulation of beta adrenergic receptors in rat cerebral cortex after treatment with antidepressants. Journal of Pharmacology and Experimental Therapeutics 207: 446–457 (1978).

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Perry B. Molinoff.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Molinoff, P.B. α- and β-Adrenergic Receptor Subtypes. Drugs 28, 1–15 (1984). https://doi.org/10.2165/00003495-198400282-00002

Download citation

Keywords

  • Propranolol
  • Adrenergic Receptor
  • Yohimbine
  • Pindolol
  • Ergic Receptor