Skip to main content
Log in

Whole Body Pharmacokinetic Models

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The aim of the current review is to summarise the present status of physiologically based pharmacokinetic (PBPK) modelling and its applications in drug research, and thus serve as a reference point to people interested in the methodology. The review is structured into three major sections. The first discusses the existing methodologies and techniques of PBPK model development. The second describes some of the most interesting PBPK model implementations published. The final section is devoted to a discussion of the current limitations and the possible future developments of the PBPK modelling approach. The current review is focused on papers dealing with the pharmacokinetics and/or toxicokinetics of medicinal compounds; references discussing PBPK models of environmental compounds are mentioned only if they represent considerable methodological developments or reveal interesting interpretations and/or applications.

The major conclusion of the review is that, despite its significant potential, PBPK modelling has not seen the development and implementation it deserves, especially in the drug discovery, research and development processes. The main reason for this is that the successful development and implementation of a PBPK model is seen to require the investment of significant experience, effort, time and resources. Yet, a substantial body of PBPK-related research has been accumulated that can facilitate the PBPK modelling and implementation process. What is probably lagging behind is the expertise component, where the demand for appropriately qualified staff far outreaches availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Use of tradenames is for product identification only and does not imply endorsement.

References

  1. Rowland M. Physiologic pharmacokinetic models and interanimal species scaling. In: Rowland M, Tucker GT, editors. Pharmacokinetics: theory and methodology. International Encyclopedia of Pharmacology and Therapeutics, Section 122. Oxford: Pergamon, 1986: 69–88

    Google Scholar 

  2. Thakur AK. Model: mechanistic vs empirical. In: Resigno A, Thakur AK, editors. New trends in pharmacokinetics. New York: Plenum Press, 1991: 41–51

    Chapter  Google Scholar 

  3. Rescigno A, Beck JS. The use and abuse of models. J Pharmacokinet Biopharm 1987; 15: 327–44

    PubMed  CAS  Google Scholar 

  4. Nestorov I, Petrov I, Hadjitodorov S, et al. Empirical versus mechanistic modelling: comparison of an artificial neural network to a mechanistically based model for quantitative structure pharmacokinetics relationship. Pharm Sci 1999; 1(4): 17. Available from URL: http://www.phamsci.org [Accessed 2003 Jul 18]

    Google Scholar 

  5. Godfrey K. Compartmental models and their application. New York: Academic Press, 1983

    Google Scholar 

  6. Anderson DA. Compartmental modeling and tracer kinetics: lecture notes in biomathematics. Vol. 50. New York: SpringerVerlag, 1983

    Book  Google Scholar 

  7. Bischoff KB. Physiological pharmacokinetics. Bull Math Biol 1986; 48: 309–22

    PubMed  CAS  Google Scholar 

  8. Chen HS, Gross JF. Physiologically based pharmacokinetic models for anticancer drugs. Cancer Chemother Pharmacol 1979; 2: 85–94

    Article  PubMed  CAS  Google Scholar 

  9. Gargas ML, Burgess RJ, Voisard DE, et al. Partition coefficients of low-molecular-weight volatile chemicals in various liquids and tissues. Toxicol Appl Pharmacol 1989; 98: 87–99

    Article  PubMed  CAS  Google Scholar 

  10. Clewell III HJ, Andersen ME. Risk assessment extrapolations and physiological modeling. Toxicol Ind Health 1985; 1: 111–31

    PubMed  CAS  Google Scholar 

  11. Lave T, Coassolo P, Reigner B. Prediction of hepatic metabolic clearance based on interspecies allometric scaling techniques and in vitro-in vivo correlations. Clin Pharmacokinet 1999; 36: 211–31

    Article  PubMed  CAS  Google Scholar 

  12. Houston JB, Carlile DJ. Prediction of hepatic clearance from microsomes, hepatocytes, and liver slices. Drug Metab Rev 1997; 29: 891–922

    Article  PubMed  CAS  Google Scholar 

  13. Obach RS, Baxter JG, Liston TE, et al. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther 1997; 283: 46–58

    PubMed  CAS  Google Scholar 

  14. Houston JB. Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem Pharmacol 1994; 47: 1469–79

    Article  PubMed  CAS  Google Scholar 

  15. Haber LT, Maier A, Zhao Q, et al. Applications of mechanistic data in risk assessment: the past, present, and future. Toxicol Sci 2001; 61: 32–9

    Article  PubMed  CAS  Google Scholar 

  16. Kaneko T, Horiuchi J, Sato A. Development of a physiologically based pharmacokinetic model of organic solvent in rats. Pharmacol Res 2000; 42: 465–70

    Article  PubMed  CAS  Google Scholar 

  17. Os’Flaherty EJ. Physiologically based models of metal kinetics. Crit Rev Toxicol 1998; 28: 271–317

    Article  Google Scholar 

  18. Bailer AJ, Dankovic DA. An introduction to the use of physiologically based pharmacokinetic models in risk assessment. Stat Methods Med Res 1997; 6: 341–58

    Article  PubMed  CAS  Google Scholar 

  19. el-Masri HA, Thomas RS, Benjamin SA, et al. Physiologically based pharmacokinetic/pharmacodynamic modeling of chemical mixtures and possible applications in risk assessment. Toxicology 1995; 105: 275–82

    Article  PubMed  CAS  Google Scholar 

  20. Yang RS, el-Masri HA, Thomas RS, et al. The use of physiologically-based pharmacokinetic/pharmacodynamic dosimetry models for chemical mixtures. Toxicol Lett 1995; 82–83: 497–504

    Article  PubMed  Google Scholar 

  21. Filser JG, Csanady GA, Kreuzer PE, et al. Toxicokinetic models for volatile industrial chemicals and reactive metabolites. Toxicol Lett 1995; 82–83: 357–66

    Article  PubMed  Google Scholar 

  22. Becking GC. Use of mechanistic information in risk assessment for toxic chemicals. Toxicol Lett 1995; 77: 15–24

    Article  PubMed  CAS  Google Scholar 

  23. Krewski D, Withey JR, Ku LF, et al. Applications of physiologic pharmacokinetic modeling in carcinogenic risk assessment. Environ Health Perspect 1994; 102 Suppl. 11: 37–50

    Article  PubMed  CAS  Google Scholar 

  24. Os’Flaherty EJ. Physiologically based pharmacokinetic models in developmental toxicology. Risk Anal 1994; 14: 605–11

    Article  Google Scholar 

  25. Andersen ME, Krishnan K. Physiologically based pharmacokinetics and cancer risk assessment. Environ Health Perspect 1994; 102 Suppl. 1: 103–8

    Article  PubMed  Google Scholar 

  26. Clewell III HJ, Andersen ME. Physiologically-based pharmacokinetic modeling and bioactivation of xenobiotics. Toxicol Ind Health 1994; 10: 1–24

    PubMed  CAS  Google Scholar 

  27. Leung HW. Use of physiologically based pharmacokinetic models to establish biological exposure indexes. Am Ind Hyg Assoc J 1992; 53: 369–74

    Article  PubMed  CAS  Google Scholar 

  28. Andersen ME. Physiological modelling of organic compounds. Ann Occup Hyg 1991; 35: 309–21

    Article  PubMed  CAS  Google Scholar 

  29. Nestorov I, Aarons LJ, Arundel PA, et al. Lumping of wholebody physiologically based pharmacokinetic models. J Pharmacokinet Biopharm 1998; 26: 21–46

    PubMed  CAS  Google Scholar 

  30. Baxter LT, Zhu H, Mackensen DG, et al. Biodistribution of monoclonal antibodies: scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res 1995; 55: 4611–22

    PubMed  CAS  Google Scholar 

  31. Baxter LT, Zhu H, Mackensen DG, et al. Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 1994; 54: 1517–28

    PubMed  CAS  Google Scholar 

  32. Tsukamoto Y, Kato Y, Ura M, et al. A physiologically based pharmacokinetic analysis of capecitabine, a triple prodrug of 5-FU, in humans: the mechanism for tumor-selective accumulation of 5-FU. Pharm Res 2001; 18: 1190–202

    Article  PubMed  CAS  Google Scholar 

  33. Clewell III HJ, Gentry PR, Gearhart JM, et al. Development of a physiologically based pharmacokinetic model of isopropanol and its metabolite acetone. Toxicol Sci 2001; 63: 160–72

    Article  PubMed  CAS  Google Scholar 

  34. Fisher JW. Physiologically based pharmacokinetic models for trichloroethylene and its oxidative metabolites. Environ Health Perspect 2000; 108 Suppl. 2: 265–73

    Article  PubMed  CAS  Google Scholar 

  35. Lipscomb JC, Fisher JW, Confer PD, et al. In vitro to in vivo extrapolation for trichloroethylene metabolism in humans. Toxicol Appl Pharmacol 1998; 152: 376–87

    Article  PubMed  CAS  Google Scholar 

  36. Fisher JW, Mahle D, Abbas R. A human physiologically based pharmacokinetic model for trichloroethylene and its metabolites, trichloroacetic acid and free trichloroethanol. Toxicol Appl Pharmacol 1998; 152: 339–59

    Article  PubMed  CAS  Google Scholar 

  37. Clewell III HJ, Andersen ME, Wills RJ, et al. A physiologically based pharmacokinetic model for retinoic acid and its metabolites. J Am Acad Dermatol 1997; 36 (3 Pt 2): S77–85

    Article  PubMed  Google Scholar 

  38. Cong D, Doherty M, Pang KS. A new physiologically based, segregated-flow model to explain route-dependent intestinal metabolism. Drug Metab Dispos 2000; 28: 224–35

    PubMed  CAS  Google Scholar 

  39. Clewell III HJ, Gentry PR, Covington TR, et al. Development of a physiologically based pharmacokinetic model of trichloroethylene and its metabolites for use in risk assessment. Environ Health Perspect 2000; 108 Suppl. 2: 283–305

    Article  PubMed  CAS  Google Scholar 

  40. Blakey GE, Nestorov IA, Arundel PA, et al. Quantitative structure-pharmacokinetics relationships: I. development of a whole-body physiologically based model to characterize changes in pharmacokinetics across a homologous series of barbiturates in the rat. J Pharmacokinet Biopharm 1997; 25: 277–312

    PubMed  CAS  Google Scholar 

  41. Igari Y, Sugiyama Y, Awazu S, et al. Comparative physiologically based pharmacokinetics of hexobarbital, phenobarbital and thiopental in the rat. J Pharmacokinet Biopharm 1982; 10: 53–75

    PubMed  CAS  Google Scholar 

  42. Igari Y, Sugiyama Y, Sawada Y, et al. Prediction of diazepam disposition in the rat and man by a physiologically based pharmacokinetic model. J Pharmacokinet Biopharm 1983; 11: 577–93

    PubMed  CAS  Google Scholar 

  43. Bernareggi A, Rowland M. Physiological modeling of cyclosporine kinetics in rat and man. J Pharmacokinet Biopharm 1991; 19: 21–50

    PubMed  CAS  Google Scholar 

  44. Kawai R, Lemaire M, Steimer J-L, et al. Physiologically based pharmacokinetic study on a cyclosporine derivative, SDZ IMM 125. J Pharmacokinet Biopharm 1994; 22: 327–65

    PubMed  CAS  Google Scholar 

  45. Bjorkman S, Stanski DR, Harashima H, et al. Tissue distribution of fentanyl and alfentanil in the rat cannot be described by a blood flow limited model. J Pharmacokinet Biopharm 1993; 21: 255–79

    PubMed  CAS  Google Scholar 

  46. Bjorkman S, Wada DR, Stanski DR, et al. Comparative pharmacokinetics of fentanyl and alfentanil in rats and humans based on parametric single-tissue models. J Pharmacokinet Biopharm 1994; 22: 381–410

    PubMed  CAS  Google Scholar 

  47. Peng B, Andrews J, Nestorov I, et al. Tissue distribution and physiologically based pharmacokinetics of antisense phosphorothioate oligonucleotide ISIS 1082 in rat. Antisense Nucleic Acid Drug Dev 2001; 11: 15–27

    Article  PubMed  CAS  Google Scholar 

  48. Gerlovski LE, Jain RK. Physiologically based pharmacokinetic modeling: principles and applications. J Pharm Sci 1983; 72: 1103–29

    Article  Google Scholar 

  49. Sato H, Sugiyama Y, Sawada Y, et al. Physiologically based pharmacokinetics of radioiodinated human beta-endorphin in rats: an application of the capillary membrane-limited model. Drug Metab Dispos 1987; 15: 540–50

    PubMed  CAS  Google Scholar 

  50. Tanaka C, Kawai R, Rowland M. Physiologically based pharmacokinetics of cyclosporine A: reevaluation of dosenonlinear kinetics in rats. J Pharmacokinet Biopharm 1999; 27: 597–623

    PubMed  CAS  Google Scholar 

  51. Kawai R, Mathew D, Tanaka C, et al. Physiologically based pharmacokinetics of cyclosporine A: extension to tissue distribution kinetics in rats and scale-up to human. J Pharmacol Exp Ther 1998; 287: 457–68

    PubMed  CAS  Google Scholar 

  52. Naritomi Y, Terashita S, Kimura S, et al. Prediction of human hepatic clearance from in vivo animal experiments and in vitro metabolic studies with liver microsomes from animals and humans. Drug Metab Dispos 2001; 29: 1316–24

    PubMed  CAS  Google Scholar 

  53. Roberts MS, Anissimov YG. Modeling of hepatic elimination and organ distribution kinetics with the extended convection-dispersion model. J Pharmacokinet Biopharm 1999; 27: 343–82

    PubMed  CAS  Google Scholar 

  54. Chou CH, Aarons L, Rowland M. Optimal experimental design for precise estimation of the parameters of the axial dispersion model of hepatic elimination. J Pharmacokinet Biopharm 1998; 26: 595–615

    PubMed  CAS  Google Scholar 

  55. Hisaka A, Sugiyama Y. Analysis of nonlinear and nonsteady state hepatic extraction with the dispersion model using the finite difference method. J Pharmacokinet Biopharm 1998; 26: 495–519

    PubMed  CAS  Google Scholar 

  56. Weiss M. Pharmacokinetics in organs of the intact body: model validation and reduction. Eur J Pharm Sci 1999; 7: 119–27

    Article  PubMed  CAS  Google Scholar 

  57. Oliver RE, Heatherington AC, Jones AF, et al. A physiologically based pharmacokinetic model incorporating dispersion principles to describe solute distribution in the perfused rat hindlimb preparation. J Pharmacokinet Biopharm 1997; 25: 389–412

    PubMed  CAS  Google Scholar 

  58. Roy A, Weisel CP, Lioy PJ, et al. A distributed parameter physiologically-based pharmacokinetic model for dermal and inhalation exposure to volatile organic compounds. Risk Anal 1996; 16: 147–60

    Article  PubMed  CAS  Google Scholar 

  59. Frederick CB, Bush ML, Lomax LG, et al. Application of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry extrapolation of acidic vapors in the upper airways. Toxicol Appl Pharmacol 1998; 152: 211–31

    Article  PubMed  CAS  Google Scholar 

  60. Oliver RE, Jones AF, Rowland M. A whole-body physiologically based pharmacokinetic model incorporating dispersion concepts: short and long time characteristics. J Pharmacokinet Biopharm 2001; 28: 27–55

    CAS  Google Scholar 

  61. Shelley ML, Harris RL, Boehlecke BA. A mathematical model of bronchial absorption of vapors in the human lung and its significance in pharmacokinetic modeling. SAR QSAR Environ Res 1996; 5: 221–53

    Article  PubMed  CAS  Google Scholar 

  62. Martonen TB. Mathematical model for the selective deposition of inhaled pharmaceuticals. J Pharm Sci 1993; 82: 1191–9

    Article  PubMed  CAS  Google Scholar 

  63. Morris JB, Hassett DN, Blanchard KT. A physiologically based pharmacokinetic model for nasal uptake and metabolism of nonreactive vapors. Toxicol Appl Pharmacol 1993; 123: 120–9

    Article  PubMed  CAS  Google Scholar 

  64. Kiriyama A, Nishiura T, Yamaji H, et al. Physiologically based pharmacokinetics of KNI-272, a tripeptide HIV-1 protease inhibitor. Biopharm Drug Dispos 1999; 20: 199–205

    Article  PubMed  CAS  Google Scholar 

  65. Cox Jr LA. Reassessing benzene risks using internal doses and Monte-Carlo uncertainty analysis. Environ Health Perspect 1996; 104 Suppl. 6: 1413–29

    Article  PubMed  Google Scholar 

  66. Travis CC, Quillen JL, Arms AD. Pharmacokinetics of benzene. Toxicol Appl Pharmacol 1990; 102: 400–20

    Article  PubMed  CAS  Google Scholar 

  67. Tsuji A, Yoshikawa T, Nishide K, et al. Physiologically based pharmacokinetic model for beta-lactam antibiotics I: tissue distribution and elimination in rats. J Pharm Sci 1983; 72: 1239–52

    Article  PubMed  CAS  Google Scholar 

  68. Brown RP, Delp MD, Lindstedt SL, et al. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 1997; 13: 407–84

    PubMed  CAS  Google Scholar 

  69. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res 1993; 10: 1093–5

    Article  PubMed  CAS  Google Scholar 

  70. Kuwahira I, Gonzales NC, Heisler N, et al. Regional blood flow in conscious resting rats determined by microsphere distribution. J Appl Physiol 1993; 74: 203–10

    PubMed  CAS  Google Scholar 

  71. Leggert RW, Williams LR. Suggested reference values for regional blood volumes in humans. Health Phys 1989; 60: 139–54

    Article  Google Scholar 

  72. Sato A. Confounding factors in biological monitoring of exposure to organic solvents. Int Arch Occup Environ Health 1993; 65 (1 Suppl.): S61–7

    Article  PubMed  CAS  Google Scholar 

  73. Gargas ML, Tyler TR, Sweeney LM, et al. A toxicokinetic study of inhaled ethylene glycol monomethyl ether (2-ME) and validation of a physiologically based pharmacokinetic model for the pregnant rat and human. Toxicol Appl Pharmacol 2000; 165: 53–62

    Article  PubMed  CAS  Google Scholar 

  74. Luecke RH, Wosilait WD, Pearce BA, et al. A physiologically based pharmacokinetic computer model for human pregnancy. Teratology 1994; 4: 90–103

    Article  Google Scholar 

  75. Fisher J, Mahle D, Bankston L, et al. Lactational transfer of volatile chemicals in breast milk. Am Ind Hyg Assoc J 1997; 58: 425–31

    Article  PubMed  CAS  Google Scholar 

  76. Byczkowski JZ, Fisher JW. Lactational transfer of tetrachloroethylene in rats. Risk Anal 1994; 14: 339–49

    Article  PubMed  CAS  Google Scholar 

  77. Byczkowski JZ, Kinkead ER, Leahy HF, et al. Computer simulation of the lactational transfer of tetrachloroethylene in rats using a physiologically based model. Toxicol Appl Pharmacol 1994; 125: 228–36

    Article  PubMed  CAS  Google Scholar 

  78. Kawahara M, Sakata A, Miyashita T, et al. Physiologically based pharmacokinetics of digoxin in mdr1a knockout mice. J Pharm Sci 1999; 88: 1281–7

    Article  PubMed  CAS  Google Scholar 

  79. Sasaki Y, Wagner HN. Measurement of the distribution of cardiac output in unanesthetized rats. J Appl Physiol 1971; 30: 879–84

    PubMed  CAS  Google Scholar 

  80. Wada DR, Bjorkman S, Ebling WF, et al. Computer simulation of the effects of alterations in blood flows and body composition on thiopental pharmacokinetics in humans. Anaesthesiology 1997; 87: 884–99

    Article  CAS  Google Scholar 

  81. Nestorov I. Modelling and simulation of variability and uncertainty in toxicokinetics and pharmacokinetics. Toxicol Lett 2001; 120: 411–20

    Article  PubMed  CAS  Google Scholar 

  82. Nestorov IA, Aarons LJ, Rowland M. Physiologically-based pharmacokinetic modelling of a homologous series of barbiturates in the rat: a sensitivity analysis. J Pharmacokin Biopharm 1997; 25: 413–47

    CAS  Google Scholar 

  83. Nestorov I. A structural approach to sensitivity analysis of physiologically based pharmacokinetic models. J Pharmacokinet Biopharm 1999; 27: 577–97

    PubMed  CAS  Google Scholar 

  84. Laughlin MH, Armstrong RB. Adrenoreceptor effects on rat muscle blood flow during treadmill exercise. J Appl Physiol 1987; 62: 1465–72

    PubMed  CAS  Google Scholar 

  85. Li S-G, Randall DC, Brown DR. Roles of cardiac output and peripheral resistance in mediating blood pressure response to stress in rats. Am J Physiol 1998; 274: R1065–9

    PubMed  CAS  Google Scholar 

  86. Calder, WA. Size, function, and life history. London: Harvard University Press, England, 1984

    Google Scholar 

  87. Delp MD, Manning RO, Bruckner JV, et al. Distribution of cardiac output during diurnal changes of activity in rats. Am J Physiol 1991; 261 (5 Pt 2): H1487–93

    PubMed  CAS  Google Scholar 

  88. Bukowski J, Korn L, Wartenberg D. Correlated inputs in quantitative risk assessment: the effects of distributional shape. Risk Anal 1995; 15: 215–9

    Article  Google Scholar 

  89. Jonsson F, Bois FY, Johanson G. Assessing the reliability of PBPK models using data from methyl chloride-exposed, non conjugating human subjects. Arch Toxicol 2001; 75: 189–99

    Article  PubMed  CAS  Google Scholar 

  90. Jonsson F, Johanson G. A Bayesian analysis of the influence of GSTT1 polymorphism on the cancer risk estimate for dichloromethane. Toxicol Appl Pharmacol 2001; 174: 99–112

    Article  PubMed  CAS  Google Scholar 

  91. Jonsson F, Johanson G. Bayesian estimation of variability in adipose tissue blood flow in man by physiologically based pharmacokinetic modeling of inhalation exposure to toluene. Toxicology 2001; 157: 177–93

    Article  PubMed  CAS  Google Scholar 

  92. Jonsson F, Bois F, Johanson G. Physiologically based pharmacokinetic modeling of inhalation exposure of humans to dichloromethane during moderate to heavy exercise. Toxicol Sci 2001; 59: 209–18

    Article  PubMed  CAS  Google Scholar 

  93. Lin JH, Sugiyama Y, Awazu S, et al. In vitro and in vivo evaluation of the tissue-to-blood partition coefficient for physiological pharmacokinetic models. J Pharmacokinet Biopharm 1982; 10: 637–47

    PubMed  CAS  Google Scholar 

  94. Roth WL, Weber LW, Rozman KK. Incorporation of first-order uptake rate constants from simple mammillary models into blood-flow limited physiological pharmacokinetic models via extraction efficiencies. Pharm Res 1995; 12: 263–9

    Article  PubMed  CAS  Google Scholar 

  95. Hwang IY, Reardon KF, Tessari JD, et al. A gas-liquid system for enzyme kinetic studies of volatile organic chemicals: determination of enzyme kinetic constants and partition coefficients of trichloroethylene. Drug Metab Dispos 1996; 24: 377–82

    PubMed  CAS  Google Scholar 

  96. DeJongh J, Blaauboer BJ. Simulation of toluene kinetics in the rat by a physiologically based pharmacokinetic model with application of biotransformation parameters derived independently in vitro and in vivo. Fundam Appl Toxicol 1996; 32: 260–8

    Article  PubMed  CAS  Google Scholar 

  97. Ballard P, Leahy DE, Rowland M. Prediction of in vivo tissue distribution for in vitro data 1: experiments with markers of aqueous spaces. Pharm Res 2000; 17: 321–6

    Article  Google Scholar 

  98. Bogaards JJ, Freidig AP, van Bladeren PJ. Prediction of isoprene diepoxide levels in vivo in mouse, rat and man using enzyme kinetic data in vitro and physiologically-based pharmacokinetic modelling. Chem Biol Interact 2001; 138: 247–65

    Article  PubMed  CAS  Google Scholar 

  99. Cole CE, Tran HT, Schlosser PM. Physiologically based pharmacokinetic modeling of benzene metabolism in mice through extrapolation from in vitro to in vivo. J Toxicol Environ Health A 2001; 62: 439–65

    Article  PubMed  CAS  Google Scholar 

  100. Bogaards JJ, Hissink EM, Briggs M, et al. Prediction of interindividual variation in drug plasma levels in vivo from individual enzyme kinetic data and physiologically based pharmacokinetic modeling. Eur J Pharm Sci 2000; 12: 117–24

    Article  PubMed  CAS  Google Scholar 

  101. Hissink AM, Wormhoudt LW, Sherratt PJ, et al. A physiologically-based pharmacokinetic (PB-PK) model for ethylene dibromide: relevance of extrahepatic metabolism. Food Chem Toxicol 2000; 38: 707–16

    Article  PubMed  CAS  Google Scholar 

  102. Quick DJ, Shuler ML. Use of in vitro data for construction of a physiologically based pharmacokinetic model for naphthalene in rats and mice to probe species differences. Biotechnol Prog 1999; 15: 540–55

    Article  PubMed  CAS  Google Scholar 

  103. Ploemen JP, Wormhoudt LW, Haenen GR, et al. The use of human in vitro metabolic parameters to explore the risk assessment of hazardous compounds: the case of ethylene dibromide. Toxicol Appl Pharmacol 1997; 143: 56–69

    Article  PubMed  CAS  Google Scholar 

  104. Clewell III HJ. Coupling of computer modeling with in vitro methodologies to reduce animal usage in toxicity testing. Toxicol Lett 1993; 68: 101–17

    Article  PubMed  CAS  Google Scholar 

  105. Nugent LJ, Jain RK. Extravascular diffusion in normal and neoplastic tissues. Cancer Res 1984; 44: 238–44

    PubMed  CAS  Google Scholar 

  106. Gerlowski LE, Jain RK. Microvascular permeability of normal and neoplastic tissues. Microvasc Res 1986; 31: 288–305

    Article  PubMed  CAS  Google Scholar 

  107. Rippe R, Haraldsson B. Fluid and protein fluxes across small and large pores in the microvasculature: application of two pore equations. Acta Physiol Scand 1987; 131: 411–28

    Article  PubMed  CAS  Google Scholar 

  108. Pastino GM, Conolly RB. Application of a physiologically based pharmacokinetic model to estimate the bioavailability of ethanol in male rats: distinction between gastric and hepatic pathways of metabolic clearance. Toxicol Sci 2000; 55: 256–65

    Article  PubMed  CAS  Google Scholar 

  109. Lilly PD, Andersen ME, Ross TM, et al. A physiologically based pharmacokinetic description of the oral uptake, tissue dosimetry, and rates of metabolism of bromodichloromethane in the male rat. Toxicol Appl Pharmacol 1998; 150: 205–17

    Article  PubMed  CAS  Google Scholar 

  110. Semino G, Lilly P, Andersen ME. A pharmacokinetic model describing pulsatile uptake of orally-administered carbon tetrachloride. Toxicology 1997; 117: 25–33

    Article  PubMed  CAS  Google Scholar 

  111. Carlton LD, Pollack GM, Brouwer KL. Physiologic pharmacokinetic modeling of gastrointestinal blood flow as a ratelimiting step in the oral absorption of digoxin: implications for patients with congestive heart failure receiving epoprostenol. J Pharm Sci 1996; 85: 473–7

    Article  PubMed  CAS  Google Scholar 

  112. Polak J, Os’Flaherty EJ, Freeman GB, et al. Evaluating lead bioavailability data by means of a physiologically based lead kinetic model. Fundam Appl Toxicol 1996; 29: 63–70

    Article  PubMed  CAS  Google Scholar 

  113. Frederick CB, Potter DW, Chang-Mateu MI, et al. A physiologically based pharmacokinetic and pharmacodynamic model to describe the oral dosing of rats with ethyl acrylate and its implications for risk assessment. Toxicol Appl Pharmacol 1992; 114: 246–60

    Article  PubMed  CAS  Google Scholar 

  114. Staats DA, Fisher JW, Connolly RB. Gastrointestinal absorption of xenobiotics in physiologically based pharmacokinetic models: a two-compartment description. Drug Metab Dispos 1991; 19: 144–8

    PubMed  CAS  Google Scholar 

  115. Clements JA, Nimmo WS, Heading RC, et al. A physiologically-based pharmacokinetic model for absorption of oral paracetamol in man [abstract]. J Pharm Pharmacol 1978; 30 Suppl.: 60P

    Article  PubMed  CAS  Google Scholar 

  116. Willems BA, Melnick RL, Kohn MC, et al. A physiologically based pharmacokinetic model for inhalation and intravenous administration of naphthalene in rats and mice. Toxicol Appl Pharmacol 2001; 176: 81–91

    Article  PubMed  CAS  Google Scholar 

  117. Thrall KD, Vucelick ME, Gies RA, et al. Comparative metabolism of carbon tetrachloride in rats, mice, and hamsters using gas uptake and PBPK modeling. J Toxicol Environ Health A 2000; 60: 531–48

    Article  PubMed  CAS  Google Scholar 

  118. Bogen KT, McKone TE. Linking indoor air and pharmacokinetic models to assess tetrachloroethylene risk. Risk Anal 1988; 8: 509–20

    Article  PubMed  CAS  Google Scholar 

  119. Poet TS, Corley RA, Thrall KD, et al. Assessment of the percutaneous absorption of trichloroethylene in rats and humans using MS/MS real-time breath analysis and physiologically based pharmacokinetic modeling. Toxicol Sci 2000; 56: 61–72

    Article  PubMed  CAS  Google Scholar 

  120. Thrall KD, Poet TS, Corley RA, et al. A real-time in-vivo method for studying the percutaneous absorption of volatile chemicals. Int J Occup Environ Health 2000; 6: 96–103

    PubMed  CAS  Google Scholar 

  121. Corley RA, Gordon SM, Wallace LA. Physiologically based pharmacokinetic modeling of the temperature-dependent dermal absorption of chloroform by humans following bath water exposures. Toxicol Sci 2000; 53: 13–23

    Article  PubMed  CAS  Google Scholar 

  122. Jepson GW, McDougal JN. Predicting vehicle effects on the dermal absorption of halogenated methanes using physiologically based modeling. Toxicol Sci 1999; 48: 180–8

    Article  PubMed  CAS  Google Scholar 

  123. Loizou GD, Jones K, Akrill P, et al. Estimation of the dermal absorption of m-xylene vapor in humans using breath sampling and physiologically based pharmacokinetic analysis. Toxicol Sci 1999; 48: 170–9

    Article  PubMed  CAS  Google Scholar 

  124. Bookout Jr RL, Quinn DW, McDougal JN. Parallel dermal subcompartments for modeling chemical absorption. SAR QSAR Environ Res 1997; 7: 259–79

    Article  PubMed  CAS  Google Scholar 

  125. Macpherson SE, Barton CN, Bronaugh RL. Use of in vitro skin penetration data and a physiologically based model to predict in vivo blood levels of benzoic acid. Toxicol Appl Pharmacol 1996; 140: 436–43

    Article  PubMed  CAS  Google Scholar 

  126. Mattie DR, Grabau JH, McDougal JN. Significance of the dermal route of exposure to risk assessment. Risk Anal 1994; 14: 277–84

    Article  PubMed  CAS  Google Scholar 

  127. McDougal JN, Jepson GW, Clewell III HJ, et al. Dermal absorption of organic chemical vapors in rats and humans. Fundam Appl Toxicol 1990; 14: 299–308

    Article  PubMed  CAS  Google Scholar 

  128. Yu LX, Lipka E, Crison JR, et al. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Adv Drug Del Rev 1996; 19: 359–76

    Article  CAS  Google Scholar 

  129. Yu LX, Crison JR, Amidon GL. Compartmental transit and dispersion model analysis of small intestinal transit flow in humans. Int J Pharm 1996; 140: 111–8

    Article  CAS  Google Scholar 

  130. Yu LX, Amidon GL. Characterization of small intestinal transit time distribution in humans. Int J Pharm 1998; 171: 157–63

    Article  CAS  Google Scholar 

  131. Yu LX, Amidon GL. A compartmental absorption and transit model for estimating oral drug absorption. Int J Pharm 1999; 186: 119–25

    Article  PubMed  CAS  Google Scholar 

  132. Yu LX. An integrated model for determining causes of poor oral drug absorption. Pharm Res 1999; 16: 1883–7

    Article  PubMed  CAS  Google Scholar 

  133. Williams LR, Leggert RW. Reference values for resting blood flow to organs of man. Clin Phys Physiol Meas 1989; 10: 187–217

    Article  PubMed  CAS  Google Scholar 

  134. Holt JP, Rhode EA, Kines H. Ventricular volumes and body weight in mammals. Am J Physiol 1968; 215: 704–15

    PubMed  CAS  Google Scholar 

  135. White L, Haines H, Adams T. Cardiac output related to body weight in small mammals. Comp Biochem Physiol 1968; 27: 559–65

    Article  Google Scholar 

  136. Stahl WR. Scaling of respiratory variables in mammals. J Appl Physiol 1967; 22: 453–60

    PubMed  CAS  Google Scholar 

  137. Watanabe KH, Bois FY. Interspecies extrapolation of physiological pharmacokinetic parameter distributions. Risk Anal 1996; 16: 741–54

    Article  PubMed  CAS  Google Scholar 

  138. Ebling WF, Wada DR, Stanski DR. From piecewise to full pharmacokinetic modeling: applied to thiopental disposition in the rat. J Pharmacokinet Biopharm 1994; 22: 259–92

    PubMed  CAS  Google Scholar 

  139. Carpenter RL. Aerosol deposition modeling using ACSL. Drug Chem Toxicol 1999; 22: 73–90

    Article  PubMed  CAS  Google Scholar 

  140. Thomas RS, Lytle WE, Keefe TJ, et al. Incorporating Monte Carlo simulation into physiologically based pharmacokinetic models using advanced continuous simulation language (AC-SL): a computational method. Fundam Appl Toxicol 1996; 31: 19–28

    Article  PubMed  CAS  Google Scholar 

  141. Evans MV, Crank WD, Yang HM, et al. Applications of sensitivity analysis to a physiologically based pharmacokinetic model for carbon tetrachloride in rats. Toxicol Appl Pharmacol 1994; 128: 36–44

    Article  PubMed  CAS  Google Scholar 

  142. Ball R, Schwartz SL. CMATRIX: software for physiologically based pharmacokinetic modeling using a symbolic matrix representation system. Comput Biol Med 1994; 24: 269–76

    Article  PubMed  CAS  Google Scholar 

  143. Krishnan K, Haddad S, Pelekis M. A simple index for representing the discrepancy between simulations of physiological pharmacokinetic models and experimental data. Toxicol Ind Health 1995; 11: 413–22

    PubMed  CAS  Google Scholar 

  144. Li H, Watanabe K, Auslander D, et al. Model parameter estimation and analysis: understanding parametric structure. Ann Biomed Eng 1994; 22: 97–111

    Article  PubMed  CAS  Google Scholar 

  145. Woodruff TJ, Bois FY, Auslander D, et al. Structure and parameterization of pharmacokinetic models: their impact on model predictions. Risk Anal 1992; 12: 189–201

    Article  PubMed  CAS  Google Scholar 

  146. Gallo JM, Lam FC, Perrier DG. Area method for the estimation of partition coefficients for physiological pharmacokinetic models. J Pharmacokinet Biopharm 1987; 15: 271–80

    PubMed  CAS  Google Scholar 

  147. Verotta D, Sheiner LB, Ebling WF, et al. A semiparametric approach to physiological flow models. J Pharmacokinet Bi-opharm 1989; 17: 463–91

    CAS  Google Scholar 

  148. Chen HSG, Gross JF. Estimation of tissue to plasma partition coefficients used in physiological pharmacokinetic models. J Pharmacokinet Biopharm 1979; 7: 117–25

    PubMed  CAS  Google Scholar 

  149. Slob W, Janssen PH, van den Hof JM. Structural identifiability of PBPK models: practical consequences for modeling strategies and study designs. Crit Rev Toxicol 1997; 27: 261–72

    Article  PubMed  CAS  Google Scholar 

  150. Pleil JD, Lindstrom AB. Sample timing and mathematical considerations for modeling breath elimination of volatile organic compounds. Risk Anal 1998; 18: 585–602

    Article  PubMed  CAS  Google Scholar 

  151. Isukapalli SS, Roy A, Georgopoulos PG. Efficient sensitivity/uncertainty analysis using the combined stochastic response surface method and automated differentiation: application to environmental and biological systems. Risk Anal 2000; 20: 591–602

    Article  PubMed  CAS  Google Scholar 

  152. Clewell III HJ, Lee TS, Carpenter RL. Sensitivity of physiologically based pharmacokinetic models to variation in model parameters: methylene chloride. Risk Anal 1994; 14: 521–31

    Article  PubMed  Google Scholar 

  153. Clewell III HJ, Jarnot BM. Incorporation of pharmacokinetics in noncancer risk assessment: example with chloropentafluo-robenzene. Risk Anal 1994; 14: 265–76

    Article  PubMed  Google Scholar 

  154. Hetrick DM, Jarabek AM, Travis CC. Sensitivity analysis for physiologically based pharmacokinetic models. J Pharmacokinet Biopharm 1991; 19: 1–20

    PubMed  CAS  Google Scholar 

  155. Varkonyi P, Bruckner JV, Gallo JM. Effect of parameter variability on physiologically-based pharmacokinetic model predicted drug concentrations. J Pharm Sci 1995; 84: 381–4

    Article  PubMed  CAS  Google Scholar 

  156. Spear RC, Bois FY. Parameter variability and the interpretation of physiologically based pharmacokinetic modeling results. Environ Health Perspect 1994; 102 Suppl. 11: 61–6

    Article  PubMed  CAS  Google Scholar 

  157. Spear RC, Bois FY, Woodruff T, et al. Modeling benzene pharmacokinetics across three sets of animal data: parametric sensitivity and risk implications. Risk Anal 1991; 11: 641–54

    Article  PubMed  CAS  Google Scholar 

  158. Farrar D, Allen B, Crump K, et al. Evaluation of uncertainty in input parameters to pharmacokinetic models and the resulting uncertainty in output. Toxicol Lett 1989; 49: 371–85

    Article  PubMed  CAS  Google Scholar 

  159. Krewski D, Wang Y, Bartlett S, et al. Uncertainty, variability, and sensitivity analysis in physiological pharmacokinetic models. J Biopharm Stat 1995; 5: 245–71

    Article  PubMed  CAS  Google Scholar 

  160. Edler L. Uncertainty in biomonitoring and kinetic modeling. Ann N Y Acad Sci 1999; 895: 80–100

    Article  PubMed  CAS  Google Scholar 

  161. Jang JY, Droz PO, Chung HK. Uncertainties in physiologically based pharmacokinetic models caused by several input parameters. Int Arch Occup Environ Health 1999; 72: 247–54

    Article  PubMed  CAS  Google Scholar 

  162. Isukapalli SS, Roy A, Georgopoulos PG. Stochastic response surface methods (SRSMs) for uncertainty propagation: application to environmental and biological systems. Risk Anal 1998; 18: 351–63

    Article  PubMed  CAS  Google Scholar 

  163. Allen BC, Covington TR, Clewell HJ. Investigation of the impact of pharmacokinetic variability and uncertainty on risks predicted with a pharmacokinetic model for chloroform. Toxicology 1996; 111: 289–303

    Article  PubMed  CAS  Google Scholar 

  164. Hattis D, White P, Koch P. Uncertainties in pharmacokinetic modeling for perchloroethylene: II. comparison of model predictions with data for a variety of different parameters. Risk Anal 1993; 13: 599–610

    Article  PubMed  CAS  Google Scholar 

  165. Gearhart JM, Mahle DA, Greene RJ, et al. Variability of physiologically based pharmacokinetic (PBPK) model parameters and their effects on PBPK model predictions in a risk assessment for perchloroethylene (PCE). Toxicol Lett 1993; 68: 131–44

    Article  PubMed  CAS  Google Scholar 

  166. Hattis D, White P, Marmorstein L, et al. Uncertainties in pharmacokinetic modeling for perchloroethylene: I. comparison of model structure, parameters, and predictions for lowdose metabolism rates for models derived by different authors. Risk Anal 1990; 10: 449–58

    Article  PubMed  CAS  Google Scholar 

  167. Licata AC, Dekant W, Smith CE, et al. A physiologically based pharmacokinetic model for methyl tert-butyl ether in humans: implementing sensitivity and variability analyses. Toxicol Sci 2001; 62: 191–204

    Article  PubMed  CAS  Google Scholar 

  168. Clewell HJ, Gearhart JM, Gentry PR, et al. Evaluation of the uncertainty in an oral reference dose for methylmercury due to interindividual variability in pharmacokinetics. Risk Anal 1999; 19: 547–58

    PubMed  CAS  Google Scholar 

  169. Evans MV, Andersen ME. Sensitivity analysis of a physiological model for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD): assessing the impact of specific model parameters on sequestration in liver and fat in the rat. Toxicol Sci 2000; 54: 71–80

    Article  PubMed  CAS  Google Scholar 

  170. Beck BD, Mattuck RL, Bowers TS, et al. The development of a stochastic physiologically-based pharmacokinetic model for lead. Sci Total Environ 2001; 274: 15–9

    Article  PubMed  CAS  Google Scholar 

  171. Sweeney LM, Tyler TR, Kirman CR, et al. Proposed occupational exposure limits for select ethylene glycol ethers using PBPK models and Monte Carlo simulations. Toxicol Sci 2001; 62: 124–39

    Article  PubMed  CAS  Google Scholar 

  172. Thomas RS, Bigelow PL, Keefe TJ, et al. Variability in biological exposure indices using physiologically based pharmacokinetic modeling and Monte Carlo simulation. Am Ind Hyg Assoc J 1996; 57: 23–32

    Article  PubMed  CAS  Google Scholar 

  173. Cronin IV WJ, Oswald EJ, Shelley ML, et al. A trichloroethylene risk assessment using a Monte Carlo analysis of parameter uncertainty in conjunction with physiologically-based pharmacokinetic modeling. Risk Anal 1995; 15: 555–65

    Article  PubMed  Google Scholar 

  174. Droz PO. Quantification of biological variability. Ann Occup Hyg 1992; 36: 295–306

    Article  PubMed  CAS  Google Scholar 

  175. Mordenti J. Man versus beast: pharmacokinetic scaling in mammals. J Pharm Sci 1986; 75: 1028–40

    Article  PubMed  CAS  Google Scholar 

  176. Ings RMJ. Interspecies scaling and comparisons in drug development and toxicokinetics. Xenobiotica 1990; 11: 1201–31

    Article  Google Scholar 

  177. Ruelius HW. Extrapolation from animals to man: predictions, pitfalls and perspectives. Xenobiotica 1987; 17: 255–65

    Article  PubMed  CAS  Google Scholar 

  178. Sawada Y, Harashima H, Hanano M, et al. Prediction of the plasma concentration time courses of various drugs in humans based on data from rats. J Pharmacobiodyn 1985; 8: 757–66

    Article  PubMed  CAS  Google Scholar 

  179. Fennell TR, Brown CD. A physiologically based pharmacokinetic model for ethylene oxide in mouse, rat, and human. Toxicol Appl Pharmacol 2001; 173: 161–75

    Article  PubMed  CAS  Google Scholar 

  180. Young JF, Wosilait WD, Luecke RH. Analysis of methylmercury disposition in humans utilizing a PBPK model and animal pharmacokinetic data. J Toxicol Environ Health A 2001; 63: 19–52

    Article  PubMed  CAS  Google Scholar 

  181. Ploeger B, Mensinga T, Sips A, et al. A human physiologicallybased model for glycyrrhzic acid, a compound subject to presystemic metabolism and enterohepatic cycling. Pharm Res 2000; 17: 1516–25

    Article  PubMed  CAS  Google Scholar 

  182. Wang X, Santostefano MJ, DeVito MJ, et al. Extrapolation of a PBPK model for dioxins across dosage regimen, gender, strain, and species. Toxicol Sci 2000; 56: 49–60

    Article  PubMed  CAS  Google Scholar 

  183. Chow HH. A physiologically based pharmacokinetic model of zidovudine (AZT) in the mouse: model development and scale-up to humans. J Pharm Sci 1997; 86: 1223–8

    Article  PubMed  CAS  Google Scholar 

  184. Bonate PL, Swann A, Silverman PB. Preliminary physiologically based pharmacokinetic model for cocaine in the rat: model development and scale-up to humans. J Pharm Sci 1996; 85: 878–83

    Article  PubMed  CAS  Google Scholar 

  185. Dallas CE, Chen XM, Muralidhara S, et al. Physiologically based pharmacokinetic model useful in prediction of the influence of species, dose, and exposure route on perchloroethylene pharmacokinetics. J Toxicol Environ Health 1995; 44: 301–17

    Article  PubMed  CAS  Google Scholar 

  186. Hildebrand M. Inter-species extrapolation of pharmacokinetic data of three prostacyclin-mimetics. Prostaglandins 1994; 48: 297–312

    Article  PubMed  CAS  Google Scholar 

  187. Horton VL, Higuchi MA, Rickert DE. Physiologically based pharmacokinetic model for methanol in rats, monkeys, and humans. Toxicol Appl Pharmacol 1992; 117: 26–36

    Article  PubMed  CAS  Google Scholar 

  188. Nakashima E, Yokogawa K, Ichimura F, et al. A physiologically based pharmacokinetic model for biperiden in animals and its extrapolation to humans. Chem Pharm Bull (Tokyo) 1987; 35: 718–25

    Article  CAS  Google Scholar 

  189. Tsuji A, Nishide K, Minami H, et al. Physiologically based pharmacokinetic model for cefazolin in rabbits and its preliminary extrapolation to man. Drug Metab Dispos 1985; 13: 729–39

    PubMed  CAS  Google Scholar 

  190. Harrison LI, Gibaldi M. Physiologically based pharmacokinetic model for digoxin disposition in dogs and its preliminary application to humans. J Pharm Sci 1977; 66: 1679–83

    Article  PubMed  CAS  Google Scholar 

  191. Mann S, Droz PO, Vahter M. A physiologically based pharmacokinetic model for arsenic exposure: II. validation and application in humans. Toxicol Appl Pharmacol 1996; 140: 471–86

    Article  PubMed  CAS  Google Scholar 

  192. Poulin P, Krishnan K. A tissue composition-based algorithm for predicting tissue: air partition coefficients of organic chemicals. Toxicol Appl Pharmacol 1996; 136: 126–30

    Article  PubMed  CAS  Google Scholar 

  193. Parham FM, Kohn MC, Matthews HB, et al. Using structural information to create physiologically based pharmacokinetic models for all polychlorinated biphenyls: I. issue: blood partition coefficients. Toxicol Appl Pharmacol 1997; 144: 340–7

    Article  PubMed  CAS  Google Scholar 

  194. Pelekis M, Poulin P, Krishnan K. An approach for incorporating tissue composition data into physiologically based pharmaco-kinetic models. Toxicol Ind Health 1995; 11: 511–22

    PubMed  CAS  Google Scholar 

  195. Nestorov I, Aarons L, Rowland M. Quantitative structurepharmacokinetics relationships: II. mechanistically based model for the relationship between the tissue distribution parameters and the lipophilicity of the compounds. J Pharmacokinet Biopharm 1998; 26: 521–46

    PubMed  CAS  Google Scholar 

  196. Poulin P, Krishnan K. Molecular structure-based prediction of the partition coefficients of organic chemicals for physiological pharmacokinetic models. Toxicol Meth 1996; 6: 117–37

    Article  CAS  Google Scholar 

  197. Balaz S, Lukacova V. A model-based dependence of the human tissue/blood partition coefficients of chemicals on lipophilicity and tissue composition. QSAR 1999; 18: 361–8

    CAS  Google Scholar 

  198. Poulin P, Theil FP. Prediction of pharmacokinetics prior to in vivo studies: 1. mechanism-based prediction of volume of distribution. J Pharm Sci 2002; 91: 129–56

    Article  PubMed  CAS  Google Scholar 

  199. Poulin P, Schoenlein K, Theil FP. Prediction of adipose tissue: plasma partition coefficients for structurally unrelated drugs. J Pharm Sci 2001; 90: 436–47

    Article  PubMed  CAS  Google Scholar 

  200. Poulin P, Krishnan K. Molecular structure-based prediction of human abdominal skin permeability coefficients for several organic compounds. J Toxicol Environ Health A 2001; 62: 143–59

    Article  PubMed  CAS  Google Scholar 

  201. DeJongh J, Verhaar HJ, Hermens JL. A quantitative propertyproperty relationship (QPPR) approach to estimate in vitro tissue-blood partition coefficients of organic chemicals in rats and humans. Arch Toxicol 1997; 72: 17–25

    Article  PubMed  CAS  Google Scholar 

  202. Fouchecourt MO, Beliveau M, Krishnan K. Quantitative structure-pharmacokinetic relationship modelling. Sci Total Environ 2001; 274: 125–35

    Article  PubMed  CAS  Google Scholar 

  203. Kim CS, Sandberg JA, Slikker W, et al. Quantitative exposure assessment: application of physiologically-based pharmacokinetic (PBPK) modeling of low-dose, long-term exposures of organic acid toxicant in the brain. Environ Toxicol Pharmacol 2001; 9: 153–60

    Article  PubMed  CAS  Google Scholar 

  204. Meulenberg CJ, Vijveberg HPM. Empirical relations predicting human and rat tissue: air partition coefficients of volatile organic compounds. Toxicol Appl Pharmacol 2000; 165: 206–16

    Article  PubMed  CAS  Google Scholar 

  205. Parham FM, Portier CJ. Using structural information to create physiologically based pharmacokinetic models for all polychlorinated biphenyls: II. rates of metabolism. Toxicol Appl Pharmacol 1998; 151: 110–6

    Article  PubMed  CAS  Google Scholar 

  206. Ishizaki J, Yokogawa K, Nakashima E, et al. Relationships between the hepatic intrinsic clearance or blood cell-plasma partition coefficient in the rabbit and the lipophilicity of basic drugs. J Pharm Pharmacol 1997; 49: 768–72

    Article  PubMed  CAS  Google Scholar 

  207. Ishizaki J, Yokogawa K, Nakashima E, et al. Prediction of changes in the clinical pharmacokinetics of basic drugs on the basis of octanol-water partition coefficients. J Pharm Pharmacol 1997; 49: 762–7

    Article  PubMed  CAS  Google Scholar 

  208. Piotrovskij VK, Shvatchko EV, Trnovec T. The use of physiologically based models to simulate enantioselective differences in pharmacokinetics. Methods Find Exp Clin Pharmacol 1994 16: 263–9

    PubMed  CAS  Google Scholar 

  209. Melnick RL, Kohn MC. Dose-response analyses of experimental cancer data. Drug Metab Rev 2000; 32: 193–209

    Article  PubMed  CAS  Google Scholar 

  210. Chen HS, Gross JF. Intra-arterial infusion of anticancer drugs: theoretic aspects of drug delivery and review of responses. Cancer Treat Rep 1980; 64: 31–40

    PubMed  CAS  Google Scholar 

  211. Chen HS, Gross JF. Clearance constants in physiologically based pharmacokinetic models. J Pharm Sci 1979; 68: 1066–7

    Article  PubMed  CAS  Google Scholar 

  212. Tsukamoto Y, Kato Y, Ura M, et al. Investigation of 5-FU disposition after oral administration of capecitabine, a tripleprodrug of 5-FU, using a physiologically based pharmacokine-tic model in a human cancer xenograft model: comparison of the simulated 5-FU exposures in the tumour tissue between human and xenograft model. Biopharm Drug Dispos 2001; 22: 1–14

    Article  PubMed  CAS  Google Scholar 

  213. Kirman CR, Hays SM, Kedderis GL, et al. Improving cancer dose-response characterization by using physiologically based pharmacokinetic modeling: an analysis of pooled data for acrylonitrile-induced brain tumors to assess cancer potency in the rat. Risk Anal 2000; 20: 135–51

    Article  PubMed  CAS  Google Scholar 

  214. Zhu H, Jain RK, Baxter LT. Tumor pretargeting for radioimmunodetection and radioimmunotherapy. J Nucl Med 1998; 39: 65–76

    PubMed  CAS  Google Scholar 

  215. Zhu H, Baxter LT, Jain RK. Potential and limitations of radioimmunodetection and radioimmunotherapy with monoclonal antibodies. J Nucl Med 1997; 38: 731–41

    PubMed  CAS  Google Scholar 

  216. Devineni D, Klein-Szanto A, Gallo JM. In vivo microdialysis to characterize drug transport in brain tumors: analysis of methotrexate uptake in rat glioma-2 (RG-2)-bearing rats. Cancer Chemother Pharmacol 1996; 38: 499–507

    Article  PubMed  CAS  Google Scholar 

  217. Hays SM, Elswick BA, Blumenthal GM, et al. Development of a physiologically based pharmacokinetic model of 2-methoxy-ethanol and 2-methoxyacetic acid disposition in pregnant rats. Toxicol Appl Pharmacol 2000; 163: 67–74

    Article  PubMed  CAS  Google Scholar 

  218. Kawahara M, Nanbo T, Tsuji A. Physiologically based pharma-cokinetic prediction of p-phenylbenzoic acid disposition in the pregnant rat. Biopharm Drug Dispos 1998; 19: 445–53

    Article  PubMed  CAS  Google Scholar 

  219. Young JF. Physiologically-based pharmacokinetic model for pregnancy as a tool for investigation of developmental mechanisms. Comput Biol Med 1998; 28: 359–64

    Article  PubMed  CAS  Google Scholar 

  220. Ward KW, Blumenthal GM, Welsch F, et al. Development of a physiologically based pharmacokinetic model to describe the disposition of methanol in pregnant rats and mice. Toxicol Appl Pharmacol 1997; 145: 311–22

    Article  PubMed  CAS  Google Scholar 

  221. Luecke RH, Wosilait WD, Pearce BA, et al. A computer model and program for xenobiotic disposition during pregnancy. Comput Methods Programs Biomed 1997; 53: 201–24

    Article  PubMed  CAS  Google Scholar 

  222. Gray DG. A physiologically based pharmacokinetic model for methyl mercury in the pregnant rat and fetus. Toxicol Appl Pharmacol 1995; 132: 91–102

    Article  PubMed  CAS  Google Scholar 

  223. Terry KK, Elswick BA, Welsch F, et al. Development of a physiologically based pharmacokinetic model describing 2-methoxyacetic acid disposition in the pregnant mouse. Toxicol Appl Pharmacol 1995; 132: 103–14

    Article  PubMed  CAS  Google Scholar 

  224. Clarke DO, Elswick BA, Welsch F, et al. Pharmacokinetics of 2-methoxyethanol and 2-methoxyacetic acid in the pregnant mouse: a physiologically based mathematical model. Toxicol Appl Pharmacol 1993; 121: 239–52

    Article  PubMed  CAS  Google Scholar 

  225. Fisher JW, Whittaker TA, Taylor DH, et al. Physiologically based pharmacokinetic modeling of the pregnant rat: a multiroute exposure model for trichloroethylene and its metabolite, trichloroacetic acid. Toxicol Appl Pharmacol 1989; 99: 395–414

    Article  PubMed  CAS  Google Scholar 

  226. Byczkowski JZ, Lipscomb JC. Physiologically based pharmacokinetic modeling of the lactational transfer of methylmercury. Risk Anal 2001; 21: 869–82

    Article  PubMed  CAS  Google Scholar 

  227. Lee SK, Ou YC, Yang RS. Comparison of pharmacokinetic interactions and physiologically based pharmacokinetic modeling of PCB 153 and PCB 126 in nonpregnant mice, lactating mice, and suckling pups. Toxicol Sci 2002; 65: 26–34

    Article  PubMed  CAS  Google Scholar 

  228. Jang JY, Droz PO. Ethnic differences in biological monitoring of several organic solvents: II. a simulation study with a physiologically based pharmacokinetic model. Int Arch Occup Environ Health 1997; 70: 41–50

    Article  PubMed  CAS  Google Scholar 

  229. Welsch F, Blumenthal GM, Conolly RB. Physiologically based pharmacokinetic models applicable to organogenesis: extrapolation between species and potential use in prenatal toxicity risk assessments. Toxicol Lett 1995; 82–83: 539–47

    Article  PubMed  Google Scholar 

  230. Byczkowski JZ, Fisher JW. A computer program linking physiologically based pharmacokinetic model with cancer risk assessment for breast-fed infants. Comput Methods Programs Biomed 1995; 46: 155–63

    Article  PubMed  CAS  Google Scholar 

  231. Fisher JW, Whittaker TA, Taylor DH, et al. Physiologically based pharmacokinetic modeling of the lactating rat and nursing pup: a multiroute exposure model for trichloroethylene and its metabolite, trichloroacetic acid. Toxicol Appl Pharmacol 1990; 102: 497–513

    Article  PubMed  CAS  Google Scholar 

  232. Shelley ML, Andersen ME, Fisher JW. An inhalation distribution model for the lactating mother and nursing child. Toxicol Lett 1988; 43: 23–9

    Article  PubMed  CAS  Google Scholar 

  233. Bjorkman S, Wada DR, Berling BM, et al. Prediction of the disposition of midazolam in surgical patients by a physiologically based pharmacokinetic model. J Pharm Sci 2001; 90: 1226–41

    Article  PubMed  CAS  Google Scholar 

  234. El-Masri HA, Portier CJ. Physiologically based pharmacokinetics model of primidone and its metabolites phenobarbital and phenylethylmalonamide in humans, rats, and mice. Drug Metab Dispos 1998; 26: 585–94

    PubMed  CAS  Google Scholar 

  235. Krejcie TC, Avram MJ, Gentry WB, et al. A recirculatory model of the pulmonary uptake and pharmacokinetics of lidocaine based on analysis of arterial and mixed venous data from dogs. J Pharmacokinet Biopharm 1997; 25: 169–90

    PubMed  CAS  Google Scholar 

  236. Wada DR, Ward DS. Open loop control of multiple drug effects in anesthesia. IEEE Trans Biomed Eng 1995; 42: 666–77

    Article  PubMed  CAS  Google Scholar 

  237. Wada DR, Ward DS. The hybrid model: a new pharmacokinetic model for computer-controlled infusion pumps. IEEE Trans Biomed Eng 1994; 41: 134–42

    Article  PubMed  CAS  Google Scholar 

  238. Engasser JM, Sarhan F, Falcoz C, et al. Distribution, metabolism, and elimination of phenobarbital in rats: physiologically based pharmacokinetic model. J Pharm Sci 1981; 70: 1233–8

    Article  PubMed  CAS  Google Scholar 

  239. Nakajima Y, Hattori K, Shinsei M, et al. Physiologically-based pharmacokinetic analysis of grepafloxacin. Biol Pharm Bull 2000; 23: 1077–83

    Article  PubMed  CAS  Google Scholar 

  240. Manuilov KK, Navashin SM, Kuleshov SE. Use of gentamicin physiologically-based model for individual dosing. Int J Clin Pharmacol Res 1993; 13: 59–63

    PubMed  CAS  Google Scholar 

  241. Manuilov KK. Use of a physiologically-based pharmacokinetic model for analysis of antibiotic distribution in tissue. Int J Clin Pharmacol Ther Toxicol 1992; 30: 548–9

    PubMed  CAS  Google Scholar 

  242. Pollet RA, Glatz CE, Dyer DC. The pharmacokinetics of chlortetracycline orally administered to turkeys: influence of citric acid and Pasteurella multocida infection. J Pharmacokinet Biopharm 1985; 13: 243–64

    PubMed  CAS  Google Scholar 

  243. Weissbrod JM, Jain RK. Preliminary model for streptozocin metabolism in mice. J Pharm Sci 1980; 69: 691–4

    Article  PubMed  CAS  Google Scholar 

  244. Saijo Y, Perlaky L, Wang H, et al. Pharmacokinetics, tissue distribution, and stability of antisense oligodeoxynucleotide phosphorothioate ISIS 3466 in mice. Oncol Res 1994; 6: 243–9

    PubMed  CAS  Google Scholar 

  245. Zhang R, Diasio RB, Lu Z, et al. Pharmacokinetics and tissue distribution in rats of an oligodeoxynucleotide phosphoroth-ioate (gem 91) developed as a therapeutic agent for human immunodeficiency virus type-1. Biochem Pharmacol 1995; 49: 929–39

    Article  PubMed  CAS  Google Scholar 

  246. Ismail M, Abd-Elsalam MA, Al-Ahaidib MS. Pharmacokinetics of 125I-labelled Walterinnesia aegyptia venom and its distribution of the venom and its toxin versus slow absorption and distribution of IgG, F(ab′)2 and F(AB) of the antivenin. Toxicon 1998; 36: 93–114

    Article  PubMed  CAS  Google Scholar 

  247. Coyne CP, Moritz JT, Fenwick BW. Inhibition of lipopolysaccharide-induced TNF-alpha production by semisyn-thetic polymyxin-B conjugated dextran. Biotechnol Ther 1994–95; 5: 137–62

    PubMed  Google Scholar 

  248. Covell DG, Barbet J, Holton OD, et al. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab′)2, and Fab′in mice. Cancer Res 1986; 46: 3969–78

    PubMed  CAS  Google Scholar 

  249. Bois F, Woodruff T, Spear R. Comparison of three physiologically based pharmacokinetic models of benzene disposition. Toxicol Appl Pharmacol 1991; 110: 79–88

    Article  PubMed  CAS  Google Scholar 

  250. Bois FY, Krowech G, Zeise L. Modeling human interindividual variability in metabolism and risk: the example of 4-aminobi-phenyl. Risk Anal 1995; 15: 205–13

    Article  PubMed  CAS  Google Scholar 

  251. Holford NHG, Hale M, Ko HC, et al., editors. Simulation in drug development: good practices. Report of the CDDS meeting ‘Modelling and Simulation of Clinical Trials: Best Practices Workshop’ [online]. Available from URL: http://www.cdds.georgetown.edu/research/sddgp723.html. [Accessed 1999]

  252. Bois FY. Analysis of PBPK models for risk characterization. In: Bailer AI, Maltoni C, Bailar III JC, Belpoggi F, Brazier JV, Soffritti M, editors. Uncertainty in the risk assessment of environmental and occupational hazards. Ann N Y Acad Sci 1999; 895: 317-37

    Google Scholar 

  253. Bois FY, Zeise L, Tozer TN. Precision and sensitivity of pharmacokinetic models for cancer risk assessment: tetrachlorethylene in mice, rats, and humans. Toxicol Appl Pharmacol 1990; 102: 300–15

    Article  PubMed  CAS  Google Scholar 

  254. Williams PJ, Ette EI. The role of population pharmacokinetics in drug development in light of the Food and Drug Administration s’s ‘Guidance for Industry: population pharmacokinetics s’. Clin Pharmacokinet 2000; 39: 385–95

    Article  PubMed  CAS  Google Scholar 

  255. Ette EI, Howie CA, Kelman AW, et al. Experimental design and efficient parameter estimation in preclinical pharmacokin-etic studies. Pharm Res 1995; 12: 729–37

    Article  PubMed  CAS  Google Scholar 

  256. Ette EI, Kelman AW, Howie CA, et al. Analysis of animal pharmacokinetic data: performance of the one point per animal design. J Pharmacokinet Biopharm 1995; 23: 551–66

    PubMed  CAS  Google Scholar 

  257. Lindstrom FT, Birkes DS. Estimation of population pharmacokinetic parameters using destructively obtained experimental data: a simulation study of the one-compartment open model. Drug Metab Rev 1984; 15: 195–264

    Article  PubMed  CAS  Google Scholar 

  258. Bernillon P, Bois FY. Statistical issues in toxicokinetic modeling: a Bayesian perspective. Environ Health Perspect 2000; 108 Suppl. 5: 883–93

    Article  PubMed  CAS  Google Scholar 

  259. Bois FY. Statistical analysis of Clewell, et al. PBPK model of trichloroethylene kinetics. Environ Health Perspect 2000; 108 Suppl. 2: 307–16

    Article  PubMed  CAS  Google Scholar 

  260. Bois FY. Statistical analysis of Fisher, et al. PBPK model of trichloroethylene kinetics. Environ Health Perspect 2000; 108 Suppl. 2: 275–82

    Article  PubMed  CAS  Google Scholar 

  261. Vicini P, Pierce CH, Dills RL, et al. Individual prior information in a physiological model of 2H8-toluene kinetics: an empirical Bayes estimation strategy. Risk Anal 1999; 19: 1127–34

    PubMed  CAS  Google Scholar 

  262. Nestorov I, Gueorguieva I, Jones HM, et al. Incorporating measures of variability and uncertainty into the prediction of in vivo hepatic clearance from in vitro data. Drug Metab Dispos 2002; 30: 276–82

    Article  PubMed  CAS  Google Scholar 

  263. Dubois D, Prade H. Fuzzy sets and systems: theory and applications. New York: Academic Press, 1980

    Google Scholar 

  264. Berkan R, Trubatch S. Fuzzy systems design principles. New York: IEEE Press, 1997

    Google Scholar 

  265. Ross T. Fuzzy logic with engineering applications. New York: McGraw Hill, 1995

    Google Scholar 

  266. Zimmermann H. Uncertainty modelling and fuzzy sets. In: Natke HG, Ben-Haim Y, editors. Uncertainty: models and measures. Heidelberg: Akademie-Verlag, 1997

    Google Scholar 

  267. Hüllermeier E. An approach to modelling and simulation of uncertain dynamical systems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 1997; 5: 117–37

    Article  Google Scholar 

  268. Gieschke R, Steimer JL. Pharmacometrics: modelling and simulation tools to improve decision making in clinical drug development. Eur J Drug Metab Pharmacokinet 2000; 25: 49–58

    Article  PubMed  CAS  Google Scholar 

  269. Norris DA, Leesman GD, Sinko PJ, et al. Development of predictive pharmacokinetic simulation models for drug discovery. J Control Release 2000; 65: 55–62

    Article  PubMed  CAS  Google Scholar 

  270. Charnick SB, Kawai R, Nedelman JR, et al. Perspectives in pharmacokinetics: physiologically based pharmacokinetic modeling as a tool for drug development. J Pharmacokinet Biopharm 1995; 23: 217–29

    PubMed  CAS  Google Scholar 

  271. Nestorov IA. A WWW resource for physiologically based modelling in pharmacokinetics, pharmacodynamics, toxicology and risk assessment. Med Inform (Lond) 1998; 23: 193–8

    Article  CAS  Google Scholar 

  272. Salkovich-Petrisic M, Mrzljak A, Lackovic Z. Usage of the internet pharmacology resources among European pharmacologists: a preliminary investigation. Fundam Clin Pharmacol 2001; 15: 55–60

    Article  Google Scholar 

Download references

Acknowledgements

The majority of the experiences shared by the author have been accumulated during his tenure as a Senior Research Fellow at the Centre for Applied Pharmacokinetic Research, School of Pharmacy, The University of Manchester, Manchester, UK. The author wishes to thank Professor Malcolm Rowland, Dr Leon Aarons and Dr Brian Houston for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Nestorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nestorov, I. Whole Body Pharmacokinetic Models. Clin Pharmacokinet 42, 883–908 (2003). https://doi.org/10.2165/00003088-200342100-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200342100-00002

Keywords

Navigation