Skip to main content
Log in

Pharmacokinetics of Tocolytic Agents

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Tocolytic agents are drugs designed to inhibit contractions of myometrial smooth muscle cells. Such an effect has been demonstrated in vitro or in vivo for several pharmacological agents, including β-adrenergic agonists, calcium channel antagonists, oxytocin antagonists, NSAIDs and magnesium sulfate. However, the aim of tocolysis is not only to stop uterine contractions or to prevent preterm delivery, but to prevent perinatal morbidity and mortality associated with preterm birth. The achievement of this goal has not yet been clearly demonstrated for any of the drugs available, and the use of tocolytic agents may appear controversial. Therefore, it is important to avoid maternal and fetal toxicity when tocolytic agents are used.

During pregnancy, all steps of drug pharmacokinetics are altered. Absorption of drugs administered orally is limited because of delayed stomach emptying and reduced intestinal motility. The volume of distribution of drugs is increased. The metabolic activity of the liver is increased, accelerating the metabolism of lipophilic drugs. Renal filtration is increased, leading to enhanced renal elimination of water-soluble drugs. These modifications are generally responsible for reduced plasma concentration and reduced half-life of most drugs. These specific modifications have to be taken into account when using a drug in pregnant women.

The aim of this review is to provide the reader with pharmacological data about drugs currently used to treat preterm labour. Such data in pregnant women may affect the choice of optimal drug dosage and route of administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV
Table V

Similar content being viewed by others

References

  1. Lettieri L, Vintzileos AM, Rodis JF, et al. Does ‘idiopathic’ preterm labor resulting in preterm birth exist? Am J Obstet Gynecol 1993; 168(5): 1480–5

    PubMed  CAS  Google Scholar 

  2. Gyetvai K, Hannah ME, Hodnett ED, et al. Tocolytics for preterm labor: a systematic review. Obstet Gynecol 1999; 94 (5 Pt 2): 869–77

    Article  PubMed  CAS  Google Scholar 

  3. Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 1972; 50(4): 515–25

    PubMed  CAS  Google Scholar 

  4. Crowley P. Corticosteroids after preterm premature rupture of membranes. Obstet Gynecol Clin North Am 1992; 19(2): 317–26

    PubMed  CAS  Google Scholar 

  5. Crowley P. Prophylactic corticosteroids for preterm birth. Cochrane Database Syst Rev 2000; (2): CD000065

    PubMed  Google Scholar 

  6. Pryde PG, Besinger RE, Gianopoulos JG, et al. Adverse and beneficial effects of tocolytic therapy. Semin Perinatol 2001; 25(5): 316–40

    Article  PubMed  CAS  Google Scholar 

  7. Reed MD, Blumer JL. Pharmacologic treatment of the fetus. In: Fanaroff A, Martin RJ, editors. Neonatal-perinatal medicine: diseases of the fetus and infant. 6th ed. Philadelphia (PA): WB Saunders, 1997: 167–99

    Google Scholar 

  8. Morgan DJ. Drug disposition in mother and foetus. Clin Exp Pharmacol Physiol 1997; 24(11): 869–73

    Article  PubMed  CAS  Google Scholar 

  9. The Canadian Preterm Labor Investigators Group. Treatment of preterm labor with the beta-adrenergic agonist ritodrine. N Engl J Med 1992; 327(5): 308–12

    Article  Google Scholar 

  10. Tsatsaris V, Papatsonis D, Goffinet F, et al. Tocolysis with nifedipine or beta-adrenergic agonists: a meta-analysis. Obstet Gynecol 2001; 97 (5 Pt 2): 840–7

    Article  PubMed  CAS  Google Scholar 

  11. Caritis SN. Ritodrine infusion and cardiomyopathy. Am J Obstet Gynecol 1990; 163 (1 Pt 1): 254–6

    PubMed  CAS  Google Scholar 

  12. Michalak D, Klein V, Marquette GP. Myocardial ischemia: a complication of ritodrine tocolysis. Am J Obstet Gynecol 1983; 146(7): 861–2

    PubMed  CAS  Google Scholar 

  13. Dennedy MC, Friel AM, Gardeil F, et al. Beta-3 versus beta-2 adrenergic agonists and preterm labour: in vitro uterine relaxation. Br J Obstet Gynaecol 2001; 108(6): 605–9

    Article  CAS  Google Scholar 

  14. Hearne AE, Nagey DA. Therapeutic agents in preterm labor: tocolytic agents. Clin Obstet Gynecol 2000; 43(4): 787–801

    Article  PubMed  CAS  Google Scholar 

  15. Bassett JM, Burks AH, Levine DH, et al. Matemal and fetal metabolic effects of prolonged ritodrine infusion. Obstet Gynecol 1985; 66(6): 755–61

    PubMed  CAS  Google Scholar 

  16. Hill WC, Katz M, Kitzmiller JL, et al. Continuous long-term intravenous beta-sympathomimetic tocolysis. Am J Obstet Gynecol 1985; 152(3): 271–4

    PubMed  CAS  Google Scholar 

  17. Ragni N, Costa M, Bentivoglio G, et al. Effects of orally administered ritodrine on carbohydrate and lipid metabolism in pregnant patients with abnormal glucose tolerance. Biol Res Pregnancy Perinatol 1984; 5(1): 42–6

    PubMed  CAS  Google Scholar 

  18. Richards SR, Chang FE, Stempel LE. Hyperlactacidemia associated with acute ritodrine infusion. Am J Obstet Gynecol 1983; 146(1): 1–5

    PubMed  CAS  Google Scholar 

  19. Schreyer P, Caspi E, Arieli S, et al. Metabolic effects of intravenous ritodrine infusion in pregnancy. Acta Obstet Gynecol Scand 1980; 59(3): 197–201

    Article  PubMed  CAS  Google Scholar 

  20. Caritis SN, Venkataramanan R, Cotroneo M, et al. Pharmacokinetics and pharmacodynamics of ritodrine after intramuscular administration to pregnant women. Am J Obstet Gynecol 1990; 162(5): 1215–9

    PubMed  CAS  Google Scholar 

  21. Caritis SN, Darby MJ, Chan L. Pharmacologic treatment of preterm labor. Clin Obstet Gynecol 1988; 31(3): 635–51

    Article  PubMed  CAS  Google Scholar 

  22. Caritis SN, Lin LS, Venkataramanan R, et al. Effect of pregnancy on ritodrine pharmacokinetics. Am J Obstet Gynecol 1988; 159(2): 328–32

    PubMed  CAS  Google Scholar 

  23. Caritis SN, Venkataramanan R, Darby MJ, et al. Pharmacokinetics of ritodrine administered intravenously: recommendations for changes in the current regimen. Am J Obstet Gynecol 1990; 162(2): 429–37

    PubMed  CAS  Google Scholar 

  24. Leferink JG, Lamont H, Wagemaker-Engels I, et al. Pharmacokinetics of terbutaline after subcutaneous administration. Int J Clin Pharmacol Biopharm 1979; 17(4): 181–5

    PubMed  CAS  Google Scholar 

  25. Lyrenas S, Grahnen A, Lindberg B, et al. Pharmacokinetics of terbutaline during pregnancy. Eur J Clin Pharmacol 1986; 29(5): 619–23

    Article  PubMed  CAS  Google Scholar 

  26. Hutchings MJ, Paull JD, Wilson-Evered E, et al. Pharmacokinetics and metabolism of salbutamol in premature labour. Br J Clin Pharmacol 1987; 24(1): 69–75

    Article  PubMed  CAS  Google Scholar 

  27. Milliez JM, Flouvat B, Delhotal B, et al. Pharmacokinetics of salbutamol in the pregnant woman after subcutaneous administration with a portable pump. Obstet Gynecol 1992; 80(2): 182–5

    PubMed  CAS  Google Scholar 

  28. Caritis SN, Chiao JP, Kridgen P. Comparison of pulsatile and continuous ritodrine administration: effects on uterine contractility and beta-adrenergic receptor cascade. Am J Obstet Gynecol 1991; 164(4): 1005–11

    PubMed  CAS  Google Scholar 

  29. Ingemarsson I, Westgren M, Lindberg C, et al. Single injection of terbutaline in term labor: placental transfer and effects on maternal and fetal carbohydrate metabolism. Am J Obstet Gynecol 1981; 139(6): 697–701

    PubMed  CAS  Google Scholar 

  30. Bergman B, Bokstrom H, Borga O, et al. Transfer of terbutaline across the human placenta in late pregnancy. Eur J Respir Dis Suppl 1984; 134: 81–6

    PubMed  CAS  Google Scholar 

  31. Hancock PJ, Setzer ES, Beydoun SN. Physiologic and biochemical effects of ritodrine therapy on the mother and perinate. Am J Perinatol 1985; 2(1): 1–6

    Article  PubMed  CAS  Google Scholar 

  32. Gokay Z, Ozcan T, Copel JA. Changes in fetal hemodynamics with ritodrine tocolysis. Ultrasound Obstet Gynecol 2001; 18(1): 44–6

    Article  PubMed  CAS  Google Scholar 

  33. Crowther CA, Moore V. Magnesium for preventing preterm birth after threatened preterm labour. Cochrane Database Syst Rev 2002; (2): CD000940

    Google Scholar 

  34. Gordon MC, Iams JD. Magnesium sulfate. Clin Obstet Gynecol 1995; 38(4): 706–12

    Article  PubMed  CAS  Google Scholar 

  35. Higby K, Xenakis EM, Pauerstein CJ. Do tocolytic agents stop preterm labor: a critical and comprehensive review of efficacy and safety. Am J Obstet Gynecol 1993; 168(4): 1247–56

    PubMed  CAS  Google Scholar 

  36. Mittendorf R, Dambrosia J, Dammann O, et al. Association between maternal serum ionized magnesium levels at delivery and neonatal intraventricular hemorrhage. J Pediatr 2002; 140(5): 540–6

    Article  PubMed  CAS  Google Scholar 

  37. Mittendorf R, Dambrosia J, Pryde PG, et al. Association between the use of antenatal magnesium sulfate in preterm labor and adverse health outcomes in infants. Am J Obstet Gynecol 2002; 186(6): 1111–8

    Article  PubMed  CAS  Google Scholar 

  38. Mittendorf R, Covert R, Elin R, et al. Umbilical cord serum ionized magnesium level and total pediatric mortality. Obstet Gynecol 2001; 98(1): 75–8

    Article  PubMed  CAS  Google Scholar 

  39. Jeyabalan A, Caritis SN. Pharmacologic inhibition of preterm labor. Clin Obstet Gynecol 2002; 45(1): 99–113

    Article  PubMed  Google Scholar 

  40. Scudiero R, Khoshnood B, Pryde PG, et al. Perinatal death and tocolytic magnesium sulfate. Obstet Gynecol 2000; 96(2): 178–82

    Article  PubMed  CAS  Google Scholar 

  41. Mittendorf R, Covert R, Boman J, et al. Is tocolytic magnesium sulphate associated with increased total paediatric mortality? Lancet 1997; 350(9090): 1517–8

    Article  PubMed  CAS  Google Scholar 

  42. Cholst IN, Steinberg SF, Tropper PJ, et al. The influence of hypermagnesemia on serum calcium and parathyroid hormone levels in human subjects. N Engl J Med 1984; 310(19): 1221–5

    Article  PubMed  CAS  Google Scholar 

  43. Cruikshank DP, Pitkin RM, Donnelly E, et al. Urinary magnesium, calcium, and phosphate excretion during magnesium sulfate infusion. Obstet Gynecol 1981; 58(4): 430–4

    PubMed  CAS  Google Scholar 

  44. Carney SL, Wong NL, Quamme GA, et al. Effect of magnesium deficiency on renal magnesium and calcium transport in the rat. J Clin Invest 1980; 65(1): 180–8

    Article  PubMed  CAS  Google Scholar 

  45. Chuan FS, Charles BG, Boyle RK, et al. Population pharmacokinetics of magnesium in preeclampsia. Am J Obstet Gynecol 2001; 185(3): 593–9

    Article  PubMed  CAS  Google Scholar 

  46. Taber EB, Tan L, Chao CR, et al. Pharmacokinetics of ionized versus total magnesium in subjects with preterm labor and preeclampsia. Am J Obstet Gynecol 2002; 186(5): 1017–21

    Article  PubMed  CAS  Google Scholar 

  47. Madden C, Owen J, Hauth JC. Magnesium tocolysis: serum levels versus success. Am J Obstet Gynecol 1990; 162(5): 1177–80

    PubMed  CAS  Google Scholar 

  48. Lu JF, Nightingale CH. Magnesium sulfate in eclampsia and pre-eclampsia: pharmacokinetic principles. Clin Pharmacokinet 2000; 38(4): 305–14

    Article  PubMed  CAS  Google Scholar 

  49. Lipsitz PJ. The clinical and biochemical effects of excess magnesium in the newborn. Pediatrics 1971; 47(3): 501–9

    PubMed  CAS  Google Scholar 

  50. Lipsitz PJ, English IC. Hypermagnesemia in the newborn infant. Pediatrics 1967; 40(5): 856–62

    PubMed  CAS  Google Scholar 

  51. Abernethy DR, Schwartz JB. Calcium-antagonist drugs. N Engl J Med 1999; 341(19): 1447–57

    Article  PubMed  CAS  Google Scholar 

  52. Spedding M, Paoletti R. Classification of calcium channels and the sites of action of drugs modifying channel function. Pharmacol Rev 1992; 44(3): 363–76

    PubMed  CAS  Google Scholar 

  53. McDonald TF, Pelzer S, Trautwein W, et al. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 1994; 74(2): 365–507

    PubMed  CAS  Google Scholar 

  54. Ulmsten U, Andersson KE, Wingerup L. Treatment of premature labor with the calcium antagonist nifedipine. Arch Gynecol 1980; 229(1): 1–5

    Article  PubMed  CAS  Google Scholar 

  55. Ferguson II JE, Dyson DC, Schutz T, et al. A comparison of tocolysis with nifedipine or ritodrine: analysis of efficacy and maternal, fetal, and neonatal outcome. Am J Obstet Gynecol 1990; 163 (1 Pt 1): 105–11

    PubMed  Google Scholar 

  56. Garcia-Velasco JA, Gonzalez Gonzelez A. A prospective, randomized trial of nifedipine vs ritodrine in threatened preterm labor. Int J Gynaecol Obstet 1998; 61(3): 239–44

    Article  PubMed  CAS  Google Scholar 

  57. Koks CA, Brolmann HA, de Kleine MJ, et al. A randomized comparison of nifedipine and ritodrine for suppression of preterm labor. Eur J Obstet Gynecol Reprod Biol 1998; 77(2): 171–6

    Article  PubMed  CAS  Google Scholar 

  58. Papatsonis DN, Van Geijn HP, Ader HJ, et al. Nifedipine and ritodrine in the management of preterm labor: a randomized multicenter trial. Obstet Gynecol 1997; 90(2): 230–4

    Article  PubMed  CAS  Google Scholar 

  59. King J, Grant A, Keirse M, et al. Beta-mimetics in preterm labour: an overview of the randomized controlled trials. Br J Obstet Gynaecol 1988; 95(3): 211–22

    Article  PubMed  CAS  Google Scholar 

  60. Oei SG, Mol BW, de Kleine MJ, et al. Nifedipine versus ritodrine for suppression of preterm labor: a meta-analysis. Acta Obstet Gynecol Scand 1999; 78(9): 783–8

    Article  PubMed  CAS  Google Scholar 

  61. Smith P, Anthony J, Johanson R. Nifedipine in pregnancy. Br J Obstet Gynaecol 2000; 107(3): 299–307

    Article  CAS  Google Scholar 

  62. Sorkin EM, Clissold SP, Brogden RN. Nifedipine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy, in ischaemic heart disease, hypertension and related cardiovascular disorders. Drugs 1985; 30(3): 182–274

    Article  PubMed  CAS  Google Scholar 

  63. Kupferminc M, Lessing JB, Yaron Y, et al. Nifedipine versus ritodrine for suppression of preterm labour. Br J Obstet Gynaecol 1993; 100(12): 1090–4

    Article  PubMed  CAS  Google Scholar 

  64. Forman A, Gandrup P, Andersson KE, et al. Effects of nifedipine on oxytocin- and prostaglandin F2 alpha-induced activity in the postpartum uterus. Am J Obstet Gynecol 1982; 144(6): 665–70

    PubMed  CAS  Google Scholar 

  65. Ulmsten U, Andersson KE, Forman A. Relaxing effects of nifedipine on the nonpregnant human uterus in vitro and in vivo. Obstet Gynecol 1978; 52(4): 436–41

    PubMed  CAS  Google Scholar 

  66. Ray D, Dyson D. Calcium channel blockers. Clin Obstet Gynecol 1995; 38: 713–21

    Article  PubMed  CAS  Google Scholar 

  67. Ferguson II JE, Schutz T, Pershe R, et al. Nifedipine pharmacokinetics during preterm labor tocolysis. Am J Obstet Gynecol 1989; 161 (6 Pt 1): 1485–90

    PubMed  Google Scholar 

  68. Prevost RR, Akl SA, Whybrew WD, et al. Oral nifedipine pharmacokinetics in pregnancy-induced hypertension. Pharmacotherapy 1992; 12(3): 174–7

    PubMed  CAS  Google Scholar 

  69. Harake B, Gilbert RD, Ashwal S, et al. Nifedipine: effects on fetal and maternal hemodynamics in pregnant sheep. Am J Obstet Gynecol 1987; 157 (4 Pt 1): 1003–8

    PubMed  CAS  Google Scholar 

  70. Blea CW, Barnard JM, Magness RR, et al. Effect of nifedipine on fetal and maternal hemodynamics and blood gases in the pregnant ewe. Am J Obstet Gynecol 1997; 176(4): 922–30

    Article  PubMed  CAS  Google Scholar 

  71. Seabe SJ, Moodley J, Becker P. Nifedipine in acute hypertensive emergencies in pregnancy. S Afr Med J 1989; 76(6): 248–50

    PubMed  CAS  Google Scholar 

  72. Hata T, Manabe A, Hata K, et al. Changes in blood velocities of fetal circulation in association with fetal heart rate abnormalities: effect of sublingual administration of nifedipine. Am J Perinatal 1995; 12(2): 80–1

    Article  CAS  Google Scholar 

  73. Impey L. Severe hypotension and fetal distress following sublingual administration of nifedipine to a patient with severe pregnancy induced hypertension at 33 weeks. Br J Obstet Gynaecol 1993; 100(10): 959–61

    Article  PubMed  CAS  Google Scholar 

  74. Maigaard S, Forman A, Andersson KE, et al. Comparison of the effects of nicardipine and nifedipine on isolated human myometrium. Gynecol Obstet Invest 1983; 16(6): 354–66

    Article  PubMed  CAS  Google Scholar 

  75. Carbonne B, Jannet D, Touboul C, et al. Nicardipine treatment of hypertension during pregnancy. Obstet Gynecol 1993; 81(6): 908–14

    PubMed  CAS  Google Scholar 

  76. Melin P. Oxytocin antagonists in preterm labour and delivery. Baillieres Clin Obstet Gynaecol 1993; 7(3): 577–600

    Article  PubMed  CAS  Google Scholar 

  77. Worldwide Atosiban Versus Beta-Agonists Study Group. Effectiveness and safety of the oxytocin antagonist atosiban versus beta-adrenergic agonists in the treatment of preterm labour. Br J Obstet Gynaecol 2001; 108(2): 133–42

    Google Scholar 

  78. Romero R, Sibai BM, Sanchez-Ramos L, et al. An oxytocin receptor antagonist (atosiban) in the treatment of preterm labor: a randomized, double-blind, placebo-controlled trial with tocolytic rescue. Am J Obstet Gynecol 2000; 182(5): 1173–83

    Article  PubMed  CAS  Google Scholar 

  79. Ivanisevic M, Behrens O, Helmer H, et al. Vasopressin receptors in human pregnant myometrium and decidua: interactions with oxytocin and vasopressin agonists and antagonists. Am J Obstet Gynecol 1989; 161 (6 Pt 1): 1637–43

    PubMed  CAS  Google Scholar 

  80. Melin P, Trojnar J, Johansson B, et al. Synthetic antagonists of the myometrial response to vasopressin and oxytocin. J Endocrinol 1986; 111(1): 125–31

    Article  PubMed  CAS  Google Scholar 

  81. Lundin S, Akerlund M, Fagerstrom PO, et al. Pharmacokinetics in the human of a new synthetic vasopressin and oxytocin uterine antagonist. Acta Endocrinol (Copenh) 1986; 112(4): 465–72

    CAS  Google Scholar 

  82. Lundin S, Broeders A, Melin P. Pharmacokinetic properties of the tocolytic agent [MPA1, D-Tyr (Et)2, Thr4, Orn8]-oxytocin (antocin) in healthy volunteers. Clin Endocrinol 1993; 39(3): 369–74

    Article  CAS  Google Scholar 

  83. Zinny M. A probe study to determine the bioavailability, dose proportionality, and safety of subcutaneous atosiban administrations compared with intravenous atosiban in normal female subjects (protocol M92-020). Raritan (NJ): R.W. Johnson Pharmaceutical Research Institute; 1995 Jul 18. Internal report no. 354869:1

    Google Scholar 

  84. Kahn J. Rising dose tolerance and safety evaluation of atosiban (RWJ 22164) in normal female subjects (protocol I88-012). Raritan (NJ): R.W. Johnson Pharmaceutical Research Institute; 1993 Jul 1. Internal report no. 20870:1

    Google Scholar 

  85. Akerlund M, Kostrzewska A, Laudanski T, et al. Vasopressin effects on isolated non-pregnant myometrium and uterine arteries and their inhibition by deamino-ethyl-lysine-vasopressin and deamino-ethyl-oxytocin. Br J Obstet Gynaecol 1983; 90(8): 732–8

    Article  PubMed  CAS  Google Scholar 

  86. Goodwin TM, Valenzuela G, Silver H, et al. Treatment of preterm labor with the oxytocin antagonist atosiban. Am J Perinatal 1996; 13(3): 143–6

    Article  CAS  Google Scholar 

  87. Valenzuela GJ, Craig J, Bernhardt MD, et al. Placental passage of the oxytocin antagonist atosiban. Am J Obstet Gynecol 1995; 172 (4 Pt 1): 1304–6

    Article  PubMed  CAS  Google Scholar 

  88. Zuckerman H, Shalev E, Gilad G, et al. Further study of the inhibition of premature labor by indomethacin (Pt II): double-blind study. J Perinat Med 1984; 12(1): 25–9

    Article  PubMed  CAS  Google Scholar 

  89. Niebyl JR, Blake DA, White RD, et al. The inhibition of premature labor with indomethacin. Am J Obstet Gynecol 1980; 136(8): 1014–9

    PubMed  CAS  Google Scholar 

  90. Norton ME. Teratogen update: fetal effects of indomethacin administration during pregnancy. Teratology 1997; 56(4): 282–92

    Article  PubMed  CAS  Google Scholar 

  91. Norton ME, Merrill J, Cooper BAB, et al. Neonatal complications after the administration of indomethacin for preterm labor. N Engl J Med 1993; 329(22): 1602–7

    Article  PubMed  CAS  Google Scholar 

  92. Zuckerman H, Reiss U, Rubinstein I. Inhibition of human premature labor by indomethacin. Obstet Gynecol 1974; 44(6): 787–92

    PubMed  CAS  Google Scholar 

  93. Helleberg L. Clinical pharmacokinetics of indomethacin. Clin Pharmacokinet 1981; 6(4): 245–58

    Article  PubMed  CAS  Google Scholar 

  94. Alvan G, Orme M, Bertilsson L, et al. Pharmacokinetics of indomethacin. Clin Pharmacol Ther 1975; 18(3): 364–73

    PubMed  CAS  Google Scholar 

  95. Gordon MC, Samuels P. Indomethacin. Clin Obstet Gynecol 1995; 38(4): 697–705

    Article  PubMed  CAS  Google Scholar 

  96. Creasy R. Preterm labor and delivery. In: Creasy R, Resnik R, editors. Maternal fetal medicine: principles and practice. Philadelphia (PA): WB Saunders, 1994: 494–520

    Google Scholar 

  97. Moise Jr KJ, Ou CN, Kirshon B, et al. Placental transfer of indomethacin in the human pregnancy. Am J Obstet Gynecol 1990; 162(2): 549–54

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Carbonne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsatsaris, V., Cabrol, D. & Carbonne, B. Pharmacokinetics of Tocolytic Agents. Clin Pharmacokinet 43, 833–844 (2004). https://doi.org/10.2165/00003088-200443130-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200443130-00001

Keywords

Navigation