Clinical Pharmacokinetics and Pharmacodynamics of Desloratadine, Fexofenadine and Levocetirizine

A Comparative Review

Abstract

Second-generation histamine H1 receptor antagonists were developed to provide efficacious treatment of allergic rhinitis (AR) and chronic idiopathic urticaria (CIU) while decreasing adverse effects associated with first-generation agents. When comparing the efficacy and safety profiles of the newest second-generation antihistamines — desloratadine, fexofenadine and levocetirizine — many pharmacological and clinical criteria must be considered. Most importantly, these elements should not be evaluated separately but, rather, as parts of a puzzle that create a whole picture. As a class, second-generation antihistamines are highly selective for the H1 receptor. Some bind to it with high affinity, although there is marked heterogeneity among the various compounds. They have a limited effect on the CNS, and clinical studies have noted almost no significant drugdrug interactions in the agents studied. No major cytochrome P450 inhibition has been reported with desloratadine, fexofenadine and levocetirizine, and the bioavailability of desloratadine is minimally affected by drugs interfering with transporter molecules. Of the second-generation antihistamines, desloratadine has the greatest binding affinity for the H1 receptor. The use of desloratadine, fexofenadine and levocetirizine is not associated with clinically relevant antimuscarinic effects. Desloratadine and fexofenadine do not impair cognitive or psychomotor functioning and are comparable with placebo in terms of somnolence. Based on these pharmacological characteristics, as well as clinical endpoints such as symptom scores, quality-of-life surveys, inflammatory cell counts and investigators’ global evaluations, we conclude that desloratadine, fexofenadine and levocetirizine are all efficacious treatments for AR and CIU. However, differences among the antihistamines in relation to a lack of significant interaction with drug transporter molecules and somnolence in excess of placebo may provide some advantages for the overall profile of desloratadine compared with fexofenadine and levocetirizine.

This is a preview of subscription content, access via your institution.

Table I
Table II

Notes

  1. 1.

    The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. 1.

    Clarinex [prescribing information]. Kenilworth (NJ): Schering-Plough Corporation, 2005

  2. 2.

    Aerius [prescribing information]. Brussels: Schering-Plough Europe, 2006

  3. 3.

    Allegra [prescribing information]. Bridgewater (NJ): Sanofi-Aventis US, LLC, 2007

  4. 4.

    Telfast 120 and 180 [prescribing information; online]. Guildford: Sanofi-Aventis, 2007 Feb 20. Available from URL: http://emc.medicines.org.uk/emc/assets/c/html/displaydoc.asp?.documentid=6659 [Accessed 2008 Feb 18]

  5. 5.

    Telfast 30 [prescribing information; online]. Guildford: Sanofi-Aventis, 2007 Apr 17. Available from URL: http://emc.medicines.org.uk/emc/assets/c/html/displaydoc.asp?.documentid=14464 [Accessed 2008 Feb 18]

  6. 6.

    Xyzal [prescribing information]. Atlanta (GA): UCB, Inc., 2007

  7. 7.

    Xyzal [prescribing information; online]. Slough: UCB Pharma Limited, 2007 Jul. Available from URL: http://emc.medicines.org.uk/industry/default.asp?.page=displaydoc.asp&documentid=19877 [Accessed 2008 Feb 18]

  8. 8.

    Bousquet J, van Cauwenberge P, Khaltaev N, et al. Allergic rhinitis and its impact on asthma. J Allergy Clin Immunol 2001; 108: S147–334

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    LeConiat M, Traiffort E, Ruat M, et al. Chromosomal localization of the human histamine H1-receptor gene. Hum Genet 1994; 94: 186–8

    PubMed  Article  Google Scholar 

  10. 10.

    Gantz I, Schärfer M, DelValle J, et al. Molecular cloning of a gene encoding the histamine H2 receptor. Proc Natl Acad Sci U S A 1991; 88: 429–33

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Lovenberg TW, Roland BL, Wilson SJ, et al. Cloning and functional expression of the human histamine H3 receptor. Mol Pharmacol 1999; 55: 1101–7

    PubMed  CAS  Google Scholar 

  12. 12.

    Oda T, Morikawa N, Saito Y, et al. Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J Biol Chem 2000; 275: 36781–6

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Kobayashi T, Tonai S, Ishihara Y, et al. Abnormal functional and morphological regulation of the gastric mucosa in histamine H2 receptor-deficient mice. J Clin Invest 2000; 105: 1741–9

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Cannon KE, Hough LB. Inhibition of chemical and low-intensity mechanical nociception by activation of histamine H3 receptors. J Pain 2005; 6: 193–200

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Lorenzi S, Mor M, Bordi F, et al. Validation of a histamine H3 receptor model through structure-activity relationships for classical H3 antagonists. Bioorg Med Chem 2005; 13: 5647–57

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Malmlöf K, Hastrup S, Wulff BS, et al. Antagonistic targeting of the histamine H3 receptor decreases caloric intake in higher mammalian species. Biochem Pharmacol 2007; 73: 1237–42

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Yoshimoto R, Miyamoto Y, Shimamura K, et al. Therapeutic potential of histamine H3 receptor agonist for the treatment of obesity and diabetes mellitus. Proc Nat Acad Sci U S A 2006; 103: 13866–71

    CAS  Article  Google Scholar 

  18. 18.

    Passani MB, Lin J-S, Hancock A, et al. The histamine H3 receptor as a novel therapeutic target for cognitive and sleep disorders. Trends Pharmacol Sci 2004; 25: 618–25

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Clapham J, Kilpatrick GJ. Histamine H1 receptors modulate the release of [3H]-acetylcholine from slices of rat entorhinal cortex: evidence for the possible existence of H3 receptor subtypes. Br J Pharmacol 1992; 107: 919–23

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Cardell LO, Edvinsson L. Characterization of the histamine receptors in the guinea-pig lung: evidence for relaxant histamine H3 receptors in the trachea. Br J Pharmacol 1994; 111: 445–54

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Li M, Luo X, Chen L, et al. Co-localization of histamine and dopamine-β-hydroxylase in sympathetic ganglion and release of histamine from cardiac sympathetic terminals of guinea-pig. Auton Autacoid Pharmacol 2004; 23: 327–33

    Article  Google Scholar 

  22. 22.

    Schlicker E, Malinowska B, Kathmann M, et al. Modulation of neurotransmitter release via histamine H3 heteroreceptors. Fundam Clin Pharmacol 1994; 8: 128–37

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Varty LM, Gustafson E, Laverty M, et al. Activation of histamine H3 receptors in human nasal mucosa inhibits sympathetic vasoconstriction. Eur J Pharmacol 2004; 484: 83–9

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    de Esch IJP, Thurmond RL, Jongjean A, et al. The histamine H4 receptor as a new therapeutic target for inflammation. Trends Pharmacol Sci 2005; 26: 462–9

    PubMed  Google Scholar 

  25. 25.

    Takeshita K, Sakai K, Bacon KB, et al. Critical role of histamine H4 receptor in leukotriene B4 production and mast cell-dependent neutrophil recruitment induced by zymosan in vivo. J Pharmacol Exp Ther 2003; 307: 1072–8

    Google Scholar 

  26. 26.

    Dunford PJ, O’Donnell N, Riley JP, et al. The histamine H4 receptor mediates allergic airway inflammation by regulating the activation of CD4+ T cells. J Immunol 2006; 176: 7062–70

    PubMed  CAS  Google Scholar 

  27. 27.

    Bell JK, McQueen DS, Rees JL. Involvement of histamine H4 and H1 receptors in scratching induced by histamine receptor agonists in BalbC mice. Br J Pharmacol 2004; 142: 374–80

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Dunford PJ, Williams KN, Desai PJ, et al. Histamine H4 receptor antagonists are superior to traditional antihistamines in the attenuation of experimental pruritus. J Allergy Clin Immunol 2007; 119: 176–83

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Simons FER. Advances in H1-antihistamines. N Engl J Med 2004; 351: 2203–17

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Akdis CA, Simons FER. Histamine receptors are hot in immunopharmacology. Eur J Pharmacol 2006; 533: 69–76

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Bakker RA, Wieland K, Timmerman H, et al. Constitutive activity of the histamine H1 receptor reveals inverse agonism of histamine H1 receptor antagonists. Eur J Pharmacol 2000; 387: R5–7

    PubMed  CAS  Article  Google Scholar 

  32. 32.

    MacGlashan Jr D. Histamine: a mediator of inflammation. J Allergy Clin Immunol 2003; 112(4 Suppl. 1): S53–9

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Akdis CA, Blaser K. Histamine in the immune regulation of allergic inflammation. J Allergy Clin Immunol 2003; 112: 15–22

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Vannier E, Dinarello CA. Histamine enhances interleukin (IL)-1-induced IL-1 gene expression and protein synthesis via H2 receptors in peripheral blood mononuclear cells: comparison with IL-1 receptor antagonist. J Clin Invest 1993; 92: 281–7

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Meretey K, Falus A, Taga T, et al. Histamine influences the expression of the interleukin-6 receptor on human lymphoid, monocytoid and hepatoma cell lines. Agents Actions 1991; 33: 189–91

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Jeannin P, Delneste Y, Gosset P, et al. Histamine induces interleukin-8 secretion by endothelial cells. Blood 1994; 84: 2229–33

    PubMed  CAS  Google Scholar 

  37. 37.

    Jutel M, Watanabe T, Akdis M, et al. Immune regulation by histamine. Curr Opin Immunol 2002; 14: 735–40

    PubMed  CAS  Article  Google Scholar 

  38. 38.

    Jutel M, Watanabe T, Klunker S, et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 2001; 413: 420–5

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Moriyasu S, Yamamoto K, Kureyama N, et al. Involvement of histamine released from mast cells in acute radiation dermatitis in mice. J Pharmacol Sci 2007; 104: 187–90

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Leurs R, Church MK, Taglialatela M. Hi-antihistamines: inverse agonism, antiinflammatory actions and cardiac effects. Clin Exp Allergy 2002; 32: 489–98

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Gillard M, Chatelain P. Changes in pH differently affect the binding properties of histamine H1 receptor antagonists. Eur J Pharmacol 2006; 530: 205–14

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Anthes JC, Gilchrest H, Richard C, et al. Biochemical characterization of desloratadine, a potent antagonist of the human histamine H1 receptor. Eur J Pharmacol 2002; 449: 229–37

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Anthes J, Richard C, West Jr RE, et al. Functional characterization of desloratadine and other antihistamines in human histamine H1 receptors. In: XIX European Academy of Allergology and Clinical Immunology; 2000 Jul 1–5; Lisbon. Allergy 2000; 55 Suppl. 63: S27

  44. 44.

    Gillard M, van der Perren C, Moguileversusky N, et al. Binding characteristics of cetirizine and levocetirizine to human H1 histamine receptors: contribution of Lys191 and Thr194. Mol Pharmacol 2002; 61: 391–9

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Liu H, Farley JM. Effects of first and second generation antihistamines on muscarinic induced mucus gland cell ion transport. BMC Pharmacology 2005; 5: 8

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Kreutner W, Hey JA, Anthes J, et al. Preclinical pharmacology of desloratadine, a selective and nonsedating histamine H1 receptor antagonist. 1st communication: receptor selectivity, antihistaminic activity, and antiallergenic effects. Arzneimittelforschung 2000; 50: 345–52

    PubMed  CAS  Google Scholar 

  47. 47.

    Wu R-L, Anthes JC, Kreutner W, et al. Desloratadine inhibits constitutive and histamine-stimulated nuclear factor-κB activity consistent with inverse agonism at the histamine H1 receptor. Int Arch Allergy Immunol 2004; 135: 313–8

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    Cardelús I, Antón F, Beleta J, et al. Anticholinergic effects of desloratadine, the major metabolite of loratadine, in rabbit and guinea-pig iris smooth muscle. Eur J Pharmacol 1999; 374: 249–54

    PubMed  Article  Google Scholar 

  49. 49.

    Henz BM. The pharmacologie profile of desloratadine: a review. Allergy 2001; 56: 7–13

    PubMed  Article  Google Scholar 

  50. 50.

    Gillard M, Christope B, Wels B, et al. H1 antagonists: receptor affinity versus selectivity. Inflamm Res 2003; 52 Suppl. 1: S49–50

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Golightly LK, Greos LS. Second-generation antihistamines: actions and efficacy in the management of allergic disorders. Drugs 2005; 65: 341–84

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    Moneret-Vautrin DA, de Chillou C, Codreanu A. Long QT syndrome in a patient with allergic rhinoconjunctivitis and auto-immune diabetes: focus on the choice of anti-Hi drugs. Allerg Immunol (Paris) 2006; 38: 347–50

    CAS  Google Scholar 

  53. 53.

    Schroeder JT, Schleimer RP, Lichtenstein LM, et al. Inhibition of cytokine generation and mediator release by human basophile treated with desloratadine. Clin Exp Allergy 2001; 31: 1369–77

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Genovese A, Patella V, De Crescenzo G, et al. Loratadine and desethoxylcarbonylloratadine inhibit the immunological release of mediators from human FcɛRI+ cells. Clin Exp Allergy 1997; 27: 559–67

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Agrawal DK. Anti-inflammatory properties of desloratadine. Clin Exp Allergy 2004; 34: 1342–8

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    Cyr MM, Baatjes AJ, Hayes LM, et al. The effect of desloratadine on eosinophil/basophil progenitors and other inflammatory markers in seasonal allergic rhinitis: a placebo-controlled randomized study. In: 58th Annual Meeting of the American Academy of Allergy, Asthma & Immunology; 2002 Mar 1–6; New York. J Allergy Clin Immunol 2002; 109 Suppl. 1: S117

  57. 57.

    Molet S, Gosset P, Lassalle P, et al. Inhibitor activity of loratadine and descarboxyethoxyloratadine on histamine-induced activation of endothelial cells. Clin Exp Allergy 1997; 27: 1167–74

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Lippert U, Krüger-Krasagakes S, Möller A, et al. Pharmacological modulation of IL-6 and IL-8 secretion by the H1-antagonist decarboethoxy-loratadine and dexamethasone by human mast and basophilic cell lines. Exp Dermatol 1995; 4: 272–6

    PubMed  CAS  Article  Google Scholar 

  59. 59.

    Lippert U, Möller A, Welker P, et al. Inhibition of cytokine secretion from human leukemic mast cells and basophile by H1- and H2-receptor antagonists. Exp Dermatol 2000; 9: 118–24

    PubMed  CAS  Article  Google Scholar 

  60. 60.

    Ciprandi G, Tosca MA, Milanese M, et al. Antihistamines added to an antileukotriene in treating seasonal allergic rhinitis: histamine and leukotriene antagonism. Eur Ann Allergy Clin Immunol 2004; 36: 67–72

    PubMed  Google Scholar 

  61. 61.

    Triggiani M, Gentile M, Secondo A, et al. Histamine induces exocytosis and IL-6 production from human lung macrophages through interaction with H1-receptors. J Immunol 2001; 166: 4083–91

    PubMed  CAS  Google Scholar 

  62. 62.

    Vancheri C, Mastruzzo C, Tomaselli V, et al. The effect of fexofenadine on expression of intercellular adhesion molecule 1 and induction of apoptosis on peripheral eosinophile. Allergy Asthma Proc 2005; 26: 292–8

    PubMed  CAS  Google Scholar 

  63. 63.

    Asano K, Kanai K, Suzaki H. Supressive activity of fexofenadine hydrochloride on the production of eosinophil chemoattractants from human nasal fibroblasts in vitro. Arzneimittelforschung 2004; 54: 436–43

    PubMed  CAS  Google Scholar 

  64. 64.

    Thomson L, Blaylock MG, Sexton DW, et al. Cetirizine and levocetirizine inhibit eotaxin-induced eosinophil transendothelial migration through human dermal or lung microvascular endothelial cells. Clin Exp Allergy 2002; 32: 1187–92

    PubMed  CAS  Article  Google Scholar 

  65. 65.

    Wu P, Mitchell S, Walsh GM. A new antihistamine levocetirizine inhibits eosinophil adhesion to vascular cell adhesion molecule-1 under flow conditions. Clin Exp Allergy 2005; 35: 1073–9

    PubMed  CAS  Article  Google Scholar 

  66. 66.

    Giustizieri ML, Albanesi C, Fluhr J, et al. H1 histamine receptor mediates inflammatory responses in human keratinocytes. J Allergy Clin Immunol 2004; 114: 1176–82

    PubMed  CAS  Article  Google Scholar 

  67. 67.

    Petecchia L, Serpero L, Silvestri M, et al. The histamine-induced enhanced expression of vascular cell adhesion molecule-1 by nasal polyp-derived fibroblasts is inhibited by levocetirizine. Am J Rhinol 2006; 20: 445–9

    PubMed  Article  Google Scholar 

  68. 68.

    Tworek D, Bochénska-Marciniak M, Kupczyk M, et al. The effects of 4 weeks treatment with desloratadine (5mg daily) on levels of interleukin (IL)-4, IL-10, IL-18, and TGF beta in patients suffering from seasonal allergic rhinitis. Pulm Pharmacol Ther 2007; 20: 244–9

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Bakker RA, Schoonus SBJ, Smit MJ, et al. Histamine H1-receptor activation of nuclear factor-κB: roles for Gβγ- and Gα(q/1 l)-subunits in constitutive and agonist-mediated signaling. Mol Pharmacol 2001; 60: 1133–42

    PubMed  CAS  Google Scholar 

  70. 70.

    Tashiro M, Mochizuki H, Sakurada Y, et al. Brain histamine H1 receptor of orally administered antihistamines measured by positron emission tomography with 11C-doxepin in a placebo-controlled crossover study design in healthy subjects: a comparison of olopatadine and ketotifen. Br J Clin Pharmacol 2005; 61: 16–26

    Article  CAS  Google Scholar 

  71. 71.

    Chen C, Hanson E, Watson JW, et al. P-glycoprotein limits the brain penetration of nonsedating but not sedating Hi-antagonists. Drug Metab Dispos 2003; 31: 312–8

    PubMed  CAS  Article  Google Scholar 

  72. 72.

    Yanai K, Ryu JH, Watanabe T, et al. Histamine H1 receptor occupancy in human brains after single oral doses of histamine H1 antagonists measured by positron emission tomography. Br J Pharmacol 1995; 116: 1649–55

    PubMed  CAS  Article  Google Scholar 

  73. 73.

    Pagliara A, Testa B, Carrupt P-A, et al. Molecular properties and pharmacokinetic behavior of cetirizine, a zwitterionic Hi-receptor antagonist. J Med Chem 1998; 41: 853–63

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    Timmerman H. Why are non-sedating antihistamines non-sedating? Clin Exp Allergy 1999; 29 Suppl. 3: 13–8

    PubMed  CAS  Google Scholar 

  75. 75.

    Ishiguro N, Nozawa T, Tsujihata A, et al. Influx and efflux transport of H1-antagonist epinastine across the blood-brain barrier. Drug Metab Dispos 2004; 32: 519–24

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Takahashi H, Ishida-Yamamoto A, Iizuka H. Effects of bepostatine, cetirizine, fexofenadine, and olopatadine on histamine-induced wheal-and flareresponse, sedation, and psychomotor performance. Clin Exp Dermatol 2004; 29(5): 526–32

    PubMed  CAS  Article  Google Scholar 

  77. 77.

    Tashiro M, Sakurada Y, Iwabuchi K, et al. Central effects of fexofenadine and cetirizine: measurement of psychomotor performance, subjective sleepiness, and brain histamine Hi-receptor occupancy using 11C-doxepin positron emission tomography. J Clin Pharmacol 2004; 44: 890–900

    PubMed  CAS  Article  Google Scholar 

  78. 78.

    Ridout F, Shamsi Z, Meadows R, et al. A single-center, randomized, double-blind, placebo-controlled, crossover investigation of fexofenadine hydrochloride 180mg alone and with alcohol, with hydroxyzine hydrochloride 50mg as a positive internal control, on aspects of cognitive and psychomotor function related to driving a car. Clin Ther 2003; 25: 1518–38

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Vuurman EFPM, Rikken GH, Muntjewerff ND, et al. Effects of desloratadine, diphenhydramine, and placebo on driving performance and psychomotor performance measurements. Eur J Clin Pharmacol 2004; 60: 307–13

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    Kay G. No sedation or performance impairment with desloratadine, a novel antihistamine [abstract]. Ann Allergy Asthma Immunol 2001; 86 Suppl.: 84

    Google Scholar 

  81. 81.

    Scharf MB, Kay G, Rikken GH, et al. Desloratadine has no effect on wakefulness or psychomotor performance. In: XIX European Academy of Allergology and Clinical Immunology; 2000 Jul 1–5; Lisbon. Allergy 2000; 55 Suppl. 63: 280

    Google Scholar 

  82. 82.

    Rikken GH, Scharf MB, Danzig MR, et al. Desloratadine and alcohol co-administration: no increase in impairment of performance over that induced by alcohol alone. In: XIX European Academy of Allergology and Clinical Immunology; 2000 Jul 1–5; Lisbon. Allergy 2000; 55 Suppl. 63: S277

    Google Scholar 

  83. 83.

    Simons FER, Fraser TG, Maher J, et al. Central nervous system effects of H1-receptor antagonists in the elderly. Ann Allergy Asthma Immunol 1999; 82: 157–60

    PubMed  CAS  Article  Google Scholar 

  84. 84.

    Kreutner W, Hey JA, Chiu P, et al. Preclinical pharmacology of desloratadine, a selective and nonsedating histamine H1 receptor antagonist. 2nd communication: lack of central nervous system effects. Arzneimittelforschung 2000; 50: 441–8

    PubMed  CAS  Google Scholar 

  85. 85.

    Banfield C, Padhi D, Glue P, et al. Electrocardiographic effects of multiple high doses of desloratadine [abstract]. J Allergy Clin Immunol 2000; 104 Suppl. P2: S383

    Article  Google Scholar 

  86. 86.

    Day JH, Briscoe MP, Rafeiro E, et al. Comparative clinical efficacy, onset and duration of action of levocetirizine and desloratadine for symptoms of seasonal allergic rhinitis in subjects evaluated in the Environmental Exposure Unit (EEU). Int J Clin Pract 2004; 58: 109–18

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    Day JH, Briscoe MP, Rafeiro E, et al. Comparative efficacy of cetirizine and fexofenadine for seasonal allergic rhinitis, 5–12 hours postdose, in the Environmental Exposure Unit. Allergy Asthma Proc 2005; 26: 275–82

    PubMed  CAS  Google Scholar 

  88. 88.

    Bachert C, Bousquet J, Canonica GW, et al. Levocetirizine improves quality of life and reduces costs in long-term management of persistent allergic rhinitis. J Allergy Clin Immunol 2004; 114: 838–44

    PubMed  CAS  Article  Google Scholar 

  89. 89.

    Layton D, Wilton LV, Boshier A, et al. Comparison of the risk of drowsiness and sedation between levocetirizine and desloratadine: a prescription-event monitoring study in England. Drug Saf 2006; 29: 897–909

    PubMed  CAS  Article  Google Scholar 

  90. 90.

    Verster JC, de Weert AM, Bijtjes SIR, et al. Driving ability after acute and subchronic administration of levocetirizine and diphenhydramine: a randomized, double-blind, placebo-controlled trial. Psychopharmacology 2003; 169: 84–90

    PubMed  CAS  Article  Google Scholar 

  91. 91.

    Hindmarch I, Johnson S, Meadows R, et al. The acute and sub-chronic effects of levocetirizine, cetirizine, loratadine, Promethazine and a placebo on cognitive function, psychomotor performance, and weal and flare. Curr Med Res Opin 2001; 17: 241–55

    PubMed  CAS  Google Scholar 

  92. 92.

    Gandon JM, Allain H. Lack of effect of single and repeated doses of levocetirizine, a new antihistamine drug, on cognitive and psychomotor functions in healthy volunteers. Br J Clin Pharmacol 2002; 54: 51–8

    PubMed  CAS  Article  Google Scholar 

  93. 93.

    Verster JC, Volkerts ER, van Oosterwijck AWAA, et al. Acute and subchronic effects of levocetirizine and diphenhydramine on memory functioning, psychomotor performance, and mood. J Allergy Clin Immunol 2003; 111: 623–7

    PubMed  CAS  Article  Google Scholar 

  94. 94.

    Molimard M, Diquet B, Strolin Benedetti M. Comparison of pharmacokinetics and metabolism of desloratadine, fexofenadine, levocetirizine and mizolastine in humans. Fundam Clin Pharmacol 2004; 18: 399–411

    PubMed  CAS  Article  Google Scholar 

  95. 95.

    Baltes E, Coupez R, Giezek H, et al. Absorption and disposition of levocetirizine, the eutomer of cetirizine, administered alone or as cetirizine to healthy volunteers. Fundam Clin Pharmacol 2001; 15: 269–77

    PubMed  CAS  Article  Google Scholar 

  96. 96.

    US FDA Center for Drug Evaluation and Research. Approval package for: application number 21–165. Pharmacology review(s) [online]. Available from URL: http://www.fda.gov/cder/foi/nda/2001/21-165_Clarinex_pharmr_P1.pdf [Accessed 2008 Feb 18]

  97. 97.

    Benedetti MS, Plisnier M, Kaise J, et al. Absorption, distribution, metabolism and excretion of [14C]levocetirizine, the R enantiomer of cetirizine, in healthy volunteers. Eur J Clin Pharmacol 2001; 57: 571–82

    PubMed  CAS  Article  Google Scholar 

  98. 98.

    Ghosal A, Yuan Y, Hapangama N, et al. Identification of human UDP-glucuronosyltransferase enzyme(s) responsible for the glucuronidation of 3-hydroxydesloratadine. Biopharm Drug Dispos 2004; 25: 243–52

    PubMed  CAS  Article  Google Scholar 

  99. 99.

    US FDA Center for Drug Evaluation and Research. Approval package for: application number 21–165. Clinical pharmacology and biopharmaceutics review [online]. Available from URL: http://www.fda.gov/cder/foi/nda/2001/21-165_Clarinex_biopharmr_P2.pdf [Accessed 2008 Feb 18]

  100. 100.

    Gonzalez MA, Estes KS. Pharmacokinetic overview of oral second-generation H1 antihistamines. Int J Clin Pharmacol Ther 1998; 36: 292–300

    PubMed  CAS  Google Scholar 

  101. 101.

    Nicolas JM. The metabolic profile of second-generation antihistamines. Allergy 2000; 55 Suppl. 60: 46–52

    PubMed  Article  Google Scholar 

  102. 102.

    Affrime M, Gupta S, Banfield C, et al. A pharmacokinetic profile of desloratadine in healthy adults, including elderly. Clin Pharmacokinet 2002; 41 Suppl. 1: 13–9

    PubMed  CAS  Article  Google Scholar 

  103. 103.

    Simons FER, Silver NA, Gu X, et al. Clinical pharmacology of H1-antihistamines in the skin. J Allergy Clin Immunol 2002; 110: 777–83

    PubMed  CAS  Article  Google Scholar 

  104. 104.

    Purohit A, Melac M, Pauli G, et al. Twenty-four-hour activity and consistency of activity of levocetirizine and desloratadine in the skin. Br J Clin Pharmacol 2003; 56: 388–94

    PubMed  CAS  Article  Google Scholar 

  105. 105.

    Purohit A, Duvernelle C, Melac M, et al. Twenty-four hours of activity of cetirizine and fexofenadine in the skin. Ann Allergy Asthma Immunol 2001; 86: 387–92

    PubMed  CAS  Article  Google Scholar 

  106. 106.

    Grant JA, Riethusien JM, Moulaert B, et al. A double-blind, randomized, singledose, crossover comparison of levocetirizine with ebastine, fexofenadine, loratadine, mizolastine, and placebo: suppression of histamine-induced whealand-flare response during 24 hours in healthy male subjects. Ann Allergy Asthma Immunol 2002; 88: 190–7

    PubMed  CAS  Article  Google Scholar 

  107. 107.

    Monroe EW, Daly AF, Shalhoub RF. Appraisal of the validity of histamineinduced wheal and flare to predict the clinical efficacy of antihistamines. J Allergy Clin Immunol 1997; 99: S798–806

    PubMed  CAS  Article  Google Scholar 

  108. 108.

    Devillier P, Bousquet J. Inhibition of the histamine-induced weal and flare response: a valid surrogate measure for antihistamine clinical efficacy? Clin Exp Allergy 2007; 37: 400–14

    PubMed  CAS  Article  Google Scholar 

  109. 109.

    US FDA Center for Drug Evaluation and Research. Draft guidance for industry. Allergic rhinitis: clinical development programs for drug products [online]. Available from URL: http://www.fda.gov/cder/guidance/2718dft.htm [Accessed 2008 Feb 18]

  110. 110.

    Day JH, Briscoe M, Rafeiro E, et al. Comparative onset of action and symptom relief with cetirizine, loratadine, or placebo in an environmental exposure unit in subjects with seasonal allergic rhinitis: confirmation of a test system. Ann Allergy Asthma Immunol 2001; 87: 474–81

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Day JH, Briscoe MP, Widlitz MD. Cetirizine, loratadine, or placebo in subjects with seasonal allergic rhinitis: effects after controlled ragweed pollen challenge in an environmental exposure unit. J Allergy Clin Immunol 1998; 101: 638–45

    PubMed  CAS  Article  Google Scholar 

  112. 112.

    Day JH, Briscoe MP, Clark RH, et al. Onset of action and efficacy of terfenadine, astemizole, cetirizine, and loratadine for the relief of symptoms of allergic rhinitis. Ann Allergy Asthma Immunol 1997; 79: 163–72

    PubMed  CAS  Article  Google Scholar 

  113. 113.

    Horak F, Jäger S, Berger U. Onset and duration of the effects of three antihistamines in current use — astemizole, loratadine and terfenadine forte — studied during prolonged controlled allergen challenges in volunteers. J Int Med Res 1992; 20: 422–34

    PubMed  CAS  Google Scholar 

  114. 114.

    Stiibner P, Zieglmayer R, Horak F. A direct comparison of the efficacy of antihistamines in SAR and PAR: randomised, placebo-controlled studies with levocetirizine and loratadine using an environmental exposure unit: the Vienna Challenge Chamber (VCC). Curr Med Res Opin 2004; 6: 891–902

    Article  CAS  Google Scholar 

  115. 115.

    Frossard N, Lacronique J, Melac M, et al. Onset of action on the nasal antihistaminic effect of cetirizine and loratadine in patients with allergic rhinitis. Allergy 1997; 52: 205–9

    PubMed  CAS  Article  Google Scholar 

  116. 116.

    Day JH, Briscoe MP, Rafeiro E, et al. Randomized double-blind comparison of cetirizine and fexofenadine after pollen challenge in the Environmental Exposure Unit: duration of effect in subjects with seasonal allergic rhinitis. Allergy Asthma Proc 2004; 25: 59–68

    PubMed  CAS  Google Scholar 

  117. 117.

    Devillier P. Comparing the new antihistamines: the role of pharmacological parameters. Clin Exp Allergy 2005; 36: 5–7

    Article  Google Scholar 

  118. 118.

    Tillement J-P. Pharmacological profile of the new antihistamines. Clin Exp Allergy Rev 2005; 5: 7–11

    CAS  Article  Google Scholar 

  119. 119.

    Passalacqua G, Guerra L, Compalati E, et al. Comparison of the effects in the nose and skin of a single dose of desloratadine and levocetirizine over 24 hours. Int Arch Allergy Immunol 2004; 135: 143–7

    PubMed  CAS  Article  Google Scholar 

  120. 120.

    Tamai I, Nezu J, Uchino H, et al. Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem Biophys Res Comm 2000; 273: 251–60

    PubMed  CAS  Article  Google Scholar 

  121. 121.

    Cvetkovic M, Leak B, Fromm MF, et al. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos 1999; 27: 866–71

    PubMed  CAS  Google Scholar 

  122. 122.

    Wang E-J, Casciano CN, Clement RP, et al. Evaluation of the interaction of loratadine and desloratadine with P-glycoprotein. Drug Metab Dispos 2001; 29: 1080–3

    PubMed  CAS  Google Scholar 

  123. 123.

    Wang Z, Hamman MA, Huang S-M, et al. Effect of St. John’s wort on the pharmacokinetics of fexofenadine. Clin Pharmacol Ther 2002; 71: 414–20

    PubMed  CAS  Article  Google Scholar 

  124. 124.

    van Heeswijk RP, Bourbeau M, Campbell P, et al. Time-dependent interaction between lopinavir/ritonavir and fexofenadine. J Clin Pharmacol 2006; 46: 758–67

    PubMed  Article  CAS  Google Scholar 

  125. 125.

    Dresser GK, Kim RB, Bailey DG. Effect of grapefruit juice volume on the reduction of fexofenadine bioavailability: possible role of organic anion transporting Polypeptides. Clin Pharmacol Ther 2005; 77: 170–7

    PubMed  CAS  Article  Google Scholar 

  126. 126.

    Glaeser H, Bailey DG, Dresser GK, et al. Intestinal drug transporter expression and the impact of grapefruit juice in humans. Clin Pharmacol Ther 2007; 81: 362–70

    PubMed  CAS  Article  Google Scholar 

  127. 127.

    Banfield C, Gupta S, Marino M, et al. Grapefruit juice reduces the oral bioavailability of fexofenadine but not desloratadine. Clin Pharmacokinet 2002; 41: 311–8

    PubMed  CAS  Article  Google Scholar 

  128. 128.

    Barecki ME, Casciano CN, Johnson WW, et al. In vitro characterization of the inhibition profile of loratadine, desloratadine, and 3-OH-desloratadine for five human cytochrome P-450 enzymes. Drug Metab Dispos 2001; 29: 1173–5

    PubMed  CAS  Google Scholar 

  129. 129.

    Gupta S, Banfield C, Kantesaria B, et al. Pharmacokinetics/pharmacodynamics of desloratadine and fluoxetine in healthy volunteers. J Clin Pharmacol 2004; 44: 1252–9

    PubMed  CAS  Article  Google Scholar 

  130. 130.

    Gupta S, Banfield C, Kantesaria B, et al. Pharmacokinetic and safety profile of desloratadine and fexofenadine when coadministered with azithromycin: a randomized, placebo-controlled, parallel-group study. Clin Ther 2001; 23: 451–66

    PubMed  CAS  Article  Google Scholar 

  131. 131.

    Banfield C, Hunt T, Reyderman L, et al. Lack of clinically relevant interaction between desloratadine and erythromycin. Clin Pharmacokinet 2002; 41 Suppl. 1: 29–35

    PubMed  CAS  Article  Google Scholar 

  132. 132.

    Khalilieh S, Krishna G, Marino M, et al. Lack of an interaction with coadministration of desloratadine and Cimetidine. Ann Allergy Asthma Immunol 2002; 88: 110

    Google Scholar 

  133. 133.

    Banfield C, Herron J, Keung A, et al. Desloratadine has no clinically relevant electrocardiographic or pharmacodynamic interactions with ketoconazole. Clin Pharmacokinet 2002; 41 Suppl. 1: 37–44

    PubMed  CAS  Article  Google Scholar 

  134. 134.

    Milne RW, Larsen LA, Jørgensen KL, et al. Hepatic disposition of fexofenadine: influence of the transport inhibitors erythromycin and dibromosulphothalein. Pharm Res 2000; 17: 1511–5

    PubMed  CAS  Article  Google Scholar 

  135. 135.

    Tannergren C, Knutson T, Knutson L, et al. The effect of ketoconazole on the in vivo intestinal permeability of fexofenadine using a regional perfusion technique Br J Clin Pharmacol 2003; 55: 182–90

    PubMed  CAS  Article  Google Scholar 

  136. 136.

    Peytavin G, Gauran C, Otoul C, et al. Evaluation of pharmacokinetic interaction between cetirizine and ritonavir, an HIV-1 protease inhibitor, in healthy male volunteers. Eur J Clin Pharmacol 2005; 61: 267–73

    PubMed  CAS  Article  Google Scholar 

  137. 137.

    Tsuruoka S, Ioka T, Wakaumi M, et al. Severe arrhythmia as a result of the interaction of cetirizine and pilsicainide in a patient with renal insufficiency: first case presentation showing competition for excretion via renal multidrug resistance protein 1 and organic cation transporter 2. Clin Pharmacol Ther 2006; 79: 389–96

    PubMed  CAS  Article  Google Scholar 

  138. 138.

    Horita Y, Kanaya H, Uno Y, et al. A case of the toxicity of pilsicainide hydrochloride with comparison of the serial serum pilsicainide levels and electrocardiographic findings. Jpn Heart J 2004; 45: 1049–56

    PubMed  Article  Google Scholar 

  139. 139.

    Gupta SK, Kantesaria B, Banfield C, et al. Desloratadine dose selection in children aged 6 months to 2 years: comparison of population pharmacokinetics between children and adults. Br J Clin Pharmacol 2007; 64: 174–84

    PubMed  CAS  Article  Google Scholar 

  140. 140.

    Gupta S, Khalilieh S, Kantesaria B, et al. Pharmacokinetics of desloratadine in children between 2 and 11 years of age. Br J Clin Pharmacol 2007; 63: 534–40

    PubMed  CAS  Article  Google Scholar 

  141. 141.

    Simons FER, Bergman JN, Watson WTA, et al. The clinical pharmacology of fexofenadine in children. J Allergy Clin Immunol 1996; 98: 1062–4

    PubMed  CAS  Article  Google Scholar 

  142. 142.

    Cranswick N, Turziková J, Fuchs M, et al. Levocetirizine in 1–2 year old children: pharmacokinetic and pharmacodynamic profile. Int J Clin Pharmacol Ther 2005; 43: 172–7

    PubMed  CAS  Google Scholar 

  143. 143.

    Simons FER, on behalf of the ETAC Study Group. Population pharmacokinetics of levocetirizine in very young children: the pediatricians’ perspective. Pediatr Allergy Immunol 2005; 16: 97–103

    PubMed  Article  Google Scholar 

  144. 144.

    Simons FER, Simons KJ. Levocetirizine: pharmacokinetics and pharmacodynamics in children age 6 to 11 years. J Allergy Clin Immunol 2005; 116: 355–61

    PubMed  CAS  Article  Google Scholar 

  145. 145.

    Affrime M, Banfield C, Gupta S, et al. Effect of race and sex on single and multiple dose pharmacokinetics of desloratadine. Clin Pharmacokinet 2002; 41 Suppl. 1: 21–8

    PubMed  CAS  Article  Google Scholar 

  146. 146.

    Gupta SK, Kantesaria B, Wang Z. Multiple-dose pharmacokinetics and safety of desloratadine in subjects with moderate hepatic impairment. J Clin Pharmacol 2007; 47: 1283–91

    PubMed  CAS  Article  Google Scholar 

  147. 147.

    Simons FER, Simons KJ. Clinical pharmacology of new histamine H1 receptor antagonists. Clin Pharmacokinet 1999; 36: 329–52

    PubMed  CAS  Article  Google Scholar 

  148. 148.

    Prenner B, Kim K, Gupta S, et al. Adult and paediatric poor metabolisers of desloratadine: an assessment of pharmacokinetics and safety. Expert Opin Drug Saf 2006; 5: 211–23

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors have received no funds for their involvement in this work. Over the last 3 years, Dr Devillier has received fees as a consultant or speaker for Altana Pharma AG, AstraZeneca Pharmaceuticals LP, Bioproject Pharma, Boehringer Ingelheim GmbH, Chiesi SA France, GlaxoSmithKline, Merck Sharp & Dohme Ltd, Sanofi-Aventis and Schering-Plough Corporation. Dr Roche has received fees as a consultant or speaker for Altana Pharma AG, AstraZeneca Pharmaceuticals LP, Boehringer Ingelheim GmbH, Chiesi SA France and GlaxoSmithKline. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prof. Philippe Devillier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Devillier, P., Roche, N. & Faisy, C. Clinical Pharmacokinetics and Pharmacodynamics of Desloratadine, Fexofenadine and Levocetirizine. Clin Pharmacokinet 47, 217–230 (2008). https://doi.org/10.2165/00003088-200847040-00001

Download citation

Keywords

  • Allergic Rhinitis
  • Allergic Rhinitis
  • Cetirizine
  • Loratadine
  • Fexofenadine