Skip to main content
Log in

Mechanisms of Myocardial Infarct Prevention with β-Adrenoceptor Blocking Drugs

  • Section 7: Myocardial Infarction
  • Published:
Drugs Aims and scope Submit manuscript

Summary

There are several mechanisms that are potentially of importance in the use of β-adrenoceptor blocking drugs in the prevention and treatment of myocardial infarction.

Inhibition of sympathetic stimulation of the heart reduces myocardial oxygen consumption. β-Blockers without partial agonist activity alter cardiac dynamics at rest, and all β-blockers inhibit the effects of sympathetic induced tachycardia on exercise and following various types of physiological stress. Besides potential overall improvement in oxygen supply-to-use ratio, there is evidence to suggest that β-blockers alter the distribution of myocardial blood flow so more blood is diverted towards ischaemic areas. An improvement in oxygenation will reverse the arrhythmogenic effect of anoxia. β-Blockers also have an anti-arrhythmic effect on pacemaker cells, perhaps particularly against the excess catecholamines released in myocardial ischaemia.

There are several other actions of β-blockers that may be relevant: they improve metabolism of the ischaemic myocardium, they reverse the abnormal sensitivity of platelet aggregation that has been reported in ischaemic patients, and they shift the oxygen dissociation curve to the right and so improve tissue delivery of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agostoni, A.; Berfasconi, C.; Gerli, G.C.; Luzzana, M. and Rossi-Bernardi, L.: Oxygen affinity and electrolyte distribution of human blood: changes induced by propranolol. Science 182:300–301 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Alderman, E.L.; Davies, R.O.; Crowley, J.J.; Lopes, M.G.; Brooker, J.Z.; Friedman, J.P.; Graham, A.F.; Matlof, H.J. and Harrison, D.C.: Dose response effectiveness of propranolol for the treatment of angina pectoris. Circulation 51: 964–975 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Alonso, D.R.; Scheidt, S.; Post, M. and Killip, L.: Pathophysiology of cardiogenic shock. Quantification of myocardial necrosis: clinical, pathologic and electrocardiographic correlations. Circulation 48: 588 (1973).

    CAS  Google Scholar 

  • Battler, A.; Ross, J.; Slutsky, R.; Pfisterer, M.; Ashburn, W. and Froelicher, V.: Improvement of exercise-induced left ventricular dysfunction with oral propranolol in patients with coronary heart disease. American Journal of Cardiology 44: 318-324 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Battock, D.J.; Alvarez, H. and Chidsey, C.A.: Effects of propranolol and isosorbide dinitrate on exercise performance and adrenergic activity in patients with angina pectoris. Circulation 39: 157–169 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Becker, L.C.; Fortuin, N.H. and Pitt, B.: Effect of ischaemia and antianginal drugs on the distribution of radioactive microspheres in the canine left ventricle. Circulation Research 28: 263–269 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Berdeaux, A.; Da Costa, C.P.; Garnier, M.; Boissier, J.-R. and Guidicelli, J.-F.: Beta adrenergic blockade, regional left ventricular blood flow and S-T segment elevation in canine experimental myocardial ischaemia. Journal of Pharmacology and Experimental Therapeutics 205: 646–656 (1978).

    PubMed  CAS  Google Scholar 

  • Boudoulas, H.; Lewis, R.P.; Rittgers, S.E.; Leier, V.C. and Vasko, J.S.: Increased diastolic time: A possible important factor in the beneficial effect of propranolol in patients with coronary artery disease. Journal of Cardiovascular Pharmacology 1: 503–513 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Boudoulas, H.; Dervengas, S.; Fulkerson, P.K.; Bush, C.A. and Lewis, R.P.: Effect of heart rate on diastolic time and left ventricular performance in patients with atrial fibrillation; in Dietrich (Ed.) Non-invasive Cardiovascular Diagnosis, 2nd edition (Wright-PSG, Littelton 1981).

    Google Scholar 

  • Brain, M.C.; Caro, R.T.; Kane, J.; Lyonnais, J. and Dollery, C.T.: Acute effects in varying doses of propranolol upon oxygen haemoglobin affinity in man. British Journal of Clinical Pharmacology 1: 67–70 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Brann, E.G. and Newman, D.J.: Oxygen affinity in red cells: inability to show membrane-bound 2,3-diphosphoglycerate. Science 179: 593 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Braunwald, E.: Control of myocardial oxygen consumption. Physiologic and clinical considerations. American Journal of Cardiology 27: 416–432 (1971).

    CAS  Google Scholar 

  • Campbell, W.B.; Johnson, A.R.; Callahan, K.S. and Graham, R.M.: Anti-platelet activity of beta-adrenergic antagonists: Inhibition of thromboxane synthesis and platelet aggregation in patients receiving long-term propranolol treatment. Lancet 2: 1382 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, E. and Verdonck, R.: Interaction between ouabain and butridine, a beta-adrenergic blocking substance on the heart. European Journal of Pharmacology 1: 269–277 (1967).

    Article  CAS  Google Scholar 

  • Challoner, D.R. and Steinberg, D.: Effect of free fatty acids on the oxygen consumption of perfused rat heart. American Journal of Physiology 210: 280–286 (1966).

    PubMed  CAS  Google Scholar 

  • Chamberlain, D.A.: Effects of beta-adrenergic blockade on heart size. American Journal of Cardiology 18: 321–328 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Coltart, D.J. Comparison of effects of propranolol and practolol on exercise tolerance in angina pectoris. British Heart Journal 33: 62–64 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Crawford, M.H.; LeWinter, M.M.; O’Rourke, R.A.; Karliner, J.S. and Ross, J.: Combined propranolol and digoxin therapy in angina pectoris. Annals of Internal Medicine 83: 449–455 (1975).

    PubMed  CAS  Google Scholar 

  • Dintenfass, L.: Viscosity factors in hypertensive and cardiovascular diseases. Cardiovascular Medicine 2: 337–354 (1977).

    Google Scholar 

  • Dintenfass, L. and Lake, B.: Beta blockers and blood viscosity. Lancet 1: 1026 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Eliasch, H.; Rosen, A. and Scott, H.M.: Systemic circulatory response to stress of simulated flight and to physical exercise before and after propranolol blockade. British Heart Journal 29: 671–683 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Ellis, E.F.; Oelz, O.; Jackson Roberts, L.; Payne, N.A.; Sweetman, B.J.; Nies, A.S. and Oates, J.A.: Coronary arterial smooth muscle contraction by a substance released from platelets. Evidence that it is thromboxane A2. Science 193: 1135–1137 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Fox, K.M.; Chopra, M.P.; Portal, R.W. and Aber, C.P.: Long-term beta blockade: possible protection from myocardial infarction. British Medical Journal 1: 117–119 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Fox, K.; Jonathan, A. and Selwyn, A.: Combined high-dosage administration of nifedipine and propranolol in patients with angina pectoris. Clinical Science 58: 11P-12P (1980).

    Google Scholar 

  • Frishman, W.H.; Christodoulou, J.; Weksler, B.; Smithen, C.; Killip, T. and Scheidt, S.: Abrupt propranolol withdrawal in angina pectoris: effects on platelet aggregation and exercise tolerance. American Heart Journal 95: 169–179 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Frishman, W.; Smithen, C.; Belfer, B.; Kligfeld, P. and Killip, T.: Non-invasive assessment of clinical response to oral propranolol. American Journal of Cardiology 35: 635–644 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Furnival, CM.; Linden, R.J. and Snow, H.M.: Inotropic changes in the left ventricle: The effect of changes in heart rate, aortic pressure and end-diastolic pressure. Journal of Physiology (London) 211: 359 (1970).

    CAS  Google Scholar 

  • Gianelly, R.S.; Oldman, R.H.; Treister, B. and Harrison, D.C.: Propranolol in patients with angina pectoris. Annals of Internal Medicine 67: 1216–1225 (1967).

    PubMed  CAS  Google Scholar 

  • Gibelli, A.; Montanari, C.; Bellani, D.; Mandelli, V. and Sacchetti, G.: Beta-blocking drugs and human platelet aggregation in vitro. Experimentia (Basel) 29: 186–187 (1973).

    Article  CAS  Google Scholar 

  • Gibson, D.G.: Pharmacodynamic properties of beta-adrenergic blocking drugs in man. Drugs 7: 8–38 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Goldreyer, B.N.: Intracardiac electrocardiography in the analysis and understanding of cardiac arrhythmias. Annals of Internal Medicine 77: 117–136 (1972).

    PubMed  CAS  Google Scholar 

  • Goldstein, R.E.; Corash, L.C.; Tallman, J.F.; Lake, C.R.; Hyde, J.; Smith, C.C.; Capurro, N.L. and Anderson, J.C.: Shortened platelet survival time and enhanced heart rate responses after abrupt withdrawal of propranolol from normal subjects. American Journal of Cardiology 47: 1115–1133 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Gross, G.J.; Warltier, D.C. and Hardman, H.F.: Beneficial actions of N-dimethyl propranolol on myocardial oxygen balance and transmural perfusion gradients distal to a severe coronary artery stenosis in the canine heart. Circulation 58: 663–669 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Haneda, T.; Lee, T. and Ganz, W.: Metabolic effects of propranolol in the ischaemic myocardium studied by regional sampling. Circulation 48 (Suppl. 4): 174 (1973).

    Google Scholar 

  • Heikkilä, J. and Nieminen, M.S.: Rapid monitoring of regional myocardial ischaemia with echocardiography and S-T segment shifts in man. Acta Medica Scandinavica (Suppl. 623): 71-95 (1978).

  • Hoffman, B.F. and Singer, D.H.: Appraisal of the effects of catecholamines on cardiac electrical activity. Annals of the New York Academy of Sciences 139: 914–939 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Ingram, G.I.C. and Jones, R.V.: The rise in clotting factor VIII induced in man by adrenaline: effect of alpha-and beta-blockers. Journal of Physiology 187: 447–454 (1966).

    PubMed  CAS  Google Scholar 

  • Jorgensen, C.R.; Wang, K.; Wang, Y.; Gobel, F.L.; Nelson, R.R. and Taylor, H.L.: Effect of propranolol on myocardial oxygen consumption and its haemodynamic correlates during upright exercise. Circulation 48: 1173 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Keber, I.; Jerse, M.; Keber, D. and Stegnar, M.: The influence of combined treatment with propranolol and acetylsalicylic acid on platelet aggregation in coronary heart disease. British Journal of Clinical Pharmacology 7: 287–291 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Kjekshus, J.K. and Mjøs, O.D.: Effect of inhibition of lipolysis on infarct size after experimental coronary artery occlusion. Journal of Clinical Investigation 52: 1770–1778 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Kligfeld, P.; Horner, H.; Smithen, C. and Brachenfeld, N.: Metabolic effect of propranolol on ischaemic myocardium. Circulation 51(Suppl. 2): 26 (1975).

    Google Scholar 

  • Kloner, R.A.; Reimer, K.A. and Jennings, R.B.: Distribution of coronary collateral flow in acute myocardial ischaemic injury: effect of propranolol. Cardiovascular Research 10: 81–90 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Kurien, V.A. and Oliver, M.F.: Serum free fatty acids after acute myocardial infarction and cerebral vascular occlusion. Lancet 2: 122 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Kurien, V.A.; Yates, P.A. and Oliver, M.F.: Free fatty acids, heparin and arrhythmias during experimental myocardial infarction. Lancet 2: 185–187 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Lee, R.J.; Evans, D.B.; Baky, S.H. and Laffan, R.J.: Pharmacology of nadolol (SQ 11725) a beta-adrenergic antagonist lacking direct myocardial depression. European Journal of Pharmacology 33: 371–382 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Lichtman, M.A.; Cohen, J.; Murphy, M.S.; Kerney, E.A. and Whitbeck, A.A.: Effect of propranolol on oxygen binding to haemoglobin in vitro and in vivo. Circulation 49: 881–886 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Lombardo, T.A.; Rose, L.R.; Taeschler, M.; Tuluy, S. and Bing, R.J.: The effect of exercise on coronary blood flow, myocardial oxygen consumption and cardiac efficiency in man. Circulation 7: 71–78 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Lown, B. and Wolf, M.: Approaches to sudden death from coronary heart disease. Circulation 44: 130–142 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Ludbrook, P.; Karliner, J.S.; Kostuck, W. and O’Rourke, R.A.: Effects of intravenously administered propranolol on wall motion abnormalities. American Journal of Cardiology 31: 712–717 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Manninen, B.: Movements of sodium and potassium and their traces in propranolol-treated red cells and diaphragm muscles. Acta Physiologica Scandinavica (Suppl. 335): 1-76 (1970).

  • Maroko, P.R. and Braunwald, E.: Modification of myocardial infarction size after coronary occlusion. Annals of Internal Medicine 79: 720–733 (1973).

    PubMed  CAS  Google Scholar 

  • Maroko, P.R.; Kjekshus, J.K.; Sobel, B.E.; Watanabe, T.; Covell, J.W.; Ross, J. and Braunwald, E.: Factors influencing infarct size following experimental coronary artery occlusion. Circulation 43: 67–82 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Maroko, P.R.; Libby, P. and Braunwald, E.: Effects of pharmacologic interventions on left ventricular function in the severely ischaemic heart. Circulation 46(Suppl. 2): 29 (1972).

    Google Scholar 

  • Mehta, J.; Mehta, P. and Pepine, C.J.: Platelet aggregation in aortic and coronary venous blood in patients with and without coronary disease. 3. Role of tachycardia stress and propranolol. Circulation 58(5): 881–886 (1978).

    CAS  Google Scholar 

  • Mjøs, O.D.: Effect of free fatty acids on myocardial function and oxygen consumption in intact dogs. Journal of Clinical Investigation 50: 1386–1389 (1971).

    Article  PubMed  Google Scholar 

  • Mjøs, O.D.; Kjekshus, J.K. and Lekven, J.: Importance of free fatty acids as a determinant of myocardial oxygen consumption and myocardial ischaemic injury during norepinephrine infusion in dogs. Journal of Clinical Investigation 53: 1290-1299 (1974).

    Article  PubMed  Google Scholar 

  • Moir, T.W.: Subendocardial distribution of coronary blood flow and the effect of antianginal drugs. Circulation Research 30: 621 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Mueller, H.S. and Ayers, S.: The ‘diabetic-like’ response of the heart in acute myocardial infarction. Circulation 54 (Suppl. 2): 132 (1976).

    Google Scholar 

  • Mueller, H.S.; Ayers, S.M.; Religa, A. and Evans, R.G.: Propranolol in the treatment of acute myocardial infarction. Effect on myocardial oxygen and haemodynamics. Circulation 49: 1078-1087 (1974).

    CAS  Google Scholar 

  • Muiesan, G.; Porcellati, C.; Renzini, V.; Brunori, C.A.; Valori, C. and Gigli, G.: Relationship between plasma catecholamines and free fatty acid concentrations in patients with acute myocardial infarction. Cardiovascular Research 4: 226 (1970).

    Google Scholar 

  • Nayler, W.G.; McInnes, I.; Swann, J.B.; Carson, V. and Lowe, T.E.: Effect of propranolol, a beta-adrenergic antagonist, on blood flow in the coronary and other vascular fields. American Heart Journal 73: 207 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Nayler, W.G.: Beta-blockers in experimental myocardial infarction. Acta Medica Scandinavica (Suppl. 651): 139-145 (1981).

  • Neely, J.R.; Rovetto, M.J. and Oram, J.F.: Myocardial utilisation of carbohydrate and lipids. Progress in Cardiovascular Diseases 15: 289 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Nelson, R.R.; Gobel, F.L.; Jorgensen, C.R.; Wang, K.; Wang, Y. and Taylor, H.L.: Haemodynamic predictors of myocardial oxygen consumption during static and dynamic exercise. Circulation 50: 1179–1189 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Obeid, A.; Spear, R.; Mookherjee, S.; Warner, R. and Eich, R.: The effects of propranolol on myocardial energy stores during myocardial ischaemia in dogs. Circulation 54(Suppl. 2): 159 (1976).

    Google Scholar 

  • Opie, L.H.: Metabolism of free fatty acids, glucose and catecholamines in acute myocardial infarction: relation to myocardial ischaemia and infarct size. American Journal of Cardiology 36: 938 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Opie, L.H.: Propranolol and experimental myocardial infarction; substrate effects. Postgraduate Medical Journal 52(Suppl. 4): 124–132 (1976).

    PubMed  Google Scholar 

  • Oski, F.A.; Miller, L.D.; Delivoria-Papadopoulos, M.; Manchester, J.H. and Shelburne, J.C.: Oxygen affinity in red cells: changes induced in vivo by propranolol. Science 175: 1372-1373 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Page, D.L.; Caulfield, J.B.; Kastor, J.A.; DeSanctis, R.W. and Sanders, C.A.: Myocardial changes associated with cardiogenic shock. New England J. Med. 285: 133–137 (1971).

    Article  CAS  Google Scholar 

  • Parratt, J.R. and Grayson, J.: Myocardial vascular reactivity after beta-adrenergic blockade. Lancet 1: 338–340 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Pendieton, R.G.; Newman, D.J.; Sherman, S.S.; Brann, E.G. and Maya, W.E.: Effect of propranolol upon the haemoglobin-oxygen dissociation curve. Journal of Pharmacology and Experimental Therapeutics 180: 647–656 (1972).

    Google Scholar 

  • Peter, T.; Heng, M.K.; Singh, B.N.; Ambler, P.; Nisbet, H.; Elliot, R. and Norris, R.M.: Failure of high doses of propranolol to reduce experimental myocardial ischaemic damage. Circulation 57: 534–540 (1978a).

    Article  PubMed  CAS  Google Scholar 

  • Phibbs, C.M.; Van Tyn, R.A. and Maclean, L.D.: Vulnerability of the dog heart to ventricular fibrillation: a comparative study of chronic ischaemia and three myocardial revascularisation procedures. Journal of Thoracic and Cardiovascular Surgery 42: 228–235 (1961).

    PubMed  CAS  Google Scholar 

  • Pitt, B. and Craven, P.: Effect of propranolol on regional myocardial blood flow in acute ischaemia. Cardiovascular Research 4: 176–179 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Prichard, B.N.C.: Beta-receptor antagonists in angina pectoris. Annals of Clinical Research 3: 334–352 (1971).

    Google Scholar 

  • Prichard, B.N.C.: Beta-adrenergic receptor blocking drugs in angina pectoris. Drugs 7: 55–84 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Prichard, B.N.C.; Aellig, W.H. and Richardson, G.A.: The action of intravenous oxprenolol, practolol, propranolol and sotalol on acute exercise tolerance in angina pectoris: the effect on heart rate and the electrocardiogram. Postgraduate Medical Journal 46 (Suppl. November): 77–85 (1970a).

    Google Scholar 

  • Religa, A.; Mueller, H.S.; Evans, R. and Ayers, S.M.: Metabolic effect of propranolol on ischaemic tissue in human and experimental myocardial infarction. Clinical Research 21: 954 (1973).

    Google Scholar 

  • Robinson, B.F.: Relation of heart rate and systolic blood pressure to the onset of pain in angina pectoris. Circulation 35: 1073-1083 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Robinson, B.F.: Mode of action of nitroglycerin in angina pectoris. Correlation between haemodynamic effects during exercise and provocation of pain. British Heart Journal 30: 295-302 (1968).

    CAS  Google Scholar 

  • Robinson, B.F.: The mode of action of beta-antagonists in angina pectoris. Postgraduate Medical Journal 47(Suppl. January): 41–43 (1971).

    Google Scholar 

  • Rude, R.E.; Muller, J.E. and Braunwald, E.: Efforts to limit the size of myocardial infarcts. Annals of Internal Medicine 95: 736–761 (1981).

    PubMed  CAS  Google Scholar 

  • Sandler, G. and Pistevos, A.: Clinical evaluation of oxprenolol in angina pectoris. British Heart Journal 34: 847–850 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Sarnoff, S.A.; Braunwald, E.; Welch, G.H.; Case, R.B.; Stainsby, W.N. and Macruz, R.: Haemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time index. American Journal of Physiology 192: 148-151 (1958).

    PubMed  CAS  Google Scholar 

  • Sarnoff, S.J.; Gilmore, J.P.; Weisfeldt, MX.; Daggett, W.M. and Mansfield, P.B.: Influence of norepinephrine on myocardial oxygen consumption under controlled haemodynamic conditions. American Journal of Cardiology 16: 217–226 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Schrumpf, J.D.; Sheps, D.S.; Wolfson, S.; Aronson, A.L. and Cohen, L.S.: Altered haemoglobin-oxygen affinity with long-term propranolol therapy in patients with coronary artery disease. American Journal of Cardiology 40: 76–82 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Shand, D.G.: Pharmacokinetic properties of beta-adrenergic receptor blocking drugs. Drugs 7: 39–47 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Shand, D.G.: The pharmacokinetics of propranolol: a review. Postgraduate Medical Journal 52(Suppl. 4): 22–25 (1976).

    PubMed  CAS  Google Scholar 

  • Shell, W.E. and Sobel, B.E.: Deleterious effects of increased heart rate on infarct size in the conscious dog. American Journal of Cardiology 31: 474–479 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Shumway, N.E.; Johnson, J.A. and Stish, R.J.: The study of ventricular fibrillation by threshold determinations. Journal of Thoracic Surgery 34(5): 643–653 (1957).

    PubMed  CAS  Google Scholar 

  • Simonsen, S.: Effect of atenolol (ICI 66082) on coronary haemodynamics in man. British Heart Journal 39: 1210–1216 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Singh, B.N. and Jewitt, D.E.: Beta-adrenergic receptor blocking drugs in cardiac arrhythmias. Drugs 7: 426–461 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Sonnenblick, E.H.: Implications of muscle mechanics in the heart. Federation Proceedings 21: 975–990 (1962).

    PubMed  CAS  Google Scholar 

  • Sonnenblick, E.H.; Braunwald, E.; Williams, J.F. and Glick, G.: Effects of exercise in myocardial force — velocity relations in intact unanaesthetised man: relative roles in change in heart rate, sympathetic activity and ventricular dimensions. Journal of Clinical Investigations 44: 2051–2062 (1965).

    Article  CAS  Google Scholar 

  • Sonnenblick, E.H.; Ross, J. and Braunwald, E.: Oxygen consumption of the heart. Newer concepts of its multifactorial determination. American Journal of Cardiology 22: 328–336 (1968).

    CAS  Google Scholar 

  • Sonnenblick, E.H. and Skelton, C.L.: Myocardial energetics: basic principles and clinical implications. New England Journal of Medicine 285: 668–675 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Sowton, E. and Smithen, G: Double-blind three-dose trial of oral alprenolol in angina pectoris. British Heart Journal 33: 601-606 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Stephens, J.; Hayward, R.; Ead, H.; Adams, L.; Hamer, J. and Spurrell, R.: Effects of selective and non-selective beta-adrenergic blockade on coronary dynamics in man assessed by rapid atrial pacing. British Heart Journal 40: 856–863 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Taggart, P. and Carruthers, M.: Suppression by oxprenolol of adrenergic response to stress. Lancet 2: 256–258 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Taggart, P.; Carruthers, M. and Somerville, W.: Electrocardiogram, plasma catecholamines and lipids and their modification by oxprenolol when speaking before an audience. Lancet 2: 341–346 (1973a).

    Article  PubMed  CAS  Google Scholar 

  • Taylor, S.H. and Meeran, M.K.: Different effects of adrenergic beta-receptor blockade on heart rate response to mental stress, catecholamines, and exercise. British Heart Journal 4: 257–259 (1973a).

    CAS  Google Scholar 

  • Taylor, S.H. and Meeran, M.K.: The cardiovascular response to some environmental stresses and their modification by oxprenolol; in Burley et al. (Eds) New Perspectives in Beta Blockade, pp.293-306 (CIBA, Horsham 1973b).

  • Thadani, U.; Sharma, B.; Meeran, M.K.; Majid, P.A.; Whitaker, W. and Taylor, S.H.: Comparison of adrenergic beta-receptor antagonists in angina pectoris. British Medical Journal 1: 138-142 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Turner, G.G.; Nelson, R.R.; Nordstrom, L.A.; Difenthal, H.C. and Gobel, F.L.: Comparative effect of nadolol and propranolol on exercise tolerance in patients with angina pectoris. British Heart Journal 40: 1361–1370 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Vatner, S.F.; Baig, H.; Manders, W.T.; Ochs, H. and Pagani, M.: Effects of propranolol on regional myocardial function, electrograms and blood flow in conscious dogs with myocardial ischaemia. Journal of Clinical Investigation 60: 353–360 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Vlachakis, N.D. and Aledort, L.: Hypertension and propranolol therapy: effect on blood pressure, plasma catecholamines and platelet aggregation. American Journal of Cardiology 45(2): 321–325 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Wolfson, S. and Gorlin, R.: Cardiovascular pharmacology of propranolol in man. Circulation 40: 501–511 (1969).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prichard, B.N.C. Mechanisms of Myocardial Infarct Prevention with β-Adrenoceptor Blocking Drugs. Drugs 25 (Suppl 2), 295–302 (1983). https://doi.org/10.2165/00003495-198300252-00089

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-198300252-00089

Keywords

Navigation