Skip to main content
Log in

Clinical Pharmacokinetics of Trospium Chloride

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Trospium chloride, a quaternary amine with anticholinergic properties, is used for the treatment of overactive bladder with symptoms of urge urinary incontinence, urgency and urinary frequency. The pharmacokinetics of trospium chloride have been investigated in healthy volunteers, in patients with renal and hepatic impairment, and in those with symptoms of overactive bladder, after oral, intravenous and intravesical administration.

After oral administration, absorption of the hydrophilic trospium chloride is slow and incomplete. Peak plasma concentrations (Cmax) of approximately 4 ng/mL are reached 4–5 hours after administration of a 20mg immediate-release preparation. The mean bioavailability is approximately 10% and decreases by concomitant food intake (to a mean of 26% of the fasting area under the plasma concentration-time curve [AUC]). Trospium chloride displays dose proportional increases in AUC and Cmax after a single dose within the clinically relevant dose range (20–60mg). The mean volume of distribution is approximately 350–800L. The drug is minimally (mean approximately 10%) metabolised to spiroalcohol by hydrolysis, is 50% plasma protein bound and does not cross the blood-brain barrier. Urinary excretion of the parent compound plays a major role in the disposition of the drug, with a mean renal clearance of 29 L/h (accounting for approximately 70% of total clearance) and a mean elimination half-life ranging from 10 to 20 hours. Elimination of the drug is slowed in patients with renal insufficiency, and population pharmacokinetic modelling has demonstrated that drug clearance is correlated with serum creatinine concentration. Thus, dose reduction is needed in patients with severe renal impairment (i.e. creatinine clearance <30 mL/min).

To date, no clinically relevant pharmacokinetic drug-drug interactions have been identified; the drug does not bind to any of the drug metabolising cytochrome P450 enzymes.

The pharmacokinetics of the drug are compatible with twice-daily administration. A once-daily schedule may also be appropriate, but this regimen needs formal clinical evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Table III
Fig. 2
Table IV
Fig. 3
Table V

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Schwantes U, Topfmeier P. Importance of pharmacological and physicochemical properties for tolerance of antimuscarinic drugs in the treatment of detrusor instability and detrusor hyperreflexia: chances for improvement of therapy. Int J Clin Pharmacol Ther 1999 May; 37(5): 209–18

    PubMed  CAS  Google Scholar 

  2. Napier C, Gupta P. Darifenacin is selective for the human recombinant M3 receptor subtype [abstract no. 96]. 2nd International Consultation on Incontinence; 2001 Jul 1–3, Paris

    Google Scholar 

  3. Füsgen I, Hauri D. Trospium chloride: an effective option for medical treatment of bladder overactivity. Int J Clin Pharmacol Ther 2000 May; 38(5): 223–34

    PubMed  Google Scholar 

  4. Madersbacher H, Stohrer M, Richter R, et al. Trospium chloride versus oxybutynin: a randomized, double-blind, multicentre trial in the treatment of detrusor hyper-reflexia. Br J Urol 1995 Apr; 75(4): 452–6

    Article  PubMed  CAS  Google Scholar 

  5. Guay DR. Clinical pharmacokinetics of drugs used to treat urge incontinence. Clin Pharmacokinet 2003; 42(14): 1243–85

    Article  PubMed  CAS  Google Scholar 

  6. Cardozo L, Chappie CR, Toozs-Hobson P, et al. Efficacy of trospium chloride in patients with detrusor instability: a placebo-controlled, randomized, double-blind, multicentre clinical trial. BJU Int 2000 Apr; 85(6): 659–64

    Article  PubMed  CAS  Google Scholar 

  7. Höfner K, Oelke M, Machtens S, et al. Trospium chloride: an effective drug in the treatment of overactive bladder and detrusor hyperreflexia. World J Urol 2001 Nov; 19(5): 336–43

    Article  PubMed  Google Scholar 

  8. Anderson KE. Pharmacological treatment of urinary incontinence. In: Abrams P, Cardozo L, Khoury S, et al., editors. Incontinence. Plymouth: Health Publication Ltd, 2002: 479–512

    Google Scholar 

  9. Fröhlich G, Bulitta M, Strosser W. Trospium chloride in patients with detrusor overactivity: meta-analysis of placebocontrolled, randomized, double-blind, multi-center clinical trials on the efficacy and safety of 20mg trospium chloride twice daily. Int J Clin Pharmacol Ther 2002 Jul; 40(7): 295–303

    PubMed  Google Scholar 

  10. Halaska M, Ralph G, Wiedemann A, et al. Controlled, doubleblind, multicentre clinical trial to investigate long-term tolerability and efficacy of trospium chloride in patients with detrusor instability. World J Urol 2003 May; 20(6): 392–9

    PubMed  CAS  Google Scholar 

  11. Zinner N, Gittelman M, Harris R, et al. Trospium chloride improves overactive bladder symptoms: a multicenter phase III trial. Trospium Study Group. J Urol 2004 Jun; 171 (6 Pt 1): 2311–5

    Article  PubMed  CAS  Google Scholar 

  12. Dmochowski RR, Appell RA. Advancements in pharmacologic management of the overactive bladder. Urology 2000 Dec 4; 56(6 Suppl. 1): 41–9

    Article  PubMed  CAS  Google Scholar 

  13. Pak RW, Petrou SP, Staskin DR. Trospium chloride: a quaternary amine with unique pharmacologic properties. Curr Urol Rep 2003 Dec; 4(6): 436–40

    Article  PubMed  Google Scholar 

  14. Schröder S, Jetter A, Zaigler M, et al. Absorption pattern of trospium chloride along the human gastrointestinal tract assessed using local enteral administration. Int J Clin Pharmacol Ther 2004 Oct; 42(10): 543–9

    PubMed  Google Scholar 

  15. Sanctura™ trospium chloride 20mg tablets: prescribing information [online]. Available from URL: http://www.sanctura.com/Sanctura_Prescribing_Information.pdf [Accessed 2005 Jun 8]

  16. Albrecht H, Bruhn R, Lorenz D, et al. Pupillometry: a noninvasive pharmacokinetic and pharmacodynamic method to study the action of trospium chloride (Spasmo-lyt®) on smooth muscle. Methods Find Exp Clin Pharmacol 1983 Oct; 5(8): 585–7

    PubMed  CAS  Google Scholar 

  17. Spahn H, Weber H, Mutschier E, et al. α-Alkyl-α-arylacetic acid derivatives as fluorescence markers for thin-layer chromatographic and high-performance liquid chromatographic assay of amines and alcohols. J Chromatogr 1984 Sep 14; 310(1): 167–78

    PubMed  CAS  Google Scholar 

  18. Schladitz-Keil G, Spahn H, Mutschler E. Fluorimetric determination of the quaternary compound trospium and its metabolite in biological material after derivatization with benoxaprofen chloride. J Chromatogr 1985 Nov 29; 345(1): 99–110

    PubMed  CAS  Google Scholar 

  19. Investigation on dose linearity and absolute bioavailability of trospium chloride following single oral dosing with Spasmolyt® dragees in healthy volunteers. Köln: Madaus AG, 1995. (Data on file)

  20. Robbins-Weilert D, Harrison P. A mass balance and metabolism study of [14C] trospium chloride in healthy male subjects. Lexington (MA): Indevus Inc, 2003. (Data on file)

    Google Scholar 

  21. Reed PM, Sanderson JB, Young CG, et al. Pharmacokineticmetabolic studies with [3H]-trospium chloride in man (Pt I): the excretion and plasma kinetics of radioactivity in man following a single intravenous administration of [3H]-trospium chloride with and without preteatment with non-radiolabelled trospium chloride. Köln: ICR Ltd, Madaus AG, 1997. (Data on file)

    Google Scholar 

  22. Reed PM, Sanderson JB, Young CG, et al. Pharmacokineticmetabolic studies with [3H]-trospium chloride in man (Pt II): chromatographic analysis of the metabolite. Köln: ICR Ltd, Madaus AG, 1997. (Data on file)

    Google Scholar 

  23. Schladitz-Keil G, Spahn H, Mutschler E. Determination of the bioavailability of the quaternary compound trospium chloride in man from urinary excretion data. Arzneimittel Forschung 1986 Jun; 36(6): 984–7

    PubMed  CAS  Google Scholar 

  24. Investigation of trospium chloride plasma concentration/time profiles following single and multiple oral dosing with Spasmo-lyt® dragees in healthy volunteers. Köln: Madaus AG, 1995. (Data on file)

  25. Single dose study on the pharmacokinetics of trospium chloride in 16 elderly healthy subjects for comparison to former data obtained in young subjects. Köln: Madaus AG, 1996. (Data on file)

  26. Zerres K, Zaigler M, Rietbock S, et al. Open, randomized, crossover, four-way, two sequences study to determine the pharmacokinetic profile of trospium chloride in elderly healthy subjects with single and multiple dose administration of Spasmo-lyt®, stratified according to sex and hormone replacement therapy. Köln: Institute for Pharmacology, University of Köln; Madaus AG, 1998. (Data on file)

    Google Scholar 

  27. Walter P, Grosse J, Bihr AM, et al. Bioavailability of trospium chloride after intravesical instillation in patients with neurogenic lower urinary tract dysfunction: a pilot study. Neurourol Urodyn 1999; 18: 447–53

    Article  PubMed  CAS  Google Scholar 

  28. Langguth P, Kubis A, Krumbiegel G, et al. Intestinal absorption of the quaternary trospium chloride: permeability-lowering factors and bioavailabilities for oral dosage forms. Eur J Pharm Biopharm 1997 Jun; 43(3): 265–72

    Article  CAS  Google Scholar 

  29. Staib AH, Fuhr U. Drug absorption differences along the gastrointestinal tract in man: detection and relevance for the development of new drug formulations. In: Kuhlmann J, Weihrauch TR, editors. Clinical pharmacology: food-drug interactions. Munich: W. Zuckschwerdt, 1995: 11, 34–56

    Google Scholar 

  30. Fuhr U, Staib AH, Harder S, et al. Absorption of ipsapirone along the human gastrointestinal tract. Br J Clin Pharmacol 1994; 38: 83–6

    Article  PubMed  CAS  Google Scholar 

  31. Staib AH, Fuhr U, Albrecht C, et al. Mapping of the absorption of theophylline in the human gastrointestinal tract. Klinische Pharmakologie Aktuell 1992; 3: 74–5

    Google Scholar 

  32. A single dose two-way crossover investigation on the pharmacokinetics of trospium chloride under fasting condition and after concomitant intake of a high-fat meal. Köln: Madaus AG, 1996. (Data on file)

  33. Lang W. Pharmacokinetic studies on MP 194 in the rat (Pt A): oral administration. Köln: Madaus AG, 1982. (Data on file)

    Google Scholar 

  34. Lang W. Pharmacokinetic studies on MP 194 in the rat (Pt B): intravenous injection. Köln: Madaus AG, 1984. (Data on file)

    Google Scholar 

  35. Lang W. Investigations of pharmacokinetics of trospium chloride in rats after repeated oral doses. Köln: Madaus AG, 1985. (Data on file)

    Google Scholar 

  36. Langguth P, Mutschler E. Lipophilisation of hydrophilic compounds: consequences on transepidermal and intestinal transport of trospium chloride. Arzneimittel Forschung 1987 Dec; 37(12): 1362–6

    PubMed  CAS  Google Scholar 

  37. Madersbacher HG. Confusion about measuring central nervous system effects. Curr Urol Rep 2004 Dec; 5(6): 442–6

    Article  PubMed  Google Scholar 

  38. Rovner ES. Trospium chloride in the management of overactive bladder. Drugs 2004; 64(21): 2433–46

    Article  PubMed  CAS  Google Scholar 

  39. Todorova A, Vonderheid-Guth B, Dimpfel W. Effects of tolterodine, trospium chloride, and oxybutynin on the central nervous system. J Clin Pharmacol 2001 Jun; 41(6): 636–44

    Article  PubMed  CAS  Google Scholar 

  40. Pietzko A, Dimpfel W, Schwantes U, et al. Influences of trospium chloride and oxybutynine on quantitative EEG in healthy volunteers. Eur J Clin Pharmacol 1994; 47: 337–43

    Article  PubMed  CAS  Google Scholar 

  41. Breuel HP, Murtz G, Bondy S, et al. Safety and tolerance of trospium chloride in the high dose range. Arzneimittel Forschung 1993 Apr; 43(4): 461–4

    PubMed  CAS  Google Scholar 

  42. Staskin DR, Harnett MD. Effect of trospium chloride on somnolence and sleepiness in patients with overactive bladder. Curr Urol Rep 2004 Dec; 5(6): 423–6

    Article  PubMed  Google Scholar 

  43. Lang W. Investigations with MP194: determination of the serum protein binding, the distribution coefficient and the in vivo and in vitro distribution in whole blood. Köln: Madaus AG, 1983. (Data on file)

    Google Scholar 

  44. Lang W. Investigations with MP 194: determination of the enzymatic stability of the ester bond and of serum protein binding after ultrafiltration in vitro. Köln: Madaus AG, 1984. (Data on file)

    Google Scholar 

  45. Doolittle DH. In vitro metabolism of [14C] trospium chloride in rat, dog and human liver fractions. Lexington (MA): Indevus Inc, 2003. (Data on file)

    Google Scholar 

  46. Doolittle DH. In vivo metabolism of [14C] trospium chloride in male human urine and faecal samples collected from protocol IP631-006. Lexington (MA): Indevus Inc, 2003. (Data on file)

    Google Scholar 

  47. Beckmann-Knopp S, Rietbrock S, Weyhenmeyer R, et al. Inhibitory effects of trospium chloride on cytochrome P450 in human liver microsomes. Pharmacol Toxicol 1999; 85: 299–304

    Article  PubMed  CAS  Google Scholar 

  48. Lang W, Hans B. On the vitro-interaction of trospium chloride with antacida. Köln: Madaus AG, 1997. (Data on file)

    Google Scholar 

  49. Lang W, Hans B. On the vitro-interaction of trospium chloride with polyvalent metallic cations. Köln: Madaus AG, 1997. (Data on file)

    Google Scholar 

  50. von Moltke LL, Greenblatt DJ, Duan SX, et al. Inhibition of desipramine hydroxylation (cytochrome P450 2D6) in vitro by quinidine and by viral protease inhibitors: relation to drug interactions in vivo. J Pharm Sci 1998 Oct; 87(10): 1184–9

    Article  Google Scholar 

  51. Sproule BA, Otton SV, Cheung SW, et al. CYP2D6 inhibition in patients treated with sertraline. J Clin Psychopharmacol 1997 Apr; 17(2): 102–6

    Article  PubMed  CAS  Google Scholar 

  52. Fuhr U, Zaigler M, Jetter A. Pilot study to describe the gastrointestinal absorption pattern and circadian variations in the pharmacokinetics of enteral trospium chloride in three different formulations. Köln: Madaus AG, 2001. (Data on file)

    Google Scholar 

  53. Fuhr U, Jetter A, Tomalik-Scharte D. Comparison of bioequivalence of two different trospium chloride containing formulations in 24 young healthy male volunteers following multiple oral administration. Köln: Madaus AG, 2002. (Data on file)

    Google Scholar 

  54. Kumar D, Wingate D, Rückebusch Y. Circadian variation in the propagation velocity of the migrating motor complex. Gastroenterology 1986; 91: 926–30

    PubMed  CAS  Google Scholar 

  55. Cambar J, Cal JC, Tranchot J. Renal excretion: rhythms in physiology and pathology. In: Touitou Y, Haus E, editors. Biological rhythms in clinical and laboratory medicine. Berlin: Springer, 1992: 470–82

    Chapter  Google Scholar 

  56. Brown JS, Posner SF, Stewart AL. Urge incontinence: new health-related quality of life measures. J Am Geriatr Soc 1999 Aug; 47(8): 980–8

    PubMed  CAS  Google Scholar 

  57. DuBeau CE, Kiely DK, Resnick NM. Quality of life impact of urge incontinence in older persons: a new measure and conceptual structure. J Am Geriatr Soc 1999 Aug; 47(8): 989–94

    PubMed  CAS  Google Scholar 

  58. McGrother C, Resnick M, Yalla SV, et al. Epidemiology and etiology of urinary incontinence in the elderly. World J Urol 1998; 16 Suppl. 1: S3–9

    Article  PubMed  Google Scholar 

  59. Population pharmacokinetics of twice daily 20mg trospium chloride in patients with overactive bladder participating in the open-label treatment phase of study IP631-003. Lexington (MA): Indevus Inc, 2003. (Data on file)

  60. Sandage B, Najarian N, Lasseter K. The effect of hepatic disease on the pharmacokinetics of trospium chloride [poster no. 584]. ICS-Congress; 2004 Aug 23–27; Paris

    Google Scholar 

  61. Blume H, Mazur D, Potthast H, et al. Pharmacokinetics and bioavailability of trospium chloride in patients with renal impairment in comparison with healthy volunteers after administration of an oral dose of 40mg. Köln: Madaus AG, 1998. (Data on file)

    Google Scholar 

Download references

Acknowledgements

Data of several unpublished studies were supplied by MADAUS AG, Köln, Germany. Alexander Jetter and Uwe Fuhr received financial support for several pharmacokinetic studies on trospium chloride from MADAUS AG. In adherence with the guidelines of the International Committee of Medical Journal Editors, the authors declare they have no other conflict of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Fuhr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doroshyenko, O., Jetter, A., Odenthal, K.P. et al. Clinical Pharmacokinetics of Trospium Chloride. Clin Pharmacokinet 44, 701–720 (2005). https://doi.org/10.2165/00003088-200544070-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200544070-00003

Keywords

Navigation