Skip to main content
Log in

New Insulin Analogues and Routes of Delivery

Pharmacodynamic and Clinical Considerations

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Analogues of human insulin have been developed to more closely replicate the physiology of meal-related and basal insulin secretion. Three rapid-acting analogues and two basal analogues are available for clinical use. Insulin aspart and insulin lispro have nearly identical pharmacokinetic and pharmacodynamic profiles and provide better postprandial glucose control and less hypoglycaemia (primarily nocturnal and severe hypoglycaemia in type 1 diabetes mellitus) than regular insulin. Insulin glulisine is a new rapid-acting analogue and has characteristics nearly identical to those of its predecessors. Insulin glargine was the first basal analogue approved for clinical use and has shown better fasting glucose control and less risk of hypoglycaemia than conventional human neutral protamine Hagedorn (NPH) insulin. More recent studies have indicated that insulin glargine may not be truly ‘peakless’ at higher doses and that the adjustment of dose timing and frequency may have favourable effects on the risk of hypoglycaemia and the duration of the effect. Insulin detemir is a new basal insulin analogue with superiority to NPH insulin similar to that demonstrated by insulin glargine, though its duration of action appears to be shorter. The intraindividual variability in the response to a given dose is lower for insulin detemir than for both NPH insulin and insulin glargine. The clinical significance of this finding is not clear, though it may contribute to the lower rate of hypoglycaemia seen with insulin detemir. A number of ‘alternative routes’ of insulin administration have been studied, the most promising of which has been the pulmonary route. The time-action profile of inhaled insulins is generally characterized by a rapid onset of action similar to those of rapid-acting analogues and a slightly protracted duration of action similar to that of regular insulin. Inhaled insulin is similar to regular insulin with respect to efficacy and safety, though small reversible changes in pulmonary function have been noted. For technical and practical reasons, other alternative routes have generally not met with clinical success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II
Table III
Fig. 2
Table IV
Fig. 3

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Diabetes Control and Complications Trial (DCCT) Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 977–86

    Article  Google Scholar 

  2. UK Prospective Diabetes Study Group. Intensive blood glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837–53

    Article  Google Scholar 

  3. Becker RH, Frick AD, Burger F, et al. Insulin glulisine, a new rapid-acting insulin analogue, displays a rapid time-action profile in obese non-diabetic subjects. Exp Clin Endocrinol Diabetes 2005; 113: 435–43

    Article  PubMed  CAS  Google Scholar 

  4. Hirsch IB. Insulin analogues. New Engl J Med 2005; 352: 174–83

    Article  PubMed  CAS  Google Scholar 

  5. Plank J, Bodenlenz M, Sinner F, et al. A double-blind, randomized, dose-response study investigating the pharmacodynamic and pharmacokinetic properties of the long-acting insulin analog detemir. Diabetes Care 2005; 28: 1107–12

    Article  PubMed  CAS  Google Scholar 

  6. Pampanelli S, Torlone E, Lalli C, et al. Improved postprandial metabolic control after subcutaneous injection of a short-acting insulin analog in IDDM of short duration with residual pancreatic β-cell function. Diabetes Care 1995; 18: 1452–9

    Article  PubMed  CAS  Google Scholar 

  7. Overmann H, Heinemann L. Injection-meal interval: recommendations of diabetologists and how patients handle it. Diabetes Res Clin Pract 1999; 43: 137–42

    Article  PubMed  CAS  Google Scholar 

  8. Ahmed ABE, Home PD. The effect of the insulin analog lispro on nighttime blood glucose control in type 1 diabetic patients. Diabetes Care 1998; 21: 32–7

    Article  PubMed  CAS  Google Scholar 

  9. Lepore M, Pampanelli S, Fanelli C, et al. Pharmacokinetics and pharmacodynamics of subcutaneous injection of long-acting human insulin analog glargine, NPH insulin, and ultralente human insulin and continuous subcutaneous infusion with insulin lispro. Diabetes 2000; 49: 2142–8

    Article  PubMed  CAS  Google Scholar 

  10. Galloway JA, Spradlin CT, Nelson RL, et al. Factors influencing the absorption, serum insulin concentration, and blood glucose responses after injections of regular insulin and various insulin mixtures. Diabetes Care 1981; 4: 366–76

    Article  PubMed  CAS  Google Scholar 

  11. Scholtz HE, Pretorius SG, Wessels DH, et al. Pharmacokinetic and glucodynamic variability: assessment of insulin glargine, NPH insulin and insulin ultralente in healthy volunteers using a euglycaemic clamp technique. Diabetologia 2005; 48: 1988–95

    Article  PubMed  CAS  Google Scholar 

  12. Heise T, Nosek I, Rønn BB, et al. Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes 2004; 53: 1614–20

    Article  PubMed  CAS  Google Scholar 

  13. Brange J, Owens DR, Kang S, et al. Monomeric insulins and their experimental and clinical implications. Diabetes Care 1990; 13: 923–54

    Article  PubMed  CAS  Google Scholar 

  14. Howey DC, Bowsher RR, Brunelle RL, et al. [Lys(B28), Pro(B29)]-human insulin: a rapidly absorbed analog of human insulin. Diabetes 1994; 43: 396–402

    Article  PubMed  CAS  Google Scholar 

  15. Mudaliar S, Lindberg FA, Joyce M, et al. Insulin aspart (B28 Asp-insulin): a fastacting analog of human insulin: absorption kinetics and action profile compared with regular human insulin in healthy nondiabetic subjects. Diabetes Care 1999; 22: 1501–6

    Article  PubMed  CAS  Google Scholar 

  16. Dailey G, Rosenstock J, Moses RG, et al. Insulin glulisine provides improved glycemic control in patients with type 2 diabetes. Diabetes Care 2004; 27: 2363–8

    Article  PubMed  CAS  Google Scholar 

  17. Hedman CA, Lindström T, Arnqvist HJ. Direct comparison of insulin lispro and aspart shows small differences in plasma insulin profiles after subcutaneous injection in type 1 diabetes. Diabetes Care 2001; 24: 1120–1

    Article  PubMed  CAS  Google Scholar 

  18. Schernthaner G, Wein W, Sandholzer K, et al. Postprandial insulin lispro. Diabetes Care 1997; 21: 570–3

    Article  Google Scholar 

  19. Burge MR, Castillo KR, Schade DS. Meal composition is a determinant of lisproinduced hypoglycemia in IDDM. Diabetes Care 1997; 20: 152–5

    Article  PubMed  CAS  Google Scholar 

  20. Strachan MWJ, Frier BM. Optimal time of administration of insulin lispro: importance of meal composition. Diabetes Care 1998; 21: 26–31

    Article  PubMed  CAS  Google Scholar 

  21. Torlone E, Pampanelli S, Lalli C, et al. Effects of the short-acting insulin analog [Lys(B28), Pro (B29)] on postprandial blood glucose control in IDDM. Diabetes Care 1996; 19: 945–52

    Article  PubMed  CAS  Google Scholar 

  22. Lalli C, Ciofetta M, Del Sindaco B, et al. Long-term intensive treatment of type 1 diabetes with the short-acting insulin analog lispro in variable combination with NPH insulin at mealtime. Diabetes Care 1999; 22: 468–77

    Article  PubMed  CAS  Google Scholar 

  23. Becker R, Frick A, Wessels D, et al. Evaluation of the pharmacodynamic and pharmacokinetic profiles of insulin glulisine: a novel, rapid-acting, human insulin analogue [abstract]. Diabetologia 2003; 46: A775

    Google Scholar 

  24. Frick A, Becker R, Wessels D, et al. Pharmacokinetic and glucodynamic profiles of insulin glulisine: an evaluation following subcutaneous administration at various injection sites [abstract]. Diabetologia 2003; 46: A776

    Google Scholar 

  25. Vora JP, Burch A, Peters JR, et al. Absorption of radiolabelled soluble insulin in type 1 (insulin-dependent) diabetes: influence of subcutaneous blood flow and anthropometry. Diabet Med 1993; 10: 736–43

    Article  PubMed  CAS  Google Scholar 

  26. Sindelka G, Heinemann L, Berger M, et al. Effect of insulin concentration, subcutaneous fat thickness and skin temperature on subcutaneous insulin absorption in healthy subjects. Diabetologia 1994; 37: 377–80

    Article  PubMed  CAS  Google Scholar 

  27. Heise T, Nosek L, Spitzer H, et al. Insulin glulisine: a faster onset of action compared with insulin lispro. Diabetes Obes Metab 2007; 9: 746–53

    Article  PubMed  CAS  Google Scholar 

  28. Garg SK, Rosenstock J, Ways K. Optimized basal-bolus insulin regimens in type 1 diabetes: insulin glulisine versus regular human insulin in combination with basal insulin glargine. Endocr Pract 2005; 11: 11–7

    PubMed  Google Scholar 

  29. Dreyer M, Prager R, Robinson A, et al. Efficacy and safety of insulin glulisine in patients with type 1 diabetes. Horm Metab Res 2005; 37: 702–7

    Article  PubMed  CAS  Google Scholar 

  30. Heinemann L, Linkeschova R, Rave K, et al. Time-action profile of the long-acting insulin analog insulin glargine (HOE901) in comparison with those of NPH and placebo. Diabetes Care 2000; 23: 644–9

    Article  PubMed  CAS  Google Scholar 

  31. Heise T, Bott S, Rave K, et al. No evidence for accumulation of insulin glargine (Lantus): a multiple injection study in patients with type 1 diabetes. Diabet Med 2002; 19: 490–5

    Article  PubMed  CAS  Google Scholar 

  32. Porcellati F, Rosetti P, Ricci NB, et al. Pharmacokinetics and pharmacodynamics of the long-acting insulin analog insulin glargine afer one week of use as compared to its first administration in subjects with type 1 diabetes mellitus. Diabetes Care 2007; 30: 1261–3

    Article  PubMed  CAS  Google Scholar 

  33. Heise T, Pieber TR. Towards peakless, reproducible and long-acting insulins; an assessment of the basal analogues based on isoglycemic clamp studies. Diabetes Obes Metab 2007; 9: 648–59

    Article  PubMed  CAS  Google Scholar 

  34. Hamann A, Matthaei S, Rosak C, et al. A randomized clinical trial comparing breakfast, dinner, or bedtime administration of insulin glargine in patients with type 1 diabetes. Diabetes Care 2003; 26: 1738–44

    Article  PubMed  CAS  Google Scholar 

  35. Ashwell SG, Gebbie J, Home PD. Optimal timing of injection of once-daily insulin glargine in people with type 1 diabetes using insulin lispro at mealtimes. Diabet Med 2005; 23: 46–52

    Article  Google Scholar 

  36. Albright ES, Desmond R, Bell DSH. Efficacy of conversion from bedtime NPH insulin injection to once- or twice-daily injections of insulin glargine in type 1 diabetic patients using basal/bolus therapy. Diabetes Care 2004; 27: 632–3

    Article  PubMed  Google Scholar 

  37. Ashwell SG, Gebbie J, Home PD. Twice daily compared with once-daily insulin glargine in people with type 1 diabetes using meal-time insulin aspart. Diabet Med 2006; 23: 879–86

    Article  PubMed  CAS  Google Scholar 

  38. Kurtzhals P. Engineering predictability and protraction in a basal insulin analog: the pharmacology of insulin detemir. Int J Obesity 2004; 28 Suppl. 2: S23–8

    Article  CAS  Google Scholar 

  39. Heinemann L, Sinha K, Weyer C, et al. Time-action profile of the soluble, fatty acid acylated, long-acting insulin analog NN304. Diabet Med 1999; 16: 332–8

    Article  PubMed  CAS  Google Scholar 

  40. Klein O, Lynge J, Endahl L, et al. Albumin-bound basal insulin analogues (insulin detemir and NN344): comparable time-action profiles but less variability than insulin glargine in type 2 diabetes. Diabetes Obes Metab 2007; 9: 290–9

    Article  PubMed  CAS  Google Scholar 

  41. Luzio S, Dunsheath G, Peter R, et al. Comparison of the pharmacokinetics and pharmacodynamics of biphasic insulin aspart and insulin glargine in people with type 2 diabetes. Diabetologia 2006; 49: 1163–8

    Article  PubMed  CAS  Google Scholar 

  42. DeVries JH, Toscholtz HE, Pretorius SG, Wessels DH, Becker RHA (2005) pharmacokinetic and glucodynamic variability: assessment of insulin glargine, NPH insulin and insulin ultralente in healthy volunteers using a euglycaemic clamp technique. Diabetologia 48: 1988–1995. Diabetologia 2006 49: 1125–6

    Article  PubMed  CAS  Google Scholar 

  43. Porcellati F, Rossetti P, Busciantella NR, et al. Comparison of pharmacokinetics and dynamics of the long-acting insulin analogs glargine and detemir at steady state in type 1 diabetes: a double-blind, randomized, crossover study. Diabetes Care 2007; 30: 2447–52

    Article  PubMed  CAS  Google Scholar 

  44. Hermansen K, Fontaine P, Kukolja KK, et al. Insulin analogues (insulin detemir and insulin aspart) versus traditional human insulins (NPH insulin and regular insulin) in a basal bolus therapy for patients with type 1 diabetes. Diabetologia 2004; 47: 622–9

    Article  PubMed  CAS  Google Scholar 

  45. Vague P, Selam J-L, Skeie S, et al. Insulin detemir is associated with more predictable glycemic control and reduced risk of hypoglycemia than NPH insulin in patients with type 1 diabetes on a basal-bolus regimen with premeal insulin aspart. Diabetes Care 2003; 26: 590–6

    Article  PubMed  CAS  Google Scholar 

  46. Russell-Jones D, Draeger E, Esimpson R, et al. Effects of once daily insulin detemir or NPH insulin on blood glucose control in people using a basal bolus regimen. Clin Ther 2004; 26: 724–36

    Article  PubMed  CAS  Google Scholar 

  47. Home P, Bartley P, Russell-Jones D, et al. Insulin detemir offers improved glycemic control compared with NPH insulin in people with type 1 diabetes. Diabetes Care 2004; 27: 1081–7

    Article  PubMed  CAS  Google Scholar 

  48. Pieber TR, Draeger E, Kristensen A, et al. Comparison of three multiple injection regimens for type 1 diabetes: morning plus dinner or bedtime administration of insulin detemir vs morning plus bedtime NPH insulin. Diabet Med 2005; 22: 850–7

    Article  PubMed  CAS  Google Scholar 

  49. Standl E, Roberts A, Lang H. Long-term efficacy and safety of insulin detemir in subjects with type 1 diabetes: favorable weight development and risk reduction of nocturnal hypoglycemia [abstract]. Diabetes 2002; 51 Suppl. 2: P467

    Google Scholar 

  50. Haak T, Tiengo A, Draeger E, et al. Lower within subject variability of fasting blood glucose and reduced weight gain with insulin detemir compared to NPH insulin in patients with type 2 diabetes. Diabetes Obes Metab 2005; 7: 56–64

    Article  PubMed  CAS  Google Scholar 

  51. Raslova K, Bogoev M, Raz I, et al. Insulin detemir and insulin aspart: a promising basal-bolus regimen for type 2 diabetes. Diab Res Clin Pract 2004; 66: 193–201

    Article  CAS  Google Scholar 

  52. Rosenstock J, Davies M, Home PD, et al. Insulin detemir added to oral antidiabetic drugs in type [abstract]. Diabetes 2006; 55 Suppl. 1: 555–P

    Google Scholar 

  53. Dornhorst A, Luddeke HJ, Sreenan S, et al. Safety and efficacy of insulin detemir in clinical practice: 14-week follow-up data from type 1 and type 2 diabetes patients in the PREDICTIVE European cohort. Int J Clin Pract 2007; 61: 523–8

    Article  PubMed  CAS  Google Scholar 

  54. Bartley PC, Bogoev M, Larsen J, et al. Long-term efficacy and safety of insulin detemir compared to neutral protamine Hagedorn insulin in patients with type 1 diabetes using a treat-to-target basal-bolus regimen with insulin aspart at meals: a 2-year, randomized, controlled trial. Diabet Med 2008; 25: 442–9

    Article  PubMed  CAS  Google Scholar 

  55. Pieber TR, Treichel H-C, Hompesch B, et al. Comparison of insulin detemir and insulin glargine in subjects with type 1 diabetes using intensive insulin therapy. Diabet Med 2007; 24: 635–42

    Article  PubMed  CAS  Google Scholar 

  56. Saudek CD. Novel forms of insulin delivery. Endocrinol Metab Clin N Am 1997; 26: 599–610

    Article  CAS  Google Scholar 

  57. Chetty DJ, Chien YW. Novel methods of insulin delivery. Crit Rev Ther Drug Carrier Syst 1998; 15: 629–70

    Article  PubMed  CAS  Google Scholar 

  58. Gaensslen M. Uber inhalation von insulin. Klin Wochenschr 1925; 2: 71–2

    Article  Google Scholar 

  59. Wigley FW, Londono JH, Wood SH, et al. Insulin across respiratory mucosae by aerosol delivery. Diabetes 1971; 20(8): 552–6

    PubMed  CAS  Google Scholar 

  60. Elliott RB, Edgar BW, Pilcher CC, et al. Parenteral absorption of insulin from the lung in diabetic children. Aust Paediatr J 1987; 23(5): 293–7

    PubMed  CAS  Google Scholar 

  61. Laube BL, Benedict GW, Dobs AS. The lung as an alternative route of delivery for insulin in controlling postprandial glucose levels in patients with diabetes. Chest 1998; 114(6): 1734–9

    Article  PubMed  CAS  Google Scholar 

  62. Klonoff DC. Inhaled insulin. Diabetes Technol Ther 1999; 1: 307–13

    Article  PubMed  CAS  Google Scholar 

  63. Patton JS, Bukar JG, Eldon MA. Clinical pharmacokinetics and pharmacodynamics of inhaled insulin. Clin Pharmacokinet 2004; 43(12): 781–801

    Article  PubMed  CAS  Google Scholar 

  64. Rave K, Bott S, Heinemann L, et al. Time-action profile of inhaled insulin in comparison with subcutaneously injected insulin lispro and regular human insulin. Diabetes Care 2005; 28: 1077–82

    Article  PubMed  CAS  Google Scholar 

  65. Edwards DA, Hanes J, Caponetti G, et al. Large porous particles for pulmonary drug delivery. Science 1997; 276(5320): 1868–71

    Article  PubMed  CAS  Google Scholar 

  66. Vanbever R, Ben-Jebria A, Mintzes JD, et al. Sustained release of insulin from insoluble inhaled particles. Drug Dev Res 1999; 48(4): 178–85

    Article  CAS  Google Scholar 

  67. Quattrin T, Belanger A, Bohannon NJV, et al. Efficacy and safety of inhaled insulin (Exubera) compared with subcutaneous insulin therapy in patients with type 1 diabetes. Diabetes Care 2004; 27: 2622–7

    Article  PubMed  CAS  Google Scholar 

  68. Skyler JS, Weinstock RS, Raskin P, et al. Use of inhaled insulin in a basal/bolus insulin regimen in type 1 diabetic subjects. Diabetes Care 2005; 28: 1630–5

    Article  PubMed  CAS  Google Scholar 

  69. Hollander PA, Blonde L, Rowe R, et al. Efficacy and safety of inhaled insulin (Exubera) compared with subcutaneous insulin therapy in patients with type 2 diabetes. Diabetes Care 2004; 27: 2356–62

    Article  PubMed  CAS  Google Scholar 

  70. Rave KM, Nosek L, de la Pena A, et al. Dose response of inhaled dry-powder insulin and dose equivalence to subcutaneous insulin lispro. Diabetes Care 2005; 28(10): 2400–5

    Article  PubMed  CAS  Google Scholar 

  71. Steiner S, Pfutzner A, Wilson BR, et al. Technosphere™/insulin: proof of concept study with a new insulin formlation for pulmonary delivery. Exp Clin Endocrinol Diabetes 2002; 110: 17–21

    Article  PubMed  CAS  Google Scholar 

  72. Pfutzner A, Mann AE, Steiner SS. Technosphere™/insulin: a new approach for the effective delivery of human insulin via the pulmonary route. Diabetes Technol Ther 2002; 4: 589–94

    Article  PubMed  Google Scholar 

  73. Rosenstock J, Baughman RA, Rivera-Schaub T, et al. A randomized, double-blind, placebo-controlled study of the efficacy and safety of inhaled Technosphere insulin in patients with type 2 diabetes (T2DM) [abstract]. Diabetes 2005; 54 Suppl. 1: A88

    Google Scholar 

  74. Brunner GA, Baient B, Ellmerer M, et al. Dose-response relation of liquid aerosol inhaled insulin in type 1 diabetic patients. Diabetologia 2001; 44: 305–8

    Article  PubMed  CAS  Google Scholar 

  75. Hermansen K, Rönnemaa T, Petersen AH, et al. Intensive therapy with inhaled insulin via the AERx insulin diabetes management system: a 12-week proof-of-concept trial in patients with type 2 diabetes. Diabetes Care 2004; 27: 162–7

    Article  PubMed  CAS  Google Scholar 

  76. Henry RR, Muldair SRD, Howland WC, et al. Inhaled insulin using the AERx insulin diabetes management system in healthy and asthmatic subjects. Diabetes Care 2003; 26: 764–9

    Article  PubMed  CAS  Google Scholar 

  77. Himmelman A, Jendle J, Meilen A, et al. The impact of smoking on inhaled insulin. Diabetes Care 2003; 26: 677–82

    Article  Google Scholar 

  78. Exubera® [prescribing information]. New York: Pfizer Labs, 2006

  79. Fabbri L. Pulmonary safety of inhaled insulins: a review of the current data. Curr Med Res Opin 2006; 22 Suppl. 3: S21–8

    Article  CAS  Google Scholar 

  80. Fineberg SE, Kawabata T, Finco-Kent D, et al. Antibody response to inhaled insulin in patients with type 1 or type 2 diabetes: an analysis of initial phase II and III inhaled insulin (Exubera) trials and a two-year extension trial. J Clin Endocrinol Metab 2005; 90: 3287–94

    Article  PubMed  CAS  Google Scholar 

  81. Pfizer Labs. Exubera® (insulin human [rDNA origin]) inhalation powder/Exubera® inhaler warnings [prescribing information]. New York: Pfizer Labs, 2008 [online]. Available from URL: http://www.pfizerpro.com/product_info/exubera_pi_warnings.jsp [Accessed 2008 Jul 27]

    Google Scholar 

  82. Owens DR, Zinman B, Bolli G. Alternative routes of insulin delivery. Diabet Med 2003; 20: 886–98

    Article  PubMed  CAS  Google Scholar 

  83. Cefalu WT. Concept, strategies, and feasibility of noninvasive insulin delivery. Diabetes Care 2004; 27: 239–46

    Article  PubMed  Google Scholar 

  84. Heinemann L. Future directions for insulin therapy and diabetes treatment. Endocrinol Metab Clin North Am 2007; 36: 69–79

    Article  PubMed  CAS  Google Scholar 

  85. Malkov D, Angelo R, Wang HD, et al. Oral delivery of insulin with the elegen technology: mechanistic studies. Curr Drug Deliv 2005; 2: 191–7

    Article  PubMed  CAS  Google Scholar 

  86. Clement S, Dandona P, Still JG, et al. Oral modified insulin (HIM2) in patients with type 1 diabetes mellitus: results from a phase I/II clinical trial. Metabolism 2004; 53: 54–8

    Article  PubMed  CAS  Google Scholar 

  87. Cernea S, Kidron M, Wohlgelernter J, et al. Dose-response relationship of an oral insulin spray in six patients with type 1 diabetes: a single-center, randomized, single-blind, 5-way crossover study. Clin Ther 2005; 27: 1562–70

    Article  PubMed  CAS  Google Scholar 

  88. Guevara-Aguirre J, Guevara M, Saavedra J, et al. Oral spray insulin in treatment of type 2 diabetes: a comparison of efficacy of the oral spray insulin (Oralin) with subcutaneous (SC) insulin injection, a proof of concept study. Diabetes Metab Res Rev 2004; 20: 472–8

    Article  PubMed  CAS  Google Scholar 

  89. Ashwell SG, Amiel SA, Bilous RW, et al. Improved glycemic control with insulin glargine plus insulin lispro: a multicentre, randomized, cross-over trial in people with type 1 diabetes. Diabet Med 2006; 23: 285–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The author was employed by Eli Lilly and Company from 1995 to 2001, during which time he was involved in research and development activity related to insulin lispro. Since leaving Eli Lilly, he has participated as the principal investigator or as a site principal investigator in four Eli Lilly-sponsored clinical trials. He has been a paid consultant to Eli Lilly and Novo Nordisk on an ad hoc basis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paris Roach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roach, P. New Insulin Analogues and Routes of Delivery. Clin Pharmacokinet 47, 595–610 (2008). https://doi.org/10.2165/00003088-200847090-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200847090-00003

Keywords

Navigation