Skip to main content
Log in

Calcium Antagonists

Pharmacodynamic Effects and Mechanism of Action

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Calcium antagonistic drugs (also called slow channel or calcium channel inhibitors or calcium entry blockers) represent a major development in cardiovascular pharmacology. Their main site of action is at the slow channels where they inhibit Ca2+ influx into the cells. This characteristic distinguishes them from other drugs such as sodium nitroprusside, papaverine, hydralazine and diazoxide which interfere with the availability of calcium ions for their physiological functions by acting at sites other than the ‘calcium channels’. There is considerable evidence, however, that calcium antagonistic drugs act at an intracellular site(s) as well as the ‘calcium channels’.

At present, verapamil, nifedipine and diltiazem are the most important representatives of this new class of drugs. Their chemical structures are quite different but their pharmacological characteristics are similar. The action of these drugs is primarily confined to the cardiovascular system. In the heart they depress cardiac contractions and heart rate and protect the ischaemic myocardium from calcium injury. Furthermore, verapamil and diltiazem (but not nifedipine) prolong A V conduction and refractoriness, which is important for their use as antiarrhythmic agents. All 3 drugs are powerful dilators of the coronary and peripheral arteries. These in vitro effects can be substantially altered by activation of baroreceptor reflexes in vivo, as is expected with vasodilators that cause little or no inhibition of noradrenaline release from sympathetic nerve endings. The combination of coronary dilatation with decreased oxygen demand of the myocardium and with decreased preload explains their value in the treatment of vasospastic and effort angina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antman, E.M.; Stone, P.H.; Muller, J.E. and Braunwald, E.: Calcium channel blocking agents in the treatment of cardiovascular disorders. Part I: Basic and clinical electrophysiological effects. Annals of Internal Medicine 93: 875–885 (1980).

    PubMed  CAS  Google Scholar 

  • Aoki, K.; Kondo, S.; Mochizuki, A.; Yoshida, T.; Kato, S.; Kato, K. and Takikawa, K.: Antihypertensive effect of cardiovascular Ca2+-antagonist in hypertensive patients in the absence and presence of beta-adrenergic blockade. American Heart Journal 96: 218–226 (1978).

    PubMed  CAS  Google Scholar 

  • Barnathan, E.S.; Addonizio, V.P. and Shattil, S.J.: Interaction of verapamil with human platelet α-adrenergic receptors. American Journal of Physiology 242: H19–H23 (1982).

    PubMed  CAS  Google Scholar 

  • Baumann, K.L.: On the action of nifedipine under conditions of variable stimulation patterns and [Ca2+] in guinea-pig atrium. Naunyn-Schmiedeberg’s Archives of Pharmacology 294: 161–168 (1976).

    PubMed  CAS  Google Scholar 

  • Bayer, R.; Hennekes, R.; Kaufman, R. and Mannhold, R.: Inotropic and electrophysiological actions of verapamil and D-600 in mammalian myocardium. Naunyn-Schmiedeberg’s Archives of Pharmacology 290: 49–97 (1975).

    PubMed  CAS  Google Scholar 

  • Belz, G.C.; Doering, W.; Munkes, R.; Aust, P.E. and Belz, G.: Effects of various calcium antagonists on blood level and renal clearance of digoxin. Circulation 64: IV–24 (1981).

    Google Scholar 

  • Bier, C.; Klassen, G.; Huttner, I.; Maner, O.; Mogensen, L. and Zborowska-Sluis, D.: Mitochondrial protection by nifedipine in ischemic myocardium. Circulation 58: 11–99 (1978).

    Google Scholar 

  • Bush, L.R.; Li, Y.-P.; Schlafer, M.; Jolly, S.R. and Lucchesi, B.R.: Protective effects of diltiazem during myocardial ischemia in isolated cat hearts. Journal of Pharmacology and Experimental Therapeutics 218: 653–661 (1981).

    PubMed  CAS  Google Scholar 

  • Church, J. and Zsotér, T.T.: Calcium antagonistic drugs. Mechanism of action. Canadian Journal of Physiology and Pharmacology 58: 254–264 (1980).

    CAS  Google Scholar 

  • Clark, R.E.; Christlieb, I.Y. and Henry, P.D.: Nifedipine: A myocardial protective agent. American Journal of Cardiology 44: 825–831 (1979).

    PubMed  CAS  Google Scholar 

  • Cranefield, P.F.; Aronson, R.S. and Wit, A.L.: Effect of verapamil on the normal action potential and on a calcium-dependent slow-response of canine cardiac Purkinje fibres. Circulation Research 34: 204–213 (1974).

    PubMed  CAS  Google Scholar 

  • Crankshaw, D.J.; Janis, R.A. and Daniel, E.E.: The effects of Ca2+ antagonists on Ca2+ accumulation by subcellular fractions of rat myometrium. Canadian Journal of Physiology and Pharmacology 55: 1028–1032 (1977).

    PubMed  CAS  Google Scholar 

  • Crevey, B.J.; Dantzker, D.R.; Bower, J.S.; Popat, K.D. and Walker, S.D.: Hemodynamic and gas exchange effects of intravenous diltiazem in patients with pulmonary hypertension. American Journal of Cardiology 49: 578–583 (1982).

    PubMed  CAS  Google Scholar 

  • Dangman, K.H. and Hoffman, B.F.: Effects of nifedipine on electrical activity of cardiac cells. American Journal of Cardiology 46: 1059–1067 (1980).

    PubMed  CAS  Google Scholar 

  • Demesy, F. and Godfraind, T.: Action de la papavérine sur la distribution de calcium de l’aorte de rat stimuleé par le potassium. Archives Internationales de Pharmacodynamie et de Therapie 199: 195–196 (1972).

    PubMed  CAS  Google Scholar 

  • Ehara, T. and Daufmann, T.: The voltage- and time-dependent effects of (−) verapamil on slow-inward current in isolated cat ventricular myocardium. Journal of Pharmacology and Experimental Therapeutics, 207: 49–55 (1978).

    PubMed  CAS  Google Scholar 

  • Ellrodt, G.; Christopher, Y.C.; Chew, M.B. and Singh, B.N.: Therapeutic implications of slow-channel blockade in cardiocirculatory disorders. Circulation 62: 669–679 (1980).

    PubMed  CAS  Google Scholar 

  • Entman, M.; Allen, J.C.; Bornet, E.P.; Gillette, P.C.; Wallick, E.T. and Schwartz, A.: Mechanisms of calcium accumulation and transport in cardiac relaxing system: Effects of verapamil, D-600, X537A and A23187. Journal of Molecular and Cellular Cardiology 4: 681–687 (1972).

    PubMed  CAS  Google Scholar 

  • Fagbemi, O. and Parratt, J.R.: Calcium antagonists prevent early post-infarction ventricular fibrillation. European Journal of Pharmacology 75: 179–185 (1981).

    PubMed  CAS  Google Scholar 

  • Ferlinz, J.; Easthope, J.L. and Aronow, W.S.: Effects of verapamil on myocardial performance in coronary disease. Circulation 59: 313–319 (1979).

    PubMed  CAS  Google Scholar 

  • Flaim, S.F.; Irwin, J.M.; Ratz, P.H. and Swigart, S.C.: Differential effect of calcium channel blocking agents on oxygen consumption rate in vascular smooth muscles. American Journal of Cardiology 49: 511–518 (1982).

    PubMed  CAS  Google Scholar 

  • Fleckenstein, A.: Specific pharmacology of calcium in myocardium, cardiac pacemakers and vascular smooth muscle. Annual Review of Pharmacology and Toxicology 17: 149–166 (1977).

    PubMed  CAS  Google Scholar 

  • Fleckenstein, A.: Fundamental actions of calcium antagonists on myocardial and cardiac pacemaker cell membranes; in Weiss (Ed.) New Perspectives on Calcium Antagonists, pp.59–81 (American Physiological Society, Bethesda 1981).

    Google Scholar 

  • Fleckenstein, A.; Nakayama, K.; Fleckenstein-Grün, G. and Byon, Y.K.: Interaction of vasoactive ions and drugs with Cadependent excitation-contraction coupling of vascular smooth muscle; in Carafoli et al. (Eds) Calcium Transport in Contraction and Secretion, pp.555–566 (North Holland Publishing, Amsterdam 1975).

    Google Scholar 

  • Fleckenstein, A.; Tritthart, H.; Fleckenstein, B.; Herbst, A. and Grün, G.: A new group of competitive Ca-antagonists (iproveratril, D-600, prenylamine) with highly potent inhibitory effects on excitation-contraction coupling in mammalian myocardium. Pflugers Archives 307: R25 (1969).

    CAS  Google Scholar 

  • Franklin, D.; Millard, R.W. and Nagao, T.: Response of coronary collateral flow and dependent myocardial mechanical function to the calcium antagonist diltiazem. Chest 78: 200–204 (1980).

    PubMed  CAS  Google Scholar 

  • Frey, M. and Janke, J.: The effect of organic Ca-antagonists (verapamil, prenylamine) on the calcium transport system in isolated mitochondria of rat cardiac muscle. Pflugers Archives 359: R26 (1975).

    Google Scholar 

  • Godfraind, T.: Mechanisms of action of calcium entry blockers. Federation Proceedings 40: 2866–2871 (1981).

    PubMed  CAS  Google Scholar 

  • Godfraind, T. and Dieu, D.: The inhibition by flunarizine of the norepinephrine-evoked contraction and calcium influx in rat aorta and mesenteric arteries. Journal of Pharmacology and Experimental Therapeutics 217: 510–515 (1981).

    PubMed  CAS  Google Scholar 

  • Godfraind, T. and Kaba, A.: The role of calcium in the action of drugs on vascular smooth muscle. Archives Internationales de Pharmacodynamie et de Therapie 196: 35–49 (1972).

    PubMed  Google Scholar 

  • Guazzi, M.D.; Fiorentini, C.; Olivari, M.T.; Bertorelli, A.; Necchi, G. and Polese, A.: Short- and long-term efficacy of a calcium antagonistic agent (nifedipine) combined with methyldopa in the treatment of severe hypertension. Circulation 61: 913–919 (1980).

    PubMed  CAS  Google Scholar 

  • Guazzi, M.D.; Olivari, M.T.; Olese, A.; Fiorentini, C.; Magrini, F. and Moruzzi, P.: Nifedipine, a new antihypertensive with rapid action. Clinical Pharmacology and Therapeutics 22: 528–532 (1977).

    PubMed  CAS  Google Scholar 

  • Haeusler, G.: Differential effect of verapamil on excitation-contraction coupling in smooth muscle and on excitation-secretion coupling in adrenergic nerve terminals. Journal of Pharmacology and Experimental Therapeutics 180: 672–682 (1972).

    PubMed  CAS  Google Scholar 

  • Hagiwara, S. and Nakajima, S.: Differences in Na and Ca spike as examined by application of TTX, procaine and manganese ions. Journal of General Physiology 49: 793–806 (1966).

    PubMed  CAS  Google Scholar 

  • Harder, D.R.; Belardinelli, L; Sperelakis, N.; Rubio, R. and Berne, R.M.: Differential effects of adenosine and nitroglycerin on the action potentials of large and small coronary arteries. Circulation Research 44: 176–182 (1979).

    PubMed  CAS  Google Scholar 

  • Hashimoto, K.; Taira, N.; Ono, H.; Chiba, S.; Hashimoto, K.; Endoh, M.; Kokubun, M.; Kokubun, H.; Iijima, T.; Kimura, T.; Kubata, K. and Opuro, K.: Nifedipine, basis of its pharmacological effect; in Hashimoto et al. (Eds) First International Nifedipine (Adalat) Symposium, pp.11–22 (University of Tokyo Press, Tokyo 1975).

  • Henry, P.D.: Comparative pharmacology of calcium antagonists nifedipine, verapamil and diltiazem. American Journal of Cardiology 46: 1047–1058 (1980).

    PubMed  CAS  Google Scholar 

  • Hester, R.K.; Weiss, G.B. and Fry, W.J.: Differing actions of nitroprusside and D-600 on tension and 45Ca fluxes in canine renal arteries. Journal of Pharmacology and Experimental Therapeutics 208: 155–160 (1979).

    PubMed  CAS  Google Scholar 

  • Himori, N.; Ono, H. and Taira, N.: Dual effects of a new coronary vasodilator, diltiazem, on the contractile force of the blood-perfused papillary muscle of the dog. Japanese Journal of Pharmacology 25: 350–352 (1975).

    PubMed  CAS  Google Scholar 

  • Himori, N.; Ono, H. and Taira, N.: Simultaneous assessment of effects of coronary vasodilators on the coronary blood flow and the myocardial contractility by using the blood-perfused canine papillary muscle. Japanese Journal of Pharmacology 26: 427–435 (1976).

    PubMed  CAS  Google Scholar 

  • Hinke, J.A.M.: Calcium requirements for noradrenaline and high potassium ion concentration in arterial smooth muscle; in Paul et al. (Eds) Muscle, pp.264–284 (Pergamon Press, Oxford 1965).

    Google Scholar 

  • Hoeschen, R.J.: Effects of verapamil on (Na++K+)-ATPase, Ca2+-ATPase and adenylate cyclase activity in membrane fractions from rat and guinea pig ventricular muscle. Canadian Journal of Physiology and Pharmacology 55: 1098–1101 (1977).

    PubMed  CAS  Google Scholar 

  • Hosada, S. and Kimura, E.: Efficacy of nifedipine in the variant form of angina pectoris; in Jatene and Lichtlen (Eds) Third International Adalat Symposium, pp. 195–199 (Excerpta Medica, Amsterdam 1976).

    Google Scholar 

  • Hudgins, P.M. and Weiss, G.B.: Differential effects of calcium removal upon vascular smooth muscle contraction induced by norepinephrine, histamine and potassium. Journal of Pharmacology and Experimental Therapeutics 159: 91–97 (1968).

    PubMed  CAS  Google Scholar 

  • Hurwitz, L. and McGuffee, L.J.: Calcium in smooth muscle function; in Weiss (Ed) Calcium in Drug Action, pp.75–94 (Plenum Press, New York 1978).

    Google Scholar 

  • Ishikawa, H.; Matsushima, A.; Matsui, H.; Shindo, T.; Morifuji, T. and Okabayashi, M.: Effects of diltiazem hydrochloride (CRD-401) on hepatic, superior mesenteric and femoral hemodynamics. Arzneimittel-Forschung/Drug Research 28: 400–402 (1978).

    CAS  Google Scholar 

  • Ito, Y.; Kuriyama, H. and Suzuki, H.: The effects of diltiazem (CRD-401) on the membrane and mechanical properties of vascular smooth muscle of the rabbit. British Journal of Pharmacology 64: 503–510 (1978).

    PubMed  CAS  Google Scholar 

  • Jetley, M. and Weston, A.H.: Some effects of D-600, nifedipine and sodium nitroprusside on electrical and mechanical activity in rat portal vein. British Journal of Pharmacology 58: 287P–288P (1976).

    PubMed  CAS  Google Scholar 

  • Johnson, S.M.; Mauritson, D.R.; Willerson, J.T. and Hillis, L.D.: A comparison of verapamil and nifedipine in patients with Prinzmetal’s variant angina pectoris. American Journal of Cardiology 47: 398 (1981).

    Google Scholar 

  • Kaiman, M. and Shibata, S.: Calcium influx and spontaneous phasic contractions of portal veins after treatment with reserpine, 6-OH-dopamine and cocaine. Canadian Journal of Physiology and Pharmacology 56: 199–201 (1978).

    PubMed  CAS  Google Scholar 

  • Karaki, H.; Kubota, H. and Urakawa, N.: Mobilization of stored calcium for phasic contraction induced by norepinephrine in rabbit aorta. European Journal of Pharmacology 56: 237–245 (1979).

    PubMed  CAS  Google Scholar 

  • Kawajima, I.; Ueda, K.; Kamata, G; Matsushita, S.; Karamoto, K.; Murakawi, M. and Hada, Y.: A study on the effects of nifedipine in hypertensive crises and severe hypertension. Japanese Heart Journal 19: 455–467 (1978).

    Google Scholar 

  • Kecskemeti, V.; Kelemen, K. and Knoll, J.: Effect of verapamil and D600 on cardiac transmembrane potentials. Acta Physiologica 51: 51–59 (1978).

    PubMed  CAS  Google Scholar 

  • Kimura, E. and Kishida, H.: Treatment of variant angina with drugs: A survey of 11 cardiology institutes in Japan. Circulation 63: 844–848 (1981).

    PubMed  CAS  Google Scholar 

  • Klein, H.D.; Long, R.; Weiss, E.; Di Segni, E.; Libhober, C.; Geurrero, J. and Keplinsky, E.: The influence of verapamil on serum digoxin concentrations. Circulation 65: 998–1003 (1982).

    PubMed  CAS  Google Scholar 

  • Kohlhardt, M.; Bauer, P.; Krause, H. and Fleckenstein, A.: Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibers by the use of specific inhibitors. Pflugers Archives 335: 309–322 (1972).

    CAS  Google Scholar 

  • Kohlhardt, M.; Bauer, B.; Krause, H. and Fleckenstein, A.: Selective inhibition of the transmembrane Ca conductivity of mammalian myocardial fibres by Ni, Co and Mn. Pflugers Archives 338: 115–123 (1973).

    CAS  Google Scholar 

  • Kohlhardt, M. and Fleckenstein, A.: Inhibition of the slow inward current by nifedipine in mammalian ventricular myocardium. Naunyn-Schmiedeberg’s Archives of Pharmacology 298: 267–272 (1977).

    PubMed  CAS  Google Scholar 

  • Kohlhardt, M. and Mnich, Z.: Studies on the inhibitory effect of verapamil on the slow inward current in mammalian ventricular myocardium. Journal of Molecular and Cellular Cardiology 10: 1037–1052 (1978).

    PubMed  CAS  Google Scholar 

  • Kroneberg, G.: Pharmacology of nifedipine (Adalat); in Hasimoto et al. (Eds) First International Nifedipine (Adalat) Symposium, pp.3–11 (University of Tokyo Press, Tokyo 1975).

    Google Scholar 

  • Lakshminarayanaiah, N.: Calcium channels in the barnacle muscle membrane; in Weiss (Ed.) New Perspectives on Calcium Antagonists, pp. 19–33 (American Physiological Society, Bethesda 1981).

    Google Scholar 

  • Landmark, K.; Refsum, A.M.; Simonsen, S. and Storstein, O.: Verapamil and pulmonary hypertension. Acta Medica Scandinavica 204: 299–302 (1978).

    PubMed  CAS  Google Scholar 

  • Lederballe-Pedersen, O.L.; Mikkelsen, E. and Andersson, K.-E.: Effects of extracellular calcium on potassium and noradrenaline-induced contractions in the aorta of spontaneously hypertensive rats. Increased sensitivity to nifedipine. Acta Pharmacologica et Toxicologica 43: 137–144 (1978).

    PubMed  CAS  Google Scholar 

  • Magaribuchi, T.; Nakajima, H. and Kiyomoto, A.: Effect of diltiazem and lanthanum ion on the potassium contracture of isolated guinea pig smooth muscle. Japanese Journal of Pharmacology 27: 333–339 (1977).

    PubMed  CAS  Google Scholar 

  • Malaisse, W.J.; Davis, G. and Somers, G.: Inhibition by verapamil of ionophore-mediated calcium translocation. Experientia 33: 1035–1036 (1977).

    PubMed  CAS  Google Scholar 

  • Maroko, P.R.: Experimental infarction studies. Clinical and Investigative Medicine 3: 139–142 (1980).

    PubMed  CAS  Google Scholar 

  • Mas-Oliva, J. and Nayler, W.G.: The effect of verapamil on the Ca2+ transporting and Ca2+ ATPase activity of isolated cardiac sarcolemmal preparations. British Journal of Pharmacology 70: 617–624 (1980).

    PubMed  CAS  Google Scholar 

  • Massingham, R.: A study of compounds which inhibit vascular smooth muscle contraction. European Journal of Pharmacology 22: 75–82 (1973).

    PubMed  CAS  Google Scholar 

  • Matsumoto, S.; Ito, T.; Sada, T.; Takahashi, M.; Su, K.-M.; Ueda, A.; Okabe, F.; Sato, M.; Sekine, I. and Ito, Y.: Hemodynamic effects of nifedipine in congestive heart failure. American Journal of Cardiology 46: 476–480 (1980).

    PubMed  CAS  Google Scholar 

  • Mauritson, D.R.; Winniford, M.D.; Walker, W.S.; Rude, R.E.; Cary, J.R. and Hillis, L.D.: Oral verapamil for paroxysmal supraventricular tachycardia. Annals of Internal Medicine 96: 409–412 (1982).

    PubMed  CAS  Google Scholar 

  • McClean, A.J.; DuSouich, P.; Barron, K.W. and Briggs, A.H.: Interaction of hydralazine with tension development and mechanisms of calcium accumulation in K+-stimulated rabbit aortic strips. Journal of Pharmacology and Experimental Therapeutics 207: 40–48 (1978).

    Google Scholar 

  • Melville, K.I.; Shister, H.E. and Huq, S.: Iproveratril: Experimental data on coronary dilatation and antiarrhythmic action. Canadian Medical Association Journal 90: 761–770 (1964).

    PubMed  CAS  Google Scholar 

  • Mikkelsen, E.; Andersson, K.-E. and Pedersen, O.L.: The effect of nifedipine on isolated human peripheral vessels. Acta Pharmacologica et Toxicologica 43: 291–298 (1978).

    PubMed  CAS  Google Scholar 

  • Mikkelsen, E.; Pedersen, L.-O. and Andersson, K.-E.: Effects of verapamil on Na+ and K+-induced contractions in human mesenteric arteries and veins. Acta Pharmacologica et Toxicologica 41: VI–64 (1977).

    Google Scholar 

  • Millard, R.W.; Lathrop, D.A.; Grupp, G.; Ashraf, M.; Grupp, I.L. and Schwartz, A.: Differential cardiovascular effects of calcium channel blocking agents: Potential mechanisms. American Journal of Cardiology 49: 499–506 (1982).

    PubMed  CAS  Google Scholar 

  • Mitchell, L.B.; Schroeder, J.S. and Mason, J.W.: Comparative clinical electrophysiological effects of diltiazem, verapamil and nifedipine — a review. American Journal of Cardiology 49: 629–636 (1982).

    PubMed  CAS  Google Scholar 

  • Mohiuddin, S.M.; Esterbrooks, D.; Saenz, A.; O’Donahue, W.; Mooss, A.N.; Sketch, M.H. and Runco, V.: Hemodynamic effects of nifedipine in severe pulmonary hypertension. Circulation 64: IV–297 (1981).

    Google Scholar 

  • Mostbeck, A.; Partsch, H. and Peschl, L.: Investigations on peripheral blood distribution; in Jatene and Lichtlen (Eds) Third International Adalat Symposium, pp. 91–97 (Excerpta Medica, Amsterdam 1976).

    Google Scholar 

  • Mras, S. and Sperelakis, N.: Bepridil (CERM-1978) and verapamil depression of contractions of rabbit aortic rings. Blood Vessels 18: 196–205 (1981).

    PubMed  CAS  Google Scholar 

  • Nabata, H.: Effects of Ca2+-antagonistic coronary vasodilators on myocardial contractility and membrane potentials. Japanese Journal of Pharmacology 27: 239–249 (1977).

    PubMed  CAS  Google Scholar 

  • Nagao, T.; Ikeo, T. and Sato, M.: Influence of calcium ions on responses to diltiazem in coronary arteries. Japanese Journal of Pharmacology 27: 330–332 (1977).

    PubMed  CAS  Google Scholar 

  • Nagao, T.; Murata, S. and Sato, M.: Effect of diltiazem (CRD-401) on developed coronary collaterals in the dog. Japanese Journal of Pharmacology 25: 281–288 (1975).

    PubMed  CAS  Google Scholar 

  • Nagao, T.; Sato, M.; Iwasawa, Y.; Takada, T.; Ishida, R.; Nakajima, H. and Kiyomoto, A.: Studies on a new 1,5-benzothiazepine derivative (CRD-401). III. Effects of optical isomers of CRD-401 on smooth muscle and other pharmacological properties. Japanese Journal of Pharmacology 22: 467–478 (1972).

    PubMed  CAS  Google Scholar 

  • Nagao, T.; Sato, M.; Nakajima, H. and Kiyomoto, A.: Studies on a new 1,5-benzodiazepine derivative (CRD-401). II. Vasodilator actions. Japanese Journal of Pharmacology 22: 1–10 (1972).

    PubMed  CAS  Google Scholar 

  • Nakajima, H.; Hoshiyama, M.; Yamashita, K. and Kiyomoto, A.: Effect of diltiazem on electrical and mechanical activity of isolated cardiac ventricular muscle of guinea pig. Japanese Journal of Pharmacology 25: 383–392 (1975).

    PubMed  CAS  Google Scholar 

  • Narimatsu, A. and Taira, N.: Effects on atrio-ventricular conduction of calcium antagonistic coronary vasodilators, local anesthetics and quinidine injected into the posterior and the anterior septal artery of the atrio-ventricular node preparation of the dog. Naunyn-Schmiedeberg’s Archives of Pharmacology 294: 169–177 (1976).

    PubMed  CAS  Google Scholar 

  • Nayler, W.G.: Cardioprotective effects of calcium ion antagonists in myocardial ischemia. Clinical and Investigative Medicine 3: 91–99 (1980).

    PubMed  CAS  Google Scholar 

  • Nayler, W.G.; Fassold, E. and Yepez, C.: Pharmacological protection of mitochondrial function in hypoxic heart muscle: Effect of verapamil, propranolol and methyl prednisolone. Cardiovascular Research 12: 152–161 (1978).

    PubMed  CAS  Google Scholar 

  • Nayler, W.G. and Grinwald, P.: Calcium entry blockers and myocardial function. Federation Proceedings 40: 2855–2861 (1981).

    PubMed  CAS  Google Scholar 

  • Nayler, W.G. and Poole-Wilson, P.H.: Calcium antagonists: Definition and mode of action. Basic Research in Cardiology 76: 1–15 (1981).

    PubMed  CAS  Google Scholar 

  • Nayler, W.G. and Szeto, J.: Effects of verapamil on contractility, oxygen utilization and calcium exchangeability in mammalian heart muscle. Cardiovascular Research 6: 120–128 (1972).

    PubMed  CAS  Google Scholar 

  • Okada, K.; Yamamura, H.; Yamaguchi, Y.; Innami, H. and Kosugi, I.: Effect of CRD-401, a coronary vasodilator, on systemic blood flow distribution. Japanese Journal of Anaesthesiology 21: 781–786 (1972).

    CAS  Google Scholar 

  • Perez, J.E.; Borda, L.; Schuchleb, R. and Henry, P.D.: Inotropic and chronotropic effects of vasodilators. Journal of Pharmacology and Experimental Therapeutics 221: 609–613 (1982).

    PubMed  CAS  Google Scholar 

  • Rahwan, R.G.; Piascik, M.F. and Witiak, D.T.: The role of calcium antagonism in the therapeutic action of drugs. Canadian Journal of Physiology and Pharmacology 57: 443–460 (1979).

    PubMed  CAS  Google Scholar 

  • Raschak, M.: Relationship of antiarrhythmic to inotropic activity and antiarrhythmic qualities of the optical isomers of verapamil. Naunyn-Schmiedeberg’s Archives of Pharmacology 294: 285–291 (1976).

    Google Scholar 

  • Ratz, P.H. and Flaim, S.F.: Evidence that diltiazem and verapamil may inhibit intracellular calcium release during serotonin stimulation of bovine coronary artery. Circulation 64: IV–122 (1981).

    Google Scholar 

  • Refsum, H. and Landmark, K.: A comparison of the effects of ouabain, noradrenaline and nifedipine on the contractile force of the isolated rat atrium at different calcium levels. Acta Pharmacologica et Toxicologica 40: 259–266 (1977).

    PubMed  CAS  Google Scholar 

  • Reimer, K.A.; Lowe, J.E. and Jennings, R.B.: Effect of the calcium antagonist verapamil on necrosis following temporary coronary artery occlusion in dogs. Circulation 55: 581–587 (1977).

    PubMed  CAS  Google Scholar 

  • Reuter, H.: Divalent cations as charge carriers in excitable membranes. Progress in Biophysics and Molecular Biology 26: 1–43 (1973).

    PubMed  CAS  Google Scholar 

  • Robinson, B.F.; Collier, J.G. and Dobbs, R.J.: Comparative dilator effect of verapamil and sodium nitroprusside in forearm arterial bed and dorsal hand veins in man: Functional differences between vascular smooth muscle in arterioles and veins. Cardiovascular Research 13: 16–21 (1979).

    PubMed  CAS  Google Scholar 

  • Rosenberger, L. and Triggle, D.J.: Calcium, calcium translocation and specific calcium antagonists; in Weiss (Ed.) Calcium in Drug Action, pp. 3–31 (Plenum Press, New York 1978).

    Google Scholar 

  • Rubin, A.A.; Roth, F.E.; Taylor, R.M. and Rosenkilde, H.: Pharmacology of diazoxide, an antihypertensive, non-diuretic benzothiadiazine. Journal of Pharmacology and Experimental Therapeutics 136: 344–352 (1962).

    PubMed  CAS  Google Scholar 

  • Ruedy, J.: Verapamil. Clinical and Investigative Medicine 4: 129–147 (1981).

    PubMed  CAS  Google Scholar 

  • Sato, M.; Nagao, T.; Yamaguchi, I.; Kakajima, H. and Kiyomoto, A.: Pharmacological studies on a new 1,5-benzothiazepine derivative (CRD-401). Arzneimittel-Forschung/Drug Research 21: 1338–1343 (1971).

    CAS  Google Scholar 

  • Schmier, J.; Van Ackern, K. and Bruckner, U.: Investigation of tachyphylaxis and collateral formation after nifedipine whilst taking into consideration the direction of flow and the mortality rate due to infarction; in Hashimoto et al. (Eds) First International Nifedipine (Adalat) Symposium, pp.45–52 (University of Tokyo Press, Tokyo 1975).

    Google Scholar 

  • Schümann, HJ.; Görlitz, B.D. and Wagner, J.: Influence of papaverine D-600 and nifedipine on the effects of noradrenaline and calcium on the isolated aorta and mesenteric artery of the rabbit. Naunyn-Schmiedeberg’s Archives of Pharmacology 289: 409–418 (1975).

    PubMed  Google Scholar 

  • Schümann, H.J.; Wagner, J. and Springer, W.: The influence of calcium antagonists on the maximum inotropic effect on the toxicity of digoxin and digitoxin in the isolated electrically driven guinea pig atrium. Arzneimittel-Forschung/Drug Research 27: 2353–2357 (1977).

    Google Scholar 

  • Selwyn, A.P.; Welman, E.; Fox, K.; Horlock, P.; Pratt, T. and Klein, M.: The effects of nifedipine on acute experimental myocardial ischemia and infarction in dogs. Circulation Research 44: 16–23 (1979).

    PubMed  CAS  Google Scholar 

  • Singh, B.N.; Chew, C.Y.C.; Hecht, H.; Collett, J. and Ormiston, J.: Effects of intravenously administered verapamil on hemodynamic variables and ventricular function in acute myocardial infarction. Clinical and Investigative Medicine 3: 73–80 (1980).

    PubMed  CAS  Google Scholar 

  • Singh, B.N.; Ellrodt, G. and Peter, C.T.: Verapamil: A review of its pharmacological properties and therapeutic use. Drugs 15: 169–197 (1978).

    PubMed  Google Scholar 

  • Sprugel, W.; Mitznegg, P. and Heim, F.: The influence of the calcium antagonist fendiline on tone and motility of the guinea pig gut smooth muscle and the cAMP and cGMP concentrations of the isolated terminal ileum. Arzneimittel-Forschung/Drug Research 27: 571–574 (1978).

    Google Scholar 

  • Starke, K. and Schnemann, H.J.: Wirkung von Nifedipine auf die Funktion der sympathischen Nerven der Herzens. Arzneimittel-Forschung/Drug Research 23: 193–197 (1973).

    CAS  Google Scholar 

  • Stone, P.H.; Antman, E.M.; Muller, J.E. and Braunwald, E.: Calcium channel blocking agents in the treatment of cardiovascular disorders. Part II. Hemodynamic efffects and clinical applications. Annals of Internal Medicine 93: 886–904 (1980).

    PubMed  CAS  Google Scholar 

  • Subramanian, B.; Bowles, M.J.; Davies, A.B. and Raftery, E.B.: Combined therapy with verapamil and propranolol in chronic, stable angina. American Journal of Cardiology 49: 125–132 (1982).

    PubMed  CAS  Google Scholar 

  • Taniguchi, H.; Murakami, K. and Morita, S.: Calcium antagonist (diltiazem) for reversal of hypoglycaemic symptoms in insulinoma. Lancet 2: 501 (1977).

    PubMed  CAS  Google Scholar 

  • Thorens, S. and Haeusler, G.: Effects of some vasodilators on calcium translocation in intact and fractionated smooth muscle. European Journal of Pharmacology 54: 79–91 (1979).

    PubMed  CAS  Google Scholar 

  • Triggle, C.R.; Swamy, V.C. and Triggle, D.J.: Calcium antagonists and contractile responses in rat vas deferens and guinea pig ileal smooth muscle. Canadian Journal of Physiology and Pharmacology 57: 804–818 (1979).

    PubMed  CAS  Google Scholar 

  • Triggle, D.J.: Calcium antagonists: Basic chemical and pharmacological aspects; in Weiss (Ed) New Perspectives on Calcium Antagonists, pp. 1–18 (American Physiological Society, Bethesda 1981).

    Google Scholar 

  • Tritthart, H.: Pharmacology and electrophysiology of calcium ion antagonists. Clinical and Investigative Medicine 3: 1–7 (1980).

    PubMed  CAS  Google Scholar 

  • Tritthart, H.; Volkmann, R.; Weiss, R. and Fleckenstein, A.: Calcium-mediated action potentials in mammalian myocardium. Alteration of membrane response as induced by changes of Ca or by promotors and inhibitors of transmembrane Ca inflow. Naunyn-Schmiedeberg’s Archives of Pharmacology 280: 239–252 (1973).

    PubMed  CAS  Google Scholar 

  • Vaghy, P.L.; Johnson, J.D.; Matlib, M.A.; Wang, T. and Schwartz, A.: Selective inhibition of Na+-induced Ca2+ release from heart mitochondria by diltiazem and certain other Ca2+ antagonistic drugs. Journal of Biological Chemistry 257: 6000–6002 (1982).

    PubMed  CAS  Google Scholar 

  • Van Breeman, C.; Farinas, B.R.; Casteels, R.; Gerba, P.; Wuytack, F. and Deth, R.: Factors controlling cytoplasmic Ca2+ concentration. Philosophical Transaction of the Royal Society of London B265: 57–71 (1973).

    Google Scholar 

  • Van Breeman, C.; Farinas, B.R.; Gerba, P. and McNaughton, E.D.: Excitation-contraction coupling in rabbit aorta studied by the lanthanum method for measuring cellular calcium influx. Circulation Research 30: 44–54 (1972).

    Google Scholar 

  • Van Breeman, C.; Hwang, O. and Meisheri, K.D.: The mechanism of inhibitory action of diltiazem on vascular smooth muscle contractility. Journal of Pharmacology and Experimental Therapeutics 218: 459–463 (1981).

    Google Scholar 

  • Vanhoutte, P.M.: Introduction: Why calcium blockers? Federation Proceedings 40: 2851 (1981).

    Google Scholar 

  • Van Nueten, J.M. and Vanhoutte, P.M.: Improvement of tissue perfusion with inhibitors of calcium ion influx. Biochemical Pharmacology 29: 479–481 (1980).

    PubMed  Google Scholar 

  • Van Nueten, J.M. and Vanhoutte, P.M.: Calcium entry blockers and vascular smooth muscle heterogeneity. Federation Proceedings 40: 2862–2865 (1981).

    PubMed  Google Scholar 

  • Watanabe, A.M. and Besch, H.R.: Subcellular myocardial effects of verapamil and D-600: Comparison with propranolol. Journal of Pharmacology and Experimental Therapeutics 191: 241–251 (1974).

    PubMed  CAS  Google Scholar 

  • Weiss, G.B.: Cellular pharmacology of lanthanum. Annual Review of Pharmacology and Toxicology 14: 343–354 (1974).

    CAS  Google Scholar 

  • Wit, A.L. and Cranefield, P.F.: Effect of verapamil on the sinoatrial and atrioventricular nodes of the rabbit and the mechanism by which it arrests re-entrant atrioventricular nodal tachycardia. Circulation Research 35: 413–425 (1974).

    PubMed  CAS  Google Scholar 

  • Yamada, K.; Shimamura, T. and Nakajima, H.: Studies on a new 1,5-benzothiazepine derivative (CRD-401). V. Antiarrhythmic actions. Japanese Journal of Pharmacology 23: 321–328 (1973).

    PubMed  CAS  Google Scholar 

  • Yamaguchi, I.; Obayashi, K. and Mandel, W.J.: Electrophysiological effects of verapamil. Cardiovascular Research 12: 597–608 (1978).

    PubMed  CAS  Google Scholar 

  • Yasue, H.; Nagao, M.; Omote, S.; Takizawa, A.; Miwa, K. and Tanaka, S.: Coronary arterial spasm and Prinzmetal’s variant form of angina induced by hyperventilation and Tris-buffer infusion. Circulation 58: 56–62 (1978).

    PubMed  CAS  Google Scholar 

  • Zelis, R.; Wichmann, T. and Starke, K.: Inhibition of vascular noradrenaline release by diltiazem. Circulation 66: 11–139 (1982).

    Google Scholar 

  • Zsotér, T.T.; Henein, N.F. and Wolchinsky, C.: The effect of sodium nitroprusside on the uptake and efflux of 45Ca from rabbit and rat vessels. European Journal of Pharmacology 45: 7–12 (1977).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zsotér, T.T., Church, J.G. Calcium Antagonists. Drugs 25, 93–112 (1983). https://doi.org/10.2165/00003495-198325020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-198325020-00001

Keywords

Navigation