Skip to main content
Log in

Quantification of Busulfan in Saliva and Plasma in Haematopoietic Stem Cell Transplantation in Children

Validation of Liquid Chromatography Tandem Mass Spectrometry Method

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and objective

Busulfan pharmacokinetic studies suggest that an individual dosing strategy may be necessary to optimise systemic exposure in order to decrease toxicity and improve outcome in haematopoietic stem cell transplantation. Therapeutic and toxic effects of the busulfan/cyclophosphamide regimen have been related to the area under the busulfan plasma concentration-time curve. Because of practical limitations in obtaining blood from children, saliva was evaluated as an alternative matrix for therapeutic drug monitoring, offering the advantages of a non-invasive, rapid and easy sampling procedure. Another objective was to evaluate an easy and robust liquid chromatography-tandem mass spectrometry method for plasma and saliva busulfan determination.

Methods

An online extraction cartridge with column-switching technique, analytical liquid chromatography over a Chromolith RP 18e column, and tandem mass spectrometry were used to quantify busulfan concentrations in matched plasma and saliva samples. The study population consisted of ten patients, aged 1.3–19 years (median age 11.8 years, seven females, three males), undergoing haematopoietic stem cell transplantation. All patients received busulfan 0.8–1.3 mg/kg orally every 6 hours for a total of 16 doses, followed by two doses of cyclophosphamide (60 mg/kg/day).

Results

The lowest limit of detection was 2 μg/L and the lower limit of quantification was 10 μg/L. Only 100μL of plasma/saliva was needed. The mean recoveries (SD) of busulfan were 97.2% (2.7) in plasma and 100.4% (1.3) in saliva. Intra- and inter-assay imprecision was 2–3% and 2–4% for plasma, and 1–2% and 2–4% for saliva (concentration range 30–1500 μg/L). The bias was <4% for both plasma and saliva. The correlation between the busulfan concentration in plasma and saliva was highly significant (r = 0.958; p < 0.0001; saliva/plasma ratio = 1.09 ± 0.04; n = 69 sample pairs). The apparent plasma clearance was slightly higher than the apparent saliva clearance (202 ± 31 mL/h/kg vs 189 ±28 mL/h/kg; p = 0.001). The mean elimination half-life was found to be 2.31 ±0.46 hours for plasma and 2.30 ± 0.36 hours for saliva; these were not significantly different (p = 0.83).

Conclusion

The present study demonstrated that busulfan analysis in saliva could be a valuable and reliable alternative to plasma analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Fig. 3
Fig. 4
Fig. 5
Table II
Fig. 6

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Hassan M. The role of busulfan in bone marrow transplantation. Med Oncol 1999; 16(3): 166–76

    Article  PubMed  CAS  Google Scholar 

  2. Bolinger AM, Zangwill AB, Slattery JT, et al. Target dose adjustment of busulfan in pediatric patients undergoing bone marrow transplantation. Bone Marrow Transplant 2001; 28(11): 1013–8

    Article  PubMed  CAS  Google Scholar 

  3. McCune JS, Gooley T, Gibbs JP, et al. Busulfan concentration and graft rejection in pediatric patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant 2002; 30(3): 167–73

    Article  PubMed  CAS  Google Scholar 

  4. Bolinger AM, Zangwill AB, Slattery JT, et al. An evaluation of engraftment, toxicity and busulfan concentration in children receiving bone marrow transplantation for leukemia or genetic disease. Bone Marrow Transplant 2000; 25(9): 925–30

    Article  PubMed  CAS  Google Scholar 

  5. Vassal G, Deroussent A, Hartmann O, et al. Dose-dependent neurotoxicity of high-dose busulfan in children: a clinical and pharmacological study. Cancer Res 1990; 50(19): 6203–7

    PubMed  CAS  Google Scholar 

  6. Vassal G, Koscielny S, Challine D, et al. Busulfan disposition and hepatic veno-occlusive disease in children undergoing bone marrow transplantation. Cancer Chemother Pharmacol 1996; 37(3): 247–53

    Article  PubMed  CAS  Google Scholar 

  7. Grochow LB, Jones RJ, Brundrett RB, et al. Pharmacokinetics of busulfan: correlation with veno-occlusive disease in patients undergoing bone marrow transplantation. Cancer Chemother Pharmacol 1989; 25(1): 55–61

    Article  PubMed  CAS  Google Scholar 

  8. Dix SP, Wingard JR, Mullins RE, et al. Association of busulfan area under the curve with veno-occlusive disease following BMT. Bone Marrow Transplant 1996; 17(2): 225–30

    PubMed  CAS  Google Scholar 

  9. Bouligand J, Boland I, Valteau-Couanet D, et al. In children and adolescents, the pharmacodynamics of high-dose busulfan is dependent on the second alkylating agent used in the combined regimen (melphalan or thiotepa). Bone Marrow Transplant 2003; 32(10): 979–86

    Article  PubMed  CAS  Google Scholar 

  10. Vassal G, Gouyette A, Hartmann O, et al. Pharmacokinetics of high-dose busulfan in children. Cancer Chemother Pharmacol 1989; 24(6): 386–90

    Article  PubMed  CAS  Google Scholar 

  11. Gibbs JP, Liacouras CA, Baldassano RN, et al. Up-regulation of glutathione S-transferase activity in enterocytes of young children. Drug Metab Dispos 1999; 27(12): 1466–9

    PubMed  CAS  Google Scholar 

  12. Gibbs JP, Murray G, Risler L, et al. Age-dependent tetrahydrothiophenium ion formation in young children and adults receiving high-dose busulfan. Cancer Res 1997; 57(24): 5509–16

    PubMed  CAS  Google Scholar 

  13. Schiltmeyer B, Klingebiel T, Schwab M, et al. Population pharmacokinetics of oral busulfan in children. Cancer Chemother Pharmacol 2003; 52(3): 209–16

    Article  PubMed  CAS  Google Scholar 

  14. Oechtering D, Schiltmeyer B, Hempel G, et al. Toxicity and pharmacokinetics of i.v. busulfan in children before stem cell transplantation. Anticancer Drugs 2005; 16(3): 337–44

    Article  PubMed  CAS  Google Scholar 

  15. Lindley C, Shea T, McCune J, et al. Intraindividual variability in busulfan pharmacokinetics in patients undergoing a bone marrow transplant: assessment of a test dose and first dose strategy. Anticancer Drugs 2004; 15(5): 453–9

    Article  PubMed  CAS  Google Scholar 

  16. Bleyzac N, Souillet G, Magron P, et al. Improved clinical outcome of paediatric bone marrow recipients using a test dose and Bayesian pharmacokinetic individualization of busulfan dosage regimens. Bone Marrow Transplant 2001; 28(8): 743–51

    Article  PubMed  CAS  Google Scholar 

  17. McCune JS, Gibbs JP, Slattery JT. Plasma concentration monitoring of busulfan: does it improve clinical outcome?. Clin Pharmacokinet 2000; 39(2): 155–65

    Article  PubMed  CAS  Google Scholar 

  18. Hoffer E, Akria L, Tabak A, et al. A simple approximation for busulfan dose adjustment in adult patients undergoing bone marrow transplantation. Ther Drug Monit 2004; 26(3): 331–5

    Article  PubMed  CAS  Google Scholar 

  19. Chattergoon DS, Saunders EF, Klein J, et al. An improved limited sampling method for individualised busulphan dosing in bone marrow transplantation in children. Bone Marrow Transplant 1997; 20(5): 347–54

    Article  PubMed  CAS  Google Scholar 

  20. Balasubramanian P, Chandy M, Krishnamoorthy R, et al. Evaluation of existing limited sampling models for busulfan kinetics in children with beta thalassaemia major undergoing bone marrow transplantation. Bone Marrow Transplant 2001; 28(9): 821–5

    Article  PubMed  CAS  Google Scholar 

  21. Tabak A, Hoffer E, Rowe JM, et al. Monitoring of busulfan area under the curve: estimation by a single measurement. Ther Drug Monit 2001; 23(5): 526–8

    Article  PubMed  CAS  Google Scholar 

  22. Kahan BD, Keown P, Levy GA, et al. Therapeutic drug monitoring of immunosuppressant drugs in clinical practice. Clin Ther 2002; 24(3): 330–50

    Article  PubMed  CAS  Google Scholar 

  23. Gröschl M, Rauh M, Dörr HG. Circadian rhythm of salivary cortisol, 17α-hydroxyprogesterone, and progesterone in healthy children. Clin Chem 2003; 49(10): 1688–91

    Article  PubMed  Google Scholar 

  24. Gröschl M, Rauh M, Dörr HG. Cortisol and 17-hydroxyprogesterone kinetics in saliva after oral administration of hydrocortisone in children and young adolescents with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab 2002; 87(3): 1200–4

    Article  PubMed  Google Scholar 

  25. Gorodischer R, Burtin P, Verjee Z, et al. Is saliva suitable for therapeutic monitoring of anticonvulsants in children: an evaluation in the routine clinical setting. Ther Drug Monit 1997; 19(6): 637–42

    Article  PubMed  CAS  Google Scholar 

  26. de Wildt SN, Kerkvliet KT, Wezenberg MG, et al. Use of saliva in therapeutic drug monitoring of caffeine in preterm infants. Ther Drug Monit 2001; 23(3): 250–4

    Article  PubMed  Google Scholar 

  27. Vasudev A, Tripathi KD, Puri V. Correlation of serum and salivary carbamazepine concentration in epileptic patients: implications for therapeutic drug monitoring. Neurol India 2002; 50(1): 60–2

    PubMed  CAS  Google Scholar 

  28. Drobitch RK, Svensson CK. Therapeutic drug monitoring in saliva: an update. Clin Pharmacokinet 1992; 23(5): 365–79

    Article  PubMed  CAS  Google Scholar 

  29. Tennison M, Ali I, Miles MV, et al. Feasibility and acceptance of salivary monitoring of antiepileptic drugs via the US Postal Service. Ther Drug Monit 2004; 26(3): 295–9

    Article  PubMed  CAS  Google Scholar 

  30. Lai WK, Pang CP, Law LK, et al. Routine analysis of plasma busulfan by gas chromatography-mass fragmentography. Clin Chem 1998; 44(12): 2506–10

    PubMed  CAS  Google Scholar 

  31. Murdter TE, Coller J, Claviez A, et al. Sensitive and rapid quantification of busulfan in small plasma volumes by liquid chromatography-electrospray mass spectrometry. Clin Chem 2001; 47(8): 1437–42

    PubMed  CAS  Google Scholar 

  32. Quernin MH, Poonkuzhali B, Medard Y, et al. High-performance liquid chromatographic method for quantification of busulfan in plasma after derivatization by tetrafluorothiophenol. J Chromatogr B Biomed Sci Appl 1999; 721: 147–52

    Article  PubMed  CAS  Google Scholar 

  33. Peris JE, Latorre JA, Castel V, et al. Determination of busulfan in human plasma using high-performance liquid chromatography with pre-column derivatization and fluorescence detection. J Chromatogr B Biomed Sci Appl 1999; 730: 33–40

    Article  PubMed  CAS  Google Scholar 

  34. Kellogg MD, Law T, Sakamoto M, et al. Tandem mass spectrometry method for the quantification of serum busulfan. Ther Drug Monit 2005; 27(5): 625–9

    Article  PubMed  CAS  Google Scholar 

  35. Annesley TM. Ion suppression in mass spectrometry. Clin Chem 2003; 49(7): 1041–4

    Article  PubMed  CAS  Google Scholar 

  36. Delatour T. Performance of quantitative analyses by liquid chromatography-electrospray ionisation tandem mass spectrometry: from external calibration to isotopomer-based exact matching. Anal Bioanal Chem 2004; 380(3): 515–23

    Article  PubMed  CAS  Google Scholar 

  37. Laub PB, Gallo JM. NCOMP: a windows-based computer program for noncompartmental analysis of pharmacokinetic data. J Pharm Sci 1996; 85(4): 393–5

    Article  PubMed  CAS  Google Scholar 

  38. Balasubramanian P, Srivastava A, Chandy M. Stability of busulfan in frozen plasma and whole blood samples. Clin Chem 2001; 47(4): 766–8

    PubMed  CAS  Google Scholar 

  39. Quernin MH, Duval M, Litalien C, et al. Quantification of busulfan in plasma by liquid chromatography-ion spray mass spectrometry: application to pharmacokinetic studies in children. J Chromatogr B Biomed Sci Appl 2001; 763(1–2): 61–9

    Article  PubMed  CAS  Google Scholar 

  40. Sandstrom M, Karlsson MO, Ljungman P, et al. Population pharmacokinetic analysis resulting in a tool for dose individualization of busulphan in bone marrow transplantation recipients. Bone Marrow Transplant 2001; 28(7): 657–64

    Article  PubMed  CAS  Google Scholar 

  41. Kim JS, Nafziger AN, Tsunoda SM, et al. Limited sampling strategy to predict AUC of the CYP3A phenotyping probe midazolam in adults: application to various assay techniques. J Clin Pharmacol 2002; 42(4): 376–82

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the technical assistance of Mrs J. Biskupek-Sigwart and Mr N. Meier, as well as Mrs P. Schmid for linguistic editing. No sources of funding were used to assist in the preparation of this study. The authors have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Rauh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauh, M., Stachel, D., Kuhlen, M. et al. Quantification of Busulfan in Saliva and Plasma in Haematopoietic Stem Cell Transplantation in Children. Clin Pharmacokinet 45, 305–316 (2006). https://doi.org/10.2165/00003088-200645030-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200645030-00006

Keywords

Navigation