Skip to main content
Log in

Pharmacokinetics of Ibuprofen in Children with Cystic Fibrosis

  • Leading Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

An exaggerated inflammatory response is responsible for the decline of lung function in patients with cystic fibrosis (CF). Ibuprofen is a potent anti-inflammatory agent that demonstrates inhibition of neutrophil activity in vitro at concentrations between 50 and 100 mg/L, whereas lower concentrations result in an increase in inflammatory mediators. Significant decline in the rate of deterioration of pulmonary function and increased nutritional status were observed in children with CF who were administered long-term high-dosage ibuprofen therapy.

As with many other drugs, CF patients appear to exhibit altered pharmacokinetics of ibuprofen (reduced bioavailability, increased volume of distribution, and more rapid clearance) when compared with healthy controls. However, the absence of studies with intravenous ibuprofen as well as protein binding measurements in patients with CF currently limits the ability to compare the pharmacokinetics with those in other populations. Current studies indicate that there is high interpatient variability in ibuprofen pharmacokinetics among CF patients. Some of this variability can be explained by differences in ibuprofen formulation administered.

Therapeutic drug monitoring of high-dosage ibuprofen therapy is recommended because of the biphasic response to inflammatory mediators demonstrated in vitro as well as the high interpatient variability in pharmacokinetics. Due to the differences in absorption characteristics between ibuprofen formulations, the timing of obtaining blood samples for pharmacokinetic analysis is critical. Maximum a posteriori Bayesian analysis has been shown to provide more accurate and precise estimates of the pharmacokinetic parameters of ibuprofen in children with CF, and may also be a useful tool to further investigate the relationship between measures of drug exposure and efficacy/toxicity outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Table I

Similar content being viewed by others

References

  1. Cystic Fibrosis Foundation. Cystic fibrosis foundation patient registry annual data report 1998. Bethesda (MD): Cystic Fibrosis Foundation, 1998 Sep

    Google Scholar 

  2. Iannuzzi M, Dean M, Drumm M, et al. Isolation of additional polymorphic clones from the cystic fibrosis region, using chromosome jumping from D7S8. Am J Hum Genet 1989; 44(5): 695–703

    PubMed  CAS  Google Scholar 

  3. Kerem B, Rommens J, Buchanan J, et al. Identification of the cystic fibrosis gene: genetic analysis. Science 1989; 245(4922): 1073–89

    Article  PubMed  CAS  Google Scholar 

  4. Davis PB, Drumm M, Konstan MW. Cystic fibrosis. Am J Respir Crit Care Med 1996; 154: 1129–256

    Google Scholar 

  5. Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev 2002; 15(2): 194–222

    Article  PubMed  CAS  Google Scholar 

  6. Bonfield TL, Panuska JR, Konstan MW, et al. Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care Med 1995; 152: 2111–8

    PubMed  CAS  Google Scholar 

  7. Bonfield TL, Konstan MW, Berger M. Altered respiratory epithelial cell cytokine production in cystic fibrosis. J Allergy Clin Immunol 1999; 104(1): 72–8

    Article  PubMed  CAS  Google Scholar 

  8. Konstan MW, Berger M. Current understanding of the inflammatory process in cystic fibrosis: onset and etiology. Pediatr Pulmonol 1997; 24: 137–42

    Article  PubMed  CAS  Google Scholar 

  9. Rosenstein BJ, Eigen H. Risks of alternate-day prednisone in patients with cystic fibrosis. Pediatrics 1991; 87(2): 245–6

    PubMed  CAS  Google Scholar 

  10. Insel P. Analgesic-antipyretic and antiinflammatory agents and drugs employed in the treatment of gout. In: Hardman J, Limbird L, Molinoff P, et al., editors. The pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill, 1996: 617–57

    Google Scholar 

  11. Davies NM. Clinical pharmacokinetics of ibuprofen: the first 30 years. Clin Pharmacokinet 1998; 34(2): 101–54

    Article  PubMed  CAS  Google Scholar 

  12. Kirchheiner J, Meineke I, Freytag G, et al. Enantiospecific effects of cytochrome p450 2c9 amino acid variants on ibuprofen pharmacokinetics and on the inhibition of cyclooxygenases 1 and 2. Clin Pharmacol Ther 2002; 72(1): 62–75

    Article  PubMed  CAS  Google Scholar 

  13. Konstan MW, Vargo KM, Davis PB. Ibuprofen attenuates the inflammatory response to Pseudomonas aeruginosa in a rat model of chronic pulmonary infection. Am Rev Respir Dis 1990; 141: 186–92

    PubMed  CAS  Google Scholar 

  14. Konstan MW, Byard PJ, Hoppel CL, et al. Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med 1995; 332(13): 848–54

    Article  PubMed  CAS  Google Scholar 

  15. Konstan MW, Krenicky JE, Finney MR, et al. Effect of ibuprofen on neutrophil migration in vivo in cystic fibrosis and healthy subjects. J Pharmacol Exp Ther 2003; 306: 1086–91

    Article  PubMed  CAS  Google Scholar 

  16. Lockwood GF, Albert KS, Szpunar GJ, et al. Pharmacokinetics of ibuprofen in man. III: plasma protein binding. J Pharmacokinet Biopharm 1983; 11(5): 469–82

    PubMed  CAS  Google Scholar 

  17. Lockwood GF, Albert KS, Gillespie WR, et al. Pharmacokinetics of ibuprofen in man. I: free and total area/dose relationships. Clin Pharmacol Ther 1983; 34(1): 97–103

    Article  PubMed  CAS  Google Scholar 

  18. Lee EJ, Willliams K, Day R, et al. Stereoselective disposition of ibuprofen enantiomers in man. Br J Clin Pharmacol 1985; 19: 669–74

    Article  PubMed  CAS  Google Scholar 

  19. Tan SC, Patel BK, Jackson SHD, et al. Stereoselectivity of ibuprofen metabolism and pharmacokinetics following the administration of the racemate to healthy volunteers. Xenobiotica 2002; 32(8): 683–97

    Article  PubMed  CAS  Google Scholar 

  20. Spino M. Pharmacokinetics of drugs in cystic fibrosis. Clin Rev Allergy 1991; 9(1–2): 169–210

    PubMed  CAS  Google Scholar 

  21. Touw DJ, Vinks AA, Mouton JW, et al. Pharmacokinetic optimisation of antibacterial treatment in patients with cystic fibrosis: current practice and suggestions for future directions. Clin Pharmacokinet 1998; 35(6): 437–59

    Article  PubMed  CAS  Google Scholar 

  22. Rey E, Treluyer J, Pons G. Drug disposition in cystic fibrosis. Clin Pharmacokinet 1998; 35(4): 313–29

    Article  PubMed  CAS  Google Scholar 

  23. Konstan MW, Hoppel CL, Chai B, et al. Ibuprofen in children with cystic fibrosis: pharmacokinetics and adverse effects. J Pediatr 1991; 118: 956–64

    Article  PubMed  CAS  Google Scholar 

  24. Murry DJ, Oermann CM, Ou C, et al. Pharmacokinetics of ibuprofen in patients with cystic fibrosis. Pharmacotherapy 1999; 19(3): 340–5

    Article  PubMed  CAS  Google Scholar 

  25. Rifai N, Sakamoto M, Law T, et al. Use of a rapid hplc assay for determination of pharmacokinetic parameters of ibuprofen in patients with cystic fibrosis. Clin Chem 1996; 42(11): 1812–6

    PubMed  CAS  Google Scholar 

  26. Scott CS, Retsch-Bogart GZ, Kustra RP, et al. The pharmacokinetics of ibuprofen suspension, chewable tablets, and tablets in children with cystic fibrosis. J Pediatr 1999; 134(1): 58–63

    Article  PubMed  CAS  Google Scholar 

  27. Williams R, Chen M, Hauck W. Equivalence approaches. Clin Pharmacol Ther 2002; 72(3): 229–37

    Article  PubMed  Google Scholar 

  28. Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther 2002; 71(3): 115–21

    Article  PubMed  CAS  Google Scholar 

  29. Kearns GLP, Crom WRP, Karlson Jr KH, et al. Hepatic drug clearance in patients with mild cystic fibrosis. Clin Pharmacol Ther May 1996; 59(5): 529–40

    Article  CAS  Google Scholar 

  30. Dong JQ, Ni L, Scott CS, et al. Pharmacokinetics of ibuprofen enantiomers in children with cystic fibrosis. J Clin Pharmacol 2000; 40(8): 861–8

    Article  PubMed  CAS  Google Scholar 

  31. CF Ibuprofen Laboratory. Questions and answers ibuprofen: information for cystic fibrosis physicians 1995 [online]. Available from URL: http://www.cwru.edu/affil/CFIBUPLAB/physgen.htm [Accessed 2002 Sep 17]

  32. Beringer P, Aminimanizani A, Synold T, et al. Development of population pharmacokinetic models and optimal sampling times for ibuprofen tablet and suspension formulations in children with cystic fibrosis. Ther Drug Monit 2002; 24: 315–21

    Article  PubMed  CAS  Google Scholar 

  33. Bell EA, Grothe R, Zivkovich V, et al. Pyloric channel stricture secondary to high-dose ibuprofen therapy in a patient with cystic fibrosis. Ann Pharmacother 1999; 33: 693–6

    Article  PubMed  CAS  Google Scholar 

  34. Scott CS, Retsch-Bogart GZ, Henry MM. Renal failure and vestibular toxicity in an adolescent with cystic fibrosis receiving gentamicin and standard-dose ibuprofen. Pediatr Pulmonol 2001; 31(4): 314–6

    Article  PubMed  CAS  Google Scholar 

  35. Kimura RE, Dy SA, Uhing MR, et al. The effects of high-dose ibuprofen and pancreatic enzymes on the intestine of the rat. J Pediatr Gastroenterol Nutr 1999; 29(2): 178–83

    Article  PubMed  CAS  Google Scholar 

  36. Feigelson J, Girault F, Pecau Y. Gastro-esophageal reflux and esophagitis in cystic fibrosis. Acta Paediatr Scand 1987; 76(6): 989–90

    Article  PubMed  CAS  Google Scholar 

  37. Forsyth DR, Jayasinghe KSA, Roberts CJC. Do nizatidine and cimetidine interact with ibuprofen? Eur J Clin Pharmacol 1988; 35(1): 85–8

    Article  PubMed  CAS  Google Scholar 

  38. Ochs HR, Greenblatt DJ, Matlis R, et al. Interaction of ibuprofen with the H2 receptor antagonists ranitidine and cimetidine. Clin Pharmacol Ther 1985; 38(6): 648–51

    Article  PubMed  CAS  Google Scholar 

  39. Conrad KA, Mayersohn M, Bliss M. Cimetidine does not alter ibuprofen kinetics after a single dose. Br J Clin Pharmacol 1984; 18(4): 624–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Beringer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, E.E., Beringer, P.M., Louie, S.G. et al. Pharmacokinetics of Ibuprofen in Children with Cystic Fibrosis. Clin Pharmacokinet 43, 145–156 (2004). https://doi.org/10.2165/00003088-200443030-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200443030-00001

Keywords

Navigation