Skip to main content
Log in

Ontogeny of Hepatic and Renal Systemic Clearance Pathways in Infants Part I

  • Review Article
  • Special Populations
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Dramatic developmental changes in the physiological and biochemical processes that govern drug pharmacokinetics and pharmacodynamics occur during the first year of life. These changes may have significant consequences for the way infants respond to and dealwith drugs. The ontogenesis of systemic clearance mechanisms is probably the most critical determinant of a pharmacological response in the developing infant. In recent years, advances in molecular techniques and an increased availability of fetal and infant tissues have afforded enhanced insight into the ontogeny of clearance mechanisms. Information from these studies is reviewed to highlight the dynamic and complex nature of developmental changes in clearance mechanisms in infants during the first year of life.

Hepatic and renal elimination mechanisms constitute the two principal clearance pathways of the developing infant. Drug metabolising enzyme activity is primarily responsible for the hepatic clearance of many drugs. In general, when compared with adult activity levels normalised to amount of hepatic microsomal protein, hepatic cytochrome P450-mediated metabolism and the phase II reactions of glucuronidation, glutathione conjugation and acetylation are deficient in the neonate, but sulfate conjugation is an efficient pathway at birth. Parturition triggers the dramatic development of drug metabolising enzymes, and each enzyme demonstrates an independent rate and pattern of maturation. Marked inter-individual variability is associated with their developmental expression, making the ontogenesis of hepatic metabolism a highly variable process. By the first year of life, most enzymes have matured to adult activity levels.

When compared with adult values, renal clearance mechanisms are compromised at birth. Dramatic increases in renal function occur in the ensuing postpar-tum period, and by 6 months of age glomerular filtration rate normalised to bodyweight has approached adult values. Maturation of renal tubular functions exhibits a more protracted time course of development, resulting in a glomerulotubular imbalance. This imbalance exists until adult renal tubule function values are approached by 1 year of age. The ontogeny of hepatic biliary and renal tubular transport processes and their impact on the elimination of drugs remain largely unknown.

The summary of the current understanding of the ontogeny of individual pathways of hepatic and renal elimination presented in this review should serve as a basis for the continued accruement of age-specific information concerning the ontogeny of clearance mechanisms in infants. Such information can only help to improve the pharmacotherapeutic management of paediatric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Fig. 2
Table III
Table IV
Table V

Similar content being viewed by others

References

  1. Gilman JT, Gal P. Pharmacokinetic and pharmacodynamic data collection in children and neonates: a quiet frontier [comment]. Clin Pharmacokinet 1992; 23(1): 1–9

    Article  PubMed  CAS  Google Scholar 

  2. Alcorn J, McNamara PJ. Ontogeny of hepatic and renal systemic clearance pathways in infants: part II. Clin Pharmacokinet. In press

  3. Nelson D. Cytochrome P450 Homepage [online]. Available from: http://drnelson.utmem.edu/CytochromeP450.html [Accessed 2002 Aug 14]

  4. International Centre for Genetic Engineering and Biotechnology. Directory of P450-containing systems [online]. Available from: http://www.icgeb.trieste.it/~p450srv/ [Accessed 2002 Aug 14]

  5. Rendic S. Human P450 metabolism database [online]. Available from: http://www.gentest.com/human_p450_database/-index.html [Accessed 2002 Aug 14]

  6. Division of Gastroenterology and Hepatology, University of Groningen. The Transporter Page [online]. Available from: http://www.med.rug.nl/mdl/tab3.htm [Accessed 2002 Aug 14]

  7. Yaffe S, editor. Rational therapeutics for infants and children: workshop summary [online]. Washington, DC: National Academy Press, 2000. Available from: http://www.nap.edu/-html/rational_therapeutics/ [Accessed 2002 Aug 14]

  8. Morselli PL, Franco-Morselli R, Bossi L. Clinical pharmacoki-netics in newborns and infants: age-related differences and therapeutic implications. Clin Pharmacokinet 1980; 5(6): 485–527

    Article  PubMed  CAS  Google Scholar 

  9. Morselli PL. Clinical pharmacology of the perinatal period and early infancy. Clin Pharmacokinet 1989; 17 Suppl. 1: 13–28

    Article  PubMed  Google Scholar 

  10. Stewart CF, Hampton EM. Effect of maturation on drug disposition in pediatric patients. Clin Pharm 1987; 6(7): 548–64

    PubMed  CAS  Google Scholar 

  11. Warner A. Drug use in the neonate: interrelationships of phar-macokinetics, toxicity, and biochemical maturity. Clin Chem 1986; 32(5): 721–7

    PubMed  CAS  Google Scholar 

  12. Johnson TN, Tanner MS, Tucker GT. A comparison of the ontogeny of enterocytic and hepatic cytochromes P450 3A in the rat. Biochem Pharmacol 2000; 60(11): 1601–10

    Article  PubMed  CAS  Google Scholar 

  13. Rowland M, Benet LZ, Graham GG. Clearance concepts in pharmacokinetics. J Pharmacokinet Biopharm 1973; 1(2): 123–36

    PubMed  CAS  Google Scholar 

  14. Pang KS, Rowland M. Hepatic clearance of drugs: I. Theoretical considerations of a well-stirred model and a parallel tube model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drag clearance. J Pharmacokinet Biopharm 1977; 5(6): 625–53

    PubMed  CAS  Google Scholar 

  15. Yamazaki M, Suzuki H, Sugiyama Y. Recent advances in carrier-mediated hepatic uptake and biliary excretion of xenobiotics. PharmRes 1996; 13(4): 497–513

    CAS  Google Scholar 

  16. Edelstone DI, Rudolph AM, Heymann MA. Liver and ductus venosus blood flows in fetal lambs in utero. Circ Res 1978; 42(3): 426–33

    Article  PubMed  CAS  Google Scholar 

  17. Ring JA, Ghabrial H, Ching MS, et al. Fetal hepatic drug elimination. Pharmacol Ther 1999; 84(3): 429–45

    Article  PubMed  CAS  Google Scholar 

  18. Rudolph AM. Hepatic and ductus venosus blood flows during fetal life. Hepatology 1983; 3(2): 254–8

    Article  PubMed  CAS  Google Scholar 

  19. Lind J. Changes in the liver circulation at birth. Ann N Y Acad Sci 1963; 111: 110–20

    Article  PubMed  CAS  Google Scholar 

  20. Fahey JT. Developmental aspects of hepatic blood flow. In: Suchy FJ, editor. Liver disease in children. St Louis: Mosby-YearBooklnc, 1994: 31–8

    Google Scholar 

  21. Holzman IR. Fetal and neonatal hepatic perfusion and oxygen-ation. Semin Perinatol 1984; 8(3): 234–44

    PubMed  CAS  Google Scholar 

  22. Oude Elferink RP, Meijer DK, Kuipers F, et al. Hepatobiliary secretion of organic compounds; molecular mechanisms of membrane transport. Biochim Biophys Acta 1995; 1241(2): 215–68

    Article  PubMed  Google Scholar 

  23. Meier PJ. Hepatocellular transport systems: from carrier identification in membrane vesicles to cloned proteins. J Hepatol 1996; 24 Suppl. 1: 29–35

    PubMed  CAS  Google Scholar 

  24. Wolkoff AW, Suchy FJ, Moseley RH, et al. Advances in hepatic transport: molecular mechanisms, genetic disorders, and treatment. A summary of the 1998 AASLD single topic conference. Hepatology 1998; 28(6): 1713–9

    Article  PubMed  CAS  Google Scholar 

  25. Balistreri WF. Immaturity of hepatic excretory function and the ontogeny of bile acid metabolism. J Pediatr Gastroenterol Nutr 1983; 2 Suppl. 1: S207–14

    Article  PubMed  Google Scholar 

  26. Goldstein J. Sulfobromophthalein sodium (BSP) conjugation and excretion in neonatal guinea pigs. Am J Physiol 1965; 208: 573–7

    PubMed  CAS  Google Scholar 

  27. Klaassen CD. Immaturity of the newborn rat’s hepatic excretory function for ouabain. J Pharmacol Exp Ther 1972; 183(3): 520–6

    PubMed  CAS  Google Scholar 

  28. Hwang SW, Dixon RL. Perinatal development of indocyanine green biliary excretion in guinea pigs. Am J Physiol 1973; 225(6): 1454–9

    PubMed  CAS  Google Scholar 

  29. Fischer E, Barth A, Varga F, et al. Age dependence of hepatic transport in control and phenobarbital-pretreated rats. Life Sci 1979; 24(6): 557–62

    Article  PubMed  CAS  Google Scholar 

  30. Cagen SZ, Gibson JE. Characteristics of hepatic excretory function during development. J Pharmacol Exp Ther 1979; 210(1): 15–21

    PubMed  CAS  Google Scholar 

  31. Findlay JW, Butz RF, Sailstad JM, et al. Pseudoephedrine and triprolidine in plasma and breast milk of nursing mothers. Br J Clin Pharmacol 1984; 18(6): 901–6

    Article  PubMed  CAS  Google Scholar 

  32. Stacey NH, Klaassen CD. Uptake of ouabain by isolated hepa-tocytes from livers of developing rats. J Pharmacol Exp Ther 1979; 211(2): 360–3

    PubMed  CAS  Google Scholar 

  33. Suchy FJ, Balistreri WF. Uptake of taurocholate by hepatocytes isolated from developing rats. Pediatr Res 1982; 16(4 Pt 1): 282–5

    Article  PubMed  CAS  Google Scholar 

  34. Dutt A, Priebe TS, Teeter LD, et al. Postnatal development of organic cation transport and mdr gene expression in mouse kidney. J Pharmacol Exp Ther 1992; 261(3): 1222–30

    PubMed  CAS  Google Scholar 

  35. Dubuisson C, Cresteil D, Desrochers M, et al. Ontogenic expression of the Na+-independent organic anion transporting polypeptide (oatp) in rat liver and kidney. J Hepatol 1996; 25(6): 932–40

    Article  PubMed  CAS  Google Scholar 

  36. Martel F, Martins MJ, Calhau C, et al. Postnatal development of organic cation transport in the rat liver. Pharmacol Res 1998; 37(2): 131–6

    Article  PubMed  CAS  Google Scholar 

  37. Kojima T, Nishimura M, Yajima T, et al. Developmental changes in the regional Na+/glucose transporter mRNA along the small intestine of suckling rats. Comp Biochem Physiol B Biochem Mol Biol 1999; 122(1): 89–95

    Article  PubMed  CAS  Google Scholar 

  38. Matsuoka Y, Okazaki M, Kitamura Y, et al. Developmental expression of P-glycoprotein (multidrug resistance gene product) in the rat brain. J Neurobiol 1999; 39(3): 383–92

    Article  PubMed  CAS  Google Scholar 

  39. Pavlova A, Sakurai H, Leclercq B, et al. Developmentally regulated expression of organic ion transporters NKT (OAT1), OCT1, NLT (OAT2), and Roct. Am J Physiol Renal Physiol 2000; 278(4): F635–43

    Google Scholar 

  40. van Kalken C, Giaccone G, van der Valk P, et al. Multidrug resistance gene (P-glycoprotein) expression in the human fetus. Am J Pathol 1992; 141(5): 1063–72

    PubMed  Google Scholar 

  41. Schumacher U, Mollgard K. The multidrug-resistance P-glycoprotein (Pgp, MDR1) is an early marker of blood-brain barrier development in the microvessels of the developing human brain. Histochem Cell Biol 1997; 108(2): 179–82

    Article  PubMed  CAS  Google Scholar 

  42. Williams RT. Detoxification mechanisms. New York: Wiley and Sons, 1959

    Google Scholar 

  43. Tanaka E, Breimer DD. In vivo function tests of hepatic drag-oxidizing capacity in patients with liver disease. J Clin Pharm Ther 1997; 22(4): 237–49

    Article  PubMed  CAS  Google Scholar 

  44. Rich KJ, Boobis AR. Expression and inducibility of P450 enzymes during liver ontogeny. Microsc Res Tech 1997; 39(5): 424–35

    Article  PubMed  CAS  Google Scholar 

  45. Rowell M, Zlotkin S. The ethical boundaries of drug research in pediatrics. Pediatr Clin North Am 1997; 44(1): 27–40

    Article  PubMed  CAS  Google Scholar 

  46. Crom WR, Webster SL, Bobo L, et al. Simultaneous administration of multiple model substrates to assess hepatic drug clearance. Clin Pharmacol Ther 1987; 41(6): 645–50

    Article  PubMed  CAS  Google Scholar 

  47. Relling MV, Crom WR, Pieper JA, et al. Hepatic drag clearance in children with leukemia: changes in clearance of model substrates during remission-induction therapy. Clin Pharmacol Ther 1987; 41(6): 651–60

    Article  PubMed  CAS  Google Scholar 

  48. Blumer JL. Clinical pharmacology of midazolam in infants and children. Clin Pharmacokinet 1998; 35(1): 37–47

    Article  PubMed  CAS  Google Scholar 

  49. Gorski JC, Hall SD, Jones DR, et al. Regioselective biotrans-formation of midazolam by members of the human cyto-chrome P450 3A (CYP3A) subfamily. Biochem Pharmacol 1994; 47(9): 1643–53

    Article  PubMed  CAS  Google Scholar 

  50. Vauzelle-Kervroedan F, Rey E, Pariente-Khayat A, et al. Non invasive in vivo study of the maturation of CYP IIIA in neo-nates and infants. Eur J Clin Pharmacol 1996; 51(1): 69–72

    Article  PubMed  CAS  Google Scholar 

  51. Nakamura H, Hirai M, Ohmori S, et al. Changes in urinary 6p-hydroxycortisol/cortisol ratio after birth in human neo-nates. Eur J Clin Pharmacol 1998; 53(5): 343–6

    Article  PubMed  CAS  Google Scholar 

  52. Miners JO, Birkett DJ. The use of caffeine as a metabolic probe for human drug metabolizing enzymes. Gen Pharmacol 1996; 27(2): 245–9

    Article  PubMed  CAS  Google Scholar 

  53. Treluyer JM, Cheron G, Sonnier M, et al. Cytochrome P-450 expression in sudden infant death syndrome. Biochem Pharmacol 1996; 52(3): 497–504

    Article  PubMed  CAS  Google Scholar 

  54. Pearce RE, Mclntyre CJ, Madan A, et al. Effects of freezing, thawing, and storing human liver microsomes on cytochrome P450 activity. Arch Biochem Biophys 1996; 331(2): 145–69

    Article  PubMed  CAS  Google Scholar 

  55. Powis G, Jardine I, Van Dyke R, et al. Foreign compound metabolism studies with human liver obtained as surgical waste: relation to donor characteristics and effects of tissue storage. Drug Metab Dispos 1988; 16(4): 582–9

    PubMed  CAS  Google Scholar 

  56. Yamazaki H, Inoue K, Turvy CG, et al. Effects of freezing, thawing, and storage of human liver samples on the micro-somal contents and activities of cytochrome P450 enzymes. Drug Metab Dispos 1997; 25(2): 168–74

    PubMed  CAS  Google Scholar 

  57. Schoene B, Fleischmann RA, Remmer H, et al. Determination of drug metabolizing enzymes in needle biopsies of human liver. Eur J Clin Pharmacol 1972; 4(2): 65–73

    Article  PubMed  CAS  Google Scholar 

  58. Jondorf WR, Donahue JD. The post-mortem diminution of rat liver microsomal protein synthesizing and drug metabolizing activities. Res Commun Chem Pathol Pharmacol 1970; 1(5): 581–90

    PubMed  CAS  Google Scholar 

  59. Walker E, McNicol AM. In situ hybridization demonstrates the stability of mRNA in post-mortem rat tissues. J Pathol 1992; 168(1): 67–73

    Article  PubMed  CAS  Google Scholar 

  60. Macleod SM, Renton KW, Eade NR. Post mortem characteristics of the hepatic microsomal drug oxidising enzyme system. Chem Biol Interact 1973; 7(1): 29–37

    Article  PubMed  CAS  Google Scholar 

  61. Skett P, Tyson C, Guillouzo A, et al. Report on the international workshop on the use of human in vitro liver preparations to study drug metabolism in drug development: 1994 Sep 6–8; Utrecht, The Netherland. Biochem Pharmacol 1995; 50(2): 280–5

    Article  PubMed  CAS  Google Scholar 

  62. Guengerich FP. Analysis and characterization of enzymes. In: Hayes AW, editor. Principles and methods of toxicology. New York: Raven Press, 1994: 1259–313

    Google Scholar 

  63. Guengerich FP, Shimada T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem Res Toxicol 1991; 4(4): 391–407

    Article  PubMed  CAS  Google Scholar 

  64. Guengerich FP, Turvy CG. Comparison of levels of several human microsomal cytochrome P-450 enzymes and epoxide hydrolase in normal and disease states using immunochemi-cal analysis of surgical liver samples. J Pharmacol Exp Ther 1991; 256(3): 1189–94

    PubMed  CAS  Google Scholar 

  65. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270(1): 414–23

    PubMed  CAS  Google Scholar 

  66. Hardman JG, Limbird LE, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill, 1996

    Google Scholar 

  67. Treluyer JM, Gueret G, Cheron G, et al. Developmental expression of CYP2C and CYP2C-dependent activities in the human liver: in-vivo/in-vitro correlation and inducibility. Pharmacogenetics 1997; 7(6): 441–52

    Article  PubMed  CAS  Google Scholar 

  68. Shimada T, Yamazaki H, Mimura M, et al. Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs. Drug Metab Dispos 1996; 24(5): 515–22

    PubMed  CAS  Google Scholar 

  69. Yang HY, Namkung MJ, Juchau MR. Expression of functional cytochrome P4501A1 in human embryonic hepatic tissues during organogenesis. Biochem Pharmacol 1995; 49(5): 717–26

    Article  PubMed  CAS  Google Scholar 

  70. Berthou F, Ratanasavanh D, Alix D, et al. Caffeine and theo-phylline metabolism in newborn and adult human hepato-cytes; comparison with adult rat hepatocytes. Biochem Pharmacol 1988; 37(19): 3691–700

    Article  PubMed  CAS  Google Scholar 

  71. Cazeneuve C, Pons G, Rey E, et al. Biotransformation of caffeine in human liver microsomes from foetuses, neonates, infants and adults. Br J Clin Pharmacol 1994; 37(5): 405–12

    Article  PubMed  CAS  Google Scholar 

  72. Hakkola J, Pasanen M, Pelkonen O, et al. Expression of CYP1B1 in human adult and fetal tissues and differential inducibility of CYP IB 1 and CYP1A1 by Ah receptor ligands in human placenta and cultured cells. Carcinogenesis 1997; 18(2): 391–7

    Article  PubMed  CAS  Google Scholar 

  73. Hakkola J, Tanaka E, Pelkonen O. Developmental expression of cytochrome P450 enzymes in human liver. Pharmacol Toxicol 1998; 82(5): 209–17

    Article  PubMed  CAS  Google Scholar 

  74. Pearce R, Greenway D, Parkinson A. Species differences and interindividual variation in liver microsomal cytochrome P450 2A enzymes: effects on coumarin, dicumarol, and testosterone oxidation. Arch Biochem Biophys 1992; 298(1): 211–25

    Article  PubMed  CAS  Google Scholar 

  75. Umbenhauer DR, Martin MV, Lloyd RS, et al. Cloning and sequence determination of a complementary DNA related to human liver microsomal cytochrome P-450 S-mephenytoin 4-hydroxylase. Biochemistry 1987; 26(4): 1094–9

    Article  PubMed  CAS  Google Scholar 

  76. Jacqz-Aigrain E, Cresteil T. Cytochrome P450-dependent metabolism of dextromethorphan: fetal and adult studies. Dev Pharmacol Ther 1992; 18(3–4): 161-8

    Google Scholar 

  77. Treluyer JM, Jacqz-Aigrain E, Alvarez F, et al. Expression of CYP2D6 in developing human liver. Eur J Biochem 1991; 202(2): 583–8

    Article  PubMed  CAS  Google Scholar 

  78. Vieira I, Sonnier M, Cresteil T. Developmental expression of CYP2E1 in the human liver: hypermethylation control of gene expression during the neonatal period. Eur J Biochem 1996; 238(2): 476–83

    Article  PubMed  CAS  Google Scholar 

  79. Lacroix D, Sonnier M, Moncion A, et al. Expression of CYP3A in the human liver: evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem 1997; 247(2): 625–34

    Article  PubMed  CAS  Google Scholar 

  80. Keiding S. Galactose clearance measurements and liver blood flow. Gastroenterology 1988; 94(2): 477–81

    PubMed  CAS  Google Scholar 

  81. Leevy CM, Mendenhall CL, Lesko W, et al. Estimation of hepatic blood flow with indocyanine green. J Clin Invest 1962; 41(5): 1169–79

    Article  PubMed  CAS  Google Scholar 

  82. Evans WE, Relling MV, de Graaf S, et al. Hepatic drug clearance in children: studies with indocyanine green as a model substrate. J Pharm Sci 1989; 78(6): 452–6

    Article  PubMed  CAS  Google Scholar 

  83. Roth B, Statz A, Heinisch HM, et al. Elimination of indocyanine green by the liver of infants with hypertrophic pyloric stenosis and the icteropyloric syndrome. J Pediatr 1981; 99(2): 240–3

    Article  PubMed  CAS  Google Scholar 

  84. Murry DJ, Crom WR, Reddick WE, et al. Liver volume as a determinant of drug clearance in children and adolescents. Drug Metab Dispos 1995; 23(10): 1110–6

    PubMed  CAS  Google Scholar 

  85. Bradley SE, Ingelfinger FJ, Bradley GP, et al. The estimation of hepatic blood flow in man. J Clin Invest 1945; 24: 890–7

    Article  Google Scholar 

  86. Hendeles L, Weinberger M. Theophylline: a state of the art review. Pharmacotherapy 1983; 3(1): 2–44

    PubMed  CAS  Google Scholar 

  87. Kandrotas RJ, Cranfield TL, Gal P, et al. Effect of phenobarbi-tal administration on theophylline clearance in premature neonates. Ther Drug Monit 1990; 12(2): 139–43

    Article  PubMed  CAS  Google Scholar 

  88. Moore ES, Faix RG, Banagale RC, et al. The population phar-macokinetics of theophylline in neonates and young infants. J Pharmacokinet Biopharm 1989; 17(1): 47–66

    PubMed  CAS  Google Scholar 

  89. Anderson BJ, Holford NH, Woollard GA. Aspects of theophylline clearance in children. Anaesth Intensive Care 1997; 25(5): 497–501

    PubMed  CAS  Google Scholar 

  90. Jacqz-Aigrain E, Bellaich M, Faure C, et al. Pharmacokinetics of intravenous omeprazole in children. Eur J Clin Pharmacol 1994; 47(2): 181–5

    Article  PubMed  CAS  Google Scholar 

  91. Jacqz-Aigrain E, Wood C, Robieux I. Pharmacokinetics of mid-azolam in critically ill neonates. Eur J Clin Pharmacol 1990; 39(2): 191–2

    Article  PubMed  CAS  Google Scholar 

  92. Rey E, Delaunay L, Pons G, et al. Pharmacokinetics of mid-azolam in children: comparative study of intranasal and intravenous administration. Eur J Clin Pharmacol 1991; 41(4): 355–7

    Article  PubMed  CAS  Google Scholar 

  93. Tolia V, Brennan S, Aravind MK, et al. Pharmacokinetic and pharmacodynamic study of midazolam in children during es-ophagogastroduodenoscopy. J Pediatr 1991; 119(3): 467–71

    Article  PubMed  CAS  Google Scholar 

  94. McDermott CA, Kowalczyk AL, Schnitzler ER, et al. Pharmacokinetics of lorazepam in critically ill neonates with seizures. J Pediatr 1992; 120(3): 479–83

    Article  PubMed  CAS  Google Scholar 

  95. Crom WR, Relling MV, Christensen ML, et al. Age-related differences in hepatic drug clearance in children: studies with lorazepam and antipyrine. Clin Pharmacol Ther 1991; 50(2): 132–40

    Article  PubMed  CAS  Google Scholar 

  96. McRorie TI, Lynn AM, Nespeca MK, et al. The maturation of morphine clearance and metabolism [published erratum appears in AmJDis Child 1992 Nov; 146 (11): 1305]. AmJDis Child 1992; 146(8): 972–6

    CAS  Google Scholar 

  97. Osborne R, Joel S, Trew D, et al. Morphine and metabolite behavior after different routes of morphine administration: demonstration of the importance of the active metabolite mor-phine-6-glucuronide. Clin Pharmacol Ther 1990; 47(1): 12–9

    Article  PubMed  CAS  Google Scholar 

  98. Lynn AM, Slattery JT. Morphine pharmacokinetics in early infancy. Anesthesiology 1987; 66(2): 136–9

    Article  PubMed  CAS  Google Scholar 

  99. Boucher FD, Modlin JF, Weller S, et al. Phase I evaluation of zidovudine administered to infants exposed at birth to the human immunodeficiency virus. J Pediatr 1993; 122(1): 137–44

    Article  PubMed  CAS  Google Scholar 

  100. Klecker RW Jr, Collins JM, Yarchoan R, et al. Plasma and cerebrospinal fluid pharmacokinetics of 3′-azido-3′-deoxythymidine: a novel pyrimidine analog with potential application for the treatment of patients with AIDS and related diseases. Clin Pharmacol Ther 1987; 41(4): 407–12

    Article  PubMed  Google Scholar 

  101. Mirochnick M, Capparelli E, Dankner W, et al. Zidovudine pharmacokinetics in premature infants exposed to human immunodeficiency virus. Antimicrob Agents Chemother 1998; 42(4): 808–12

    PubMed  CAS  Google Scholar 

  102. Pariente-Khayat A, Pons G, Rey E, et al. Caffeine acetylator phenotyping during maturation in infants. Pediatr Res 1991; 29(5): 492–5

    Article  PubMed  CAS  Google Scholar 

  103. Nelson DR, Koymans L, Kamataki T, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 1996; 6(1): 1–42

    Article  PubMed  CAS  Google Scholar 

  104. Guengerich FP. Catalytic selectivity of human cytochrome P450 enzymes: relevance to drug metabolism and toxicity. Toxicol Lett 1994; 70(2): 133–8

    Article  PubMed  CAS  Google Scholar 

  105. Rane A. Phenotyping of drug metabolism in infants and children: potentials and problems. Pediatrics 1999; 104(3 Pt 2): 640–3

    PubMed  CAS  Google Scholar 

  106. Tanaka E. Update: genetic polymorphism of drug metabolizing enzymes in humans. J Clin Pharm Ther 1999; 24(5): 323–9

    Article  PubMed  CAS  Google Scholar 

  107. Cresteil T. Onset of xenobiotic metabolism in children: toxico-logical implications. Food Addit Contam 1998; 15: 45–51

    Article  PubMed  CAS  Google Scholar 

  108. Zamboni L. Electron microscopic studies of blood embryogene-sis in humans: I. The ultrastructure of the fetal liver. J Ultra-structRes 1965; 12(5): 509–24

    Article  CAS  Google Scholar 

  109. Pelkonen O. Biotransformation of xenobiotics in the fetus. Pharmacol Ther 1980; 10(2): 261–81

    Article  PubMed  CAS  Google Scholar 

  110. Cresteil T, Beaune P, Kremers P, et al. Immunoquantification of epoxide hydrolase and cytochrome P-450 isozymes in fetal and adult human liver microsomes. Eur JBiochem 1985; 151(2): 345–50

    Article  CAS  Google Scholar 

  111. Nebert DW. Proposed role of drug-metabolizing enzymes: regulation of steady state levels of the ligands that effect growth, homeostasis, differentiation, and neuroendocrine functions. Mol Endocrinol 1991; 5(9): 1203–14

    Article  PubMed  CAS  Google Scholar 

  112. Sonnier M, Cresteil T. Delayed ontogenesis of CYP1A2 in the human liver. Eur J Biochem 1998; 251(3): 893–8

    Article  PubMed  CAS  Google Scholar 

  113. Kearns GL, Reed MD. Clinical pharmacokinetics in infants and children: a reappraisal. Clin Pharmacokinet 1989; 17 Suppl. 1: 29–67

    Article  PubMed  Google Scholar 

  114. Gilman JT. Therapeutic drug monitoring in the neonate and paediatric age group: problems and clinical pharmacokinetic implications. Clin Pharmacokinet 1990; 19(1): 1–10

    Article  PubMed  CAS  Google Scholar 

  115. Sato Y. Pharmacokinetics of antibiotics in neonates. Acta Paediatr Jpn 1997; 39(1): 124–31

    Article  PubMed  CAS  Google Scholar 

  116. Renwick AG. Toxicokinetics in infants and children in relation to the ADI and TDI. Food Addit Contam 1998; 15: 17–35

    Article  PubMed  CAS  Google Scholar 

  117. Gonzalez FJ, Lee YH. Constitutive expression of hepatic cytochrome P450 genes. FASEB J 1996; 10(10): 1112–7

    PubMed  CAS  Google Scholar 

  118. Gow PJ, Ghabrial H, Smallwood RA, et al. Neonatal hepatic drug elimination. Pharmacol Toxicol 2001; 88(1): 3–15

    Article  PubMed  CAS  Google Scholar 

  119. McCarver DG, Hines RN. The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes. J Pharmacol Exp Ther 2002; 300(2): 355–60

    Article  PubMed  Google Scholar 

  120. McCarver DG, Hines RN. The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms. J Pharmacol Exp Ther 2002; 300(2): 361–6

    Article  PubMed  CAS  Google Scholar 

  121. de Wildt SN, Kearns GL, Leeder JS, et al. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet 1999; 37(6): 485–505

    Article  PubMed  Google Scholar 

  122. Sesardic D, Pasanen M, Pelkonen O, et al. Differential expression and regulation of members of the cytochrome P450IA gene subfamily in human tissues. Carcinogenesis 1990; 11(7): 1183–8

    Article  PubMed  CAS  Google Scholar 

  123. Ioannides C, Parke DV. Induction of cytochrome P4501 as an indicator of potential chemical carcinogenesis [published erratum appears in Drug Metab Rev 1994; 26 (1–2): 483]. Drug MetabRev 1993; 25(4): 485–501

    Article  CAS  Google Scholar 

  124. Lee QH, Fantel AG, Juchau MR. Human embryonic cytochrome P450S: phenoxazone ethers as probes for expression of functional isoforms during organogenesis. Biochem Pharmacol 1991; 42(12): 2377–85

    Article  PubMed  CAS  Google Scholar 

  125. Maenpaa J, Pelkonen O, Cresteil T, et al. The role of cytochrome P450 3A (CYP3A) isoform (s) in oxidative metabolism of testosterone and benzphetamine in human adult and fetal liver. J Steroid Biochem Mol Biol 1993; 44(1): 61–7

    Article  PubMed  CAS  Google Scholar 

  126. Hakkola J, Pasanen M, Purkunen R, et al. Expression of xenobiotic-metabolizing cytochrome P450 forms in human adult and fetal liver. Biochem Pharmacol 1994; 48(1): 59–64

    Article  PubMed  CAS  Google Scholar 

  127. Butler MA, Iwasaki M, Guengerich FP, et al. Human cytochrome P-450PA (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. Proc Natl Acad Sci U S A 1989; 86(20): 7696–700

    Article  PubMed  CAS  Google Scholar 

  128. Ratanasavanh D, Beaune P, Morel F, et al. Intralobular distribution and quantitation of cytochrome P-450 enzymes in human liver as a function of age. Hepatology 1991; 13(6): 1142–51

    Article  PubMed  CAS  Google Scholar 

  129. Tateishi T, Nakura H, Asoh M, et al. A comparison of hepatic cytochrome P450 protein expression between infancy and postinfancy. Life Sci 1997; 61(26): 2567–74

    Article  PubMed  CAS  Google Scholar 

  130. Goldstein JA, de Morais SM. Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 1994; 4(6): 285–99

    Article  PubMed  CAS  Google Scholar 

  131. Pasanen M, Pelkonen O, Kauppila A, et al. Characterization of human fetal hepatic cytochrome P-450-associated 7-ethoxyresorufin O-deethylase and aryl hydrocarbon hy-droxylase activities by monoclonal antibodies. Dev Pharmacol Ther 1987; 10(2): 125–32

    PubMed  CAS  Google Scholar 

  132. Daly AK, Brockmoller J, Broly F, et al. Nomenclature for human CYP2D6alleles. Pharmacogenetics 1996; 6(3): 193–201

    Article  PubMed  CAS  Google Scholar 

  133. Ladona MG, Lindstrom B, Thyr C, et al. Differential foetal development of the O- and N-demethylation of codeine and dextromethorphan in man. Br J Clin Pharmacol 1991; 32(3): 295–302

    Article  PubMed  CAS  Google Scholar 

  134. Koop DR. Oxidative and reductive metabolism by cytochrome P450 2E1. FASEB J 1992; 6(2): 724–30

    PubMed  CAS  Google Scholar 

  135. Komori M, Nishio K, Fujitani T, et al. Isolation of anew human fetal liver cytochrome P450 cDNA clone: evidence for expression of a limited number of forms of cytochrome P450 in human fetal livers. Arch Biochem Biophys 1989; 272(1): 219–25

    Article  PubMed  CAS  Google Scholar 

  136. Jones SM, Boobis AR, Moore GE, et al. Expression of CYP2E1 during human fetal development: methylation of the CYP2E1 gene in human fetal and adult liver samples. Biochem Pharmacol 1992; 43(8): 1876–9

    Article  PubMed  CAS  Google Scholar 

  137. Carpenter SP, Lasker JM, Raucy JL. Expression, induction, and catalytic activity of the ethanol-inducible cytochrome P450 (CYP2E1) in human fetal liver and hepatocytes. Mol Pharmacol 1996; 49(2): 260–8

    PubMed  CAS  Google Scholar 

  138. Nelson DR, Koymans L, Kamataki T, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 1996; 6(1): 1–42

    Article  PubMed  CAS  Google Scholar 

  139. Jounaidi Y, Hyrailles V, Gervot L, et al. Detection of CYP3A5 allelic variant: a candidate for the polymorphic expression of the protein?. Biochem Biophys Res Commun 1996; 221(2): 466–70

    Article  PubMed  CAS  Google Scholar 

  140. Wrighton SA, Brian WR, Sari MA, et al. Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3). Mol Pharmacol 1990; 38(2): 207–13

    PubMed  CAS  Google Scholar 

  141. Schuetz JD, Beach DL, Guzelian PS. Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver. Pharmacogenetics 1994; 4(1): 11–20

    Article  PubMed  CAS  Google Scholar 

  142. Wrighton SA, Ring BJ, Watkins PB, et al. Identification of a polymorphically expressed member of the human cytochrome P-450III family. Mol Pharmacol 1989; 36(1): 97–105

    PubMed  CAS  Google Scholar 

  143. Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27(4): 383–91

    Article  PubMed  CAS  Google Scholar 

  144. Aoyama T, Yamano S, Waxman DJ, et al. Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCNl and hPCN3 for the metabolism of steroid hormones and cyclosporine. J Biol Chem 1989; 264(18): 10388–95

    PubMed  CAS  Google Scholar 

  145. Gillam EM, Guo Z, Ueng YF, et al. Expression of cytochrome P450 3A5 in Escherichia coli: effects of 5′modification, purification, spectral characterization, reconstitution conditions, and catalytic activities. Arch Biochem Biophys 1995; 317(2): 374–84

    Article  PubMed  CAS  Google Scholar 

  146. Raucy JL, Carpenter SJ. The expression of xenobiotic-metabo-lizing cytochromes P450 in fetal tissues. J Pharmacol Toxicol Methods 1993; 29(3): 121–8

    Article  PubMed  CAS  Google Scholar 

  147. Kitada M, Kamataki T. Cytochrome P450 in human fetal liver: significance and fetal-specific expression. Drug Metab Rev 1994; 26(1–2): 305–23

    Article  PubMed  CAS  Google Scholar 

  148. Kitada M, Kamataki T, Itahashi K, et al. Significance of cytochrome P-450 (P-450 HFLa) of human fetal livers in the ste-roid and drug oxidations. Biochem Pharmacol 1987; 36(4): 453–6

    Article  PubMed  CAS  Google Scholar 

  149. Kitada M, Kamataki T, Itahashi K, et al. P-450 HFLa, a form of cytochrome P-450 purified from human fetal livers, is the 16 alpha-hydroxylase of dehydroepiandrosterone 3-sulfate. J Biol Chem 1987; 262(28): 13534–7

    PubMed  CAS  Google Scholar 

  150. Komori M, Nishio K, Kitada M, et al. Fetus-specific expression of a form of cytochrome P-450 in human livers. Biochemistry 1990; 29(18): 4430–3

    Article  PubMed  CAS  Google Scholar 

  151. Hashimoto H, Toide K, Kitamura R, et al. Gene structure of CYP3A4, an adult-specific form of cytochrome P450 in human livers, and its transcriptional control. Eur J Biochem 1993; 218(2): 585–95

    Article  PubMed  CAS  Google Scholar 

  152. Ohmori S, Fujiki N, Nakasa H, et al. Steroid hydroxylation by human fetal CYP3A7 and human NADPH-cytochrome P450 reductase coexpressed in insect cells using baculovirus. Res Commun Mol Pathol Pharmacol 1998; 100(1): 15–28

    PubMed  CAS  Google Scholar 

  153. Burtin P, Jacqz-Aigrain E, Girard P, et al. Population pharma-cokinetics of midazolam in neonates. Clin Pharmacol Ther 1994; 56(6 Pt 1): 615–25

    Article  PubMed  CAS  Google Scholar 

  154. Payne K, Mattheyse FJ, Liebenberg D, et al. The pharmacoki-netics of midazolam in paediatric patients. Eur J Clin Pharmacol 1989; 37(3): 267–72

    Article  PubMed  CAS  Google Scholar 

  155. Gerber MA, Thung SN. Histology of the liver. Am J Surg Pathol 1987; 11(9): 709–22

    Article  PubMed  CAS  Google Scholar 

  156. Rappaport AM. Physioanatomic consideration. In: Schiff ER, editor. Disease of the Liver. Philadelphia (PA): JB Lippincott, 1987: 1–46

    Google Scholar 

  157. Fukuda T. Fetal hemopoiesis. II. Electron microscopic studies on human hepatic hemopoiesis. Virchows Arch B Cell Pathol 1974; 16(3): 249–70

    Article  PubMed  CAS  Google Scholar 

  158. Feracci H, Connolly TP, Margolis RN, et al. The establishment of hepatocyte cell surface polarity during fetal liver development. Dev Biol 1987; 123(1): 73–84

    Article  PubMed  CAS  Google Scholar 

  159. Jones CT, Rolph TP. Metabolism during fetal life: a functional assessment of metabolic development. Physiol Rev 1985; 65(2): 357–430

    PubMed  CAS  Google Scholar 

  160. Murao F, Takamori H, Aoki S, et al. Ultrasonographic measurement of the human fetal liver in utero. Gynecol Obstet Invest 1987; 24(3): 145–50

    Article  PubMed  CAS  Google Scholar 

  161. Widdowson EM, Crabb DE, Milner RD. Cellular development of some human organs before birth. Arch Dis Child 1972; 47(254): 652–5

    Article  PubMed  CAS  Google Scholar 

  162. Greengard O, Federman M, Knox WE. Cytomorphometry of developing rat liver and its application to enzymic differentiation. J Cell Biol 1972; 52(2): 261–72

    Article  PubMed  CAS  Google Scholar 

  163. Stave U. Liver enzymes. In: Stave U, editor. Perinatal physiology. New York: Plenum Medical Book Company, 1978: 499–521

    Chapter  Google Scholar 

  164. Swartz FJ. The development in the human liver of multiple deoxyribose nucleic acid (DNA) classes and their relationship to the age of the individual. Chromosoma 1956; 8: 53

    Article  PubMed  CAS  Google Scholar 

  165. Groothuis GM, Meijer DK. Hepatocyte heterogeneity in bile formation and hepatobiliary transport of drugs. Enzyme 1992; 46(1–3): 94–128

    PubMed  CAS  Google Scholar 

  166. Lamers WH, Gaasbeek Janzen JW, Kortschot AT, et al. Development of enzymic zonation in liver parenchyma is related to development of acinar architecture. Differentiation 1987; 35(3): 228–35

    Article  PubMed  CAS  Google Scholar 

  167. Wagenaar GT, Chamuleau RA, de Haan JG, et al. Experimental evidence that the physiological position of the liver within the circulation is not a major determinant of zonation of gene expression. Hepatology 1993; 18(5): 1144–53

    Article  PubMed  CAS  Google Scholar 

  168. Montagnani CA. Intrahepatic vascular pattern in the newborn infant. Ann N Y Acad Sci 1963; 111: 121–35

    Article  PubMed  CAS  Google Scholar 

  169. Watkins JB, Ingall D, Szczepanik P, et al. Bile-salt metabolism in the newborn: measurement of pool size and synthesis by stable isotope technique. N Engl J Med 1973; 288(9): 431–4

    Article  PubMed  CAS  Google Scholar 

  170. Tavoloni N. Bile secretion and its control in the newborn puppy. PediatrRes 1986; 20(3): 203–8

    CAS  Google Scholar 

  171. Tavoloni N, Jones MJ, Berk PD. Postnatal development of bile secretory physiology in the dog. J Pediatr Gastroenterol Nutr 1985; 4(2): 256–67

    Article  PubMed  CAS  Google Scholar 

  172. Krauer B, Dayer P. Fetal drug metabolism and its possible clinical implications. Clin Pharmacokinet 1991; 21(1): 70–80

    Article  PubMed  CAS  Google Scholar 

  173. Coughtrie MW, Bamforth KJ, Sharp S, et al. Sulfation of endogenous compounds and xenobiotics: interactions and function in health and disease. Chem Biol Interact 1994; 92(1–3): 247–56

    Article  PubMed  CAS  Google Scholar 

  174. Coughtrie MW, Burchell B, Leakey JE, et al. The inadequacy of perinatal glucuronidation: immunoblot analysis of the developmental expression of individual UDP-glucuronosyl-transferase isoenzymes in rat and human liver microsomes. Mol Pharmacol 1988; 34(6): 729–35

    PubMed  CAS  Google Scholar 

  175. Leakey JE, Hume R, Burchell B. Development of multiple activities of UDP-glucuronyltransferase in human liver. Biochem J 1987; 243(3): 859–61

    PubMed  CAS  Google Scholar 

  176. Pacifici GM, Franchi M, Colizzi C, et al. Sulfotransferase in humans: development and tissue distribution. Pharmacology 1988; 36(6): 411–9

    Article  PubMed  CAS  Google Scholar 

  177. Cappiello M, Giuliani L, Rane A, et al. Dopamine sulpho-transferase is better developed than p-nitrophenol sul-photransferase in the human fetus. Dev Pharmacol Ther 1991; 16(2): 83–8

    PubMed  CAS  Google Scholar 

  178. Strange RC, Howie AF, Hume R, et al. The development expression of alpha-, mu- and pi-class glutathione S-transfer-ases in human liver. Biochim Biophys Acta 1989; 993(2–3): 186–90

    Article  PubMed  CAS  Google Scholar 

  179. Pacifici GM, Franchi M, Colizzi C, et al. Glutathione S-trans-ferase in humans: development and tissue distribution. Arch Toxicol 1988; 61(4): 265–9

    Article  PubMed  CAS  Google Scholar 

  180. Cappiello M, Giuliani L, Pacifici GM. Differential distribution of phenol and catechol sulphotransferases in human liver and intestinal mucosa. Pharmacology 1990; 40(2): 69–76

    Article  PubMed  CAS  Google Scholar 

  181. Meisel M, Schneider T, Siegmund W, et al. Development of human polymorphic N-acetyltransferase. Biol Res Pregnancy Perinatol 1986; 7(2): 74–6

    PubMed  CAS  Google Scholar 

  182. Mackenzie PI, Owens IS, Burchell B, et al. The UDP glyco-syltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 1997; 7(4): 255–69

    Article  PubMed  CAS  Google Scholar 

  183. de Wildt SN, Kearns GL, Leeder JS, et al. Glucuronidation in humans. Pharmacogenetic and developmental aspects. Clin Pharmacokinet 1999; 36(6): 439–52

    Article  PubMed  Google Scholar 

  184. Ritter JK, Chen F, Sheen YY, et al. A novel complex locus UGT1 encodes human bilirubin, phenol, and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini. J Biol Chem 1992; 267(5): 3257–61

    PubMed  CAS  Google Scholar 

  185. Clarke DJ, Moghrabi N, Monaghan G, et al. Genetic defects of the UDP-glucuronosyltransferase-1 (UGT1) gene that cause familial non-haemolytic unconjugated hyperbilirubinaemias. Clin Chim Acta 1997; 266(1): 63–74

    Article  PubMed  CAS  Google Scholar 

  186. Monaghan G, Clarke DJ, Povey S, et al. Isolation of a human YAC contig encompassing a cluster of UGT2 genes and its regional localization to chromosome 4ql3. Genomics 1994; 23(2): 496–9

    Article  PubMed  CAS  Google Scholar 

  187. King CD, Rios GR, Assouline JA, et al. Expression of UDP-glucuronosyltransferases (UGTs) 2B7 and 1A6 in the human brain and identification of 5-hydroxytryptamine as a substrate. Arch Biochem Biophys 1999; 365(1): 156–62

    Article  PubMed  CAS  Google Scholar 

  188. Burchell B, Coughtrie MW. Genetic and environmental factors associated with variation of human xenobiotic glucuronidation and sulfation. Environ Health Perspect 1997; 105 Suppl. 4: 739–47

    PubMed  CAS  Google Scholar 

  189. Strassburg CP, Nguyen N, Manns MP, et al. UDP-glucuronosyltransferase activity in human liver and colon. Gastroen-terology 1999; 116(1): 149–60

    Article  CAS  Google Scholar 

  190. Ebner T, Burchell B. Substrate specificities of two stably expressed human liver UDP-glucuronosyltransferases of the UGT1 gene family. Drug Metab Dispos 1993; 21(1): 50–5

    PubMed  CAS  Google Scholar 

  191. Dutton GJ. Developmental aspects of drug conjugation, with special reference to glucuronidation. Annu Rev Pharmacol Toxicol 1978; 18: 17–35

    Article  PubMed  CAS  Google Scholar 

  192. Rane A, Tomson G. Prenatal and neonatal drug metabolism in man. Eur J Clin Pharmacol 1980; 18(1): 9–15

    Article  PubMed  CAS  Google Scholar 

  193. Rollins DE, von Bahr C, Glaumann H, et al. Acetaminophen: potentially toxic metabolite formed by human fetal and adult liver microsomes and isolated fetal liver cells. Science 1979; 205(4413): 1414–6

    Article  PubMed  CAS  Google Scholar 

  194. Burchell B, Coughtrie M, Jackson M, et al. Development of human liver UDP-glucuronosyltransferases. Dev Pharmacol Ther 1989; 13(2–4): 70–7

    PubMed  CAS  Google Scholar 

  195. Hume R, Coughtrie MW, Burchell B. Differential localisation of UDP-glucuronosyltransferase in kidney during human embryonic and fetal development. Arch Toxicol 1995; 69(4): 242–7

    Article  PubMed  CAS  Google Scholar 

  196. Hume R, Burchell A, Allan BB, et al. The ontogeny of key endoplasmic reticulum proteins in human embryonic and fetal red blood cells. Blood 1996; 87(2): 762–70

    PubMed  CAS  Google Scholar 

  197. Mikkelsen S, Feilberg VL, Christensen CB, et al. Morphine pharmacokinetics in premature and mature newborn infants. Acta Paediatr 1994; 83(10): 1025–8

    Article  PubMed  CAS  Google Scholar 

  198. Onishi S, Kawade N, Itoh S, et al. Postnatal development of uridine diphosphate glucuronyltransferase activity towards bilirubin and 2-aminophenol in human liver. Biochem J 1979; 184(3): 705–7

    PubMed  CAS  Google Scholar 

  199. Pacifici GM, Franchi M, Giuliani L, et al. Development of the glucuronyltransferase and sulphotransferase towards 2-naph-thol in human fetus. Dev PharmacolTher 1989; 14(2): 108–14

    CAS  Google Scholar 

  200. Pacifici GM, Sawe J, Kager L, et al. Morphine glucuronidation in human fetal and adult liver. Eur J Clin Pharmacol 1982; 22(6): 553–8

    Article  PubMed  CAS  Google Scholar 

  201. Anderson BJ, McKee AD, Holford NH. Size, myths and the clinical pharmacokinetics of analgesia in paediatric patients. Clin Pharmacokinet 1997; 33(5): 313–27

    Article  PubMed  CAS  Google Scholar 

  202. Choonara IA, McKay P, Hain R, et al. Morphine metabolism in children. Br J Clin Pharmacol 1989; 28(5): 599–604

    Article  PubMed  CAS  Google Scholar 

  203. Barker EV, Hume R, Hallas A, et al. Dehydroepiandrosterone sulfotransferase in the developing human fetus: quantitative biochemical and immunological characterization of the hepatic, renal, and adrenal enzymes. Endocrinology 1994; 134(2): 982–9

    Article  PubMed  CAS  Google Scholar 

  204. Falany CN. Molecular enzymology of human liver cytosolic sulfotransferases. Trends Pharmacol Sci 1991; 12(7): 255–9

    Article  PubMed  CAS  Google Scholar 

  205. Campbell NR, Van Loon JA, Weinshilboum RM. Human liver phenol sulfotransferase: assay conditions, biochemical properties and partial purification of isozymes of the thermostable form. Biochem Pharmacol 1987; 36(9): 1435–46

    Article  PubMed  CAS  Google Scholar 

  206. Richard K, Hume R, Kaptein E, et al. Sulfation of thyroid hormone and dopamine during human development: ontogeny of phenol sulfotransferases and arylsulfatase in liver, lung, and brain. J Clin Endocrinol Metab 2001; 86(6): 2734–42

    Article  PubMed  CAS  Google Scholar 

  207. Pacifici GM, Kubrich M, Giuliani L, et al. Sulphation and glucuronidation of ritodrine in human foetal and adult tissues. Eur J Clin Pharmacol 1993; 44(3): 259–64

    Article  PubMed  CAS  Google Scholar 

  208. Gilissen RA, Hume R, Meerman JH, et al. Sulphation of N-hydroxy-4-aminobiphenyl and N-hydroxy-4-acetylamino-biphenyl by human foetal and neonatal sulphotransferase. Biochem Pharmacol 1994; 48(4): 837–40

    Article  PubMed  CAS  Google Scholar 

  209. Mannervik B, Danielson UH. Glutathione transferases: structure and catalytic activity. CRC Crit Rev Biochem 1988; 23(3): 283–337

    Article  PubMed  CAS  Google Scholar 

  210. Soma Y, Satoh K, Sato K. Purification and subunit-structural and immunological characterization of five glutathione S-transferases in human liver, and the acidic form as a hepatic tumor marker. Biochim Biophys Acta 1986; 869(3): 247–58

    Article  PubMed  CAS  Google Scholar 

  211. Mannervik B, Awasthi YC, Board PG, et al. Nomenclature for human glutathione transferases [letter]. Biochem J 1992; 282(Pt 1): 305–6

    PubMed  CAS  Google Scholar 

  212. Mitra A, Govindwar S, Joseph P, et al. Inhibition of human term placental and fetal liver glutathione-S-transferases by fatty acids and fatty acid esters. Toxicol Lett 1992; 60(3): 281–8

    Article  PubMed  CAS  Google Scholar 

  213. Mera N, Ohmori S, Itahashi K, et al. Immunochemical evidence for the occurrence of Mu class glutathione S-transferase in human fetal livers. J Biochem (Tokyo) 1994; 116(2): 315–20

    CAS  Google Scholar 

  214. Strange RC, Davis BA, Faulder CG, et al. The human glutathione S-transferases: developmental aspects of the GST1, GST2, and GST3 loci. Biochem Genet 1985; 23(11–12): 1011–28

    Article  PubMed  CAS  Google Scholar 

  215. Vos RM, Van Bladeren PJ. Glutathione S-transferases in relation to their role in the biotransformation of xenobiotics. Chem Biol Interact 1990; 75(3): 241–65

    Article  PubMed  CAS  Google Scholar 

  216. Pacifici GM, Warholm M, Guthenberg C, et al. Organ distribution of glutathione transferase isoenzymes in the human fetus: differences between liver and extrahepatic tissues. Biochem Pharmacol 1986; 35(9): 1616–9

    Article  PubMed  CAS  Google Scholar 

  217. Guthenberg C, Warholm M, Rane A, et al. Two distinct forms of glutathione transferase from human foetal liver: purification and comparison with isoenzymes isolated from adult liver and placenta. Biochem J 1986; 235(3): 741–5

    PubMed  CAS  Google Scholar 

  218. Mathew J, Cattan AR, Hall AG, et al. Glutathione S-transferases in neonatal liver disease. J Clin Pathol 1992; 45(8): 679–83

    Article  PubMed  CAS  Google Scholar 

  219. Kashiwada M, Kitada M, Shimada T, et al. Purification and characterization of acidic form of glutathione S-transferase in human fetal livers: high similarity to placental form. J Biochem (Tokyo) 1991; 110(5): 743–7

    CAS  Google Scholar 

  220. Warholm M, Guthenberg C, Mannervik B, et al. Purification of a new glutathione S-transferase (transferase mu) from human liver having high activity with benzo (alpha)pyrene-4,5-ox-ide. Biochem Biophys Res Commun 1981; 98(2): 512–9

    Article  PubMed  CAS  Google Scholar 

  221. Holt DE, Hurley R, Harvey D. Metabolism of chloramphenicol by glutathione S-transferase in human fetal and neonatal liver. Biol Neonate 1995; 67(4): 230–9

    Article  PubMed  CAS  Google Scholar 

  222. Pacifici GM, Boobis AR, Brodie MJ, et al. Tissue and species differences in enzymes of epoxide metabolism. Xenobiotica 1981; 11(2): 73–9

    Article  PubMed  CAS  Google Scholar 

  223. Pacifici GM, Norlin A, Rane A. Glutathione-S-transferase in human fetal liver. Biochem Pharmacol 1981; 30(24): 3367–71

    Article  PubMed  CAS  Google Scholar 

  224. Baars AJ, Mukhtar H, Zoetemelk CE, et al. Glutathione S-transferase activity in rat and human tissues and organs. Comp Biochem Physiol C 1981; 70(2): 285–8

    Article  PubMed  CAS  Google Scholar 

  225. Mukhtar H, Zoetemelk CE, Baars AJ, et al. Glutathione S-transferase activity in human fetal and adult tissues. Pharmacology 1981; 22(5): 322–9

    Article  PubMed  CAS  Google Scholar 

  226. Faulder CG, Hirrell PA, Hume R, et al. Studies of the development of basic, neutral and acidic isoenzymes of glutathione S-transferase in human liver, adrenal, kidney and spleen. Biochem J 1987; 241(1): 221–8

    PubMed  CAS  Google Scholar 

  227. Pacifici GM, Bencini C, Rane A. Acetyltransferase in humans: development and tissue distribution. Pharmacology 1986; 32(5): 283–91

    Article  PubMed  CAS  Google Scholar 

  228. Ohsako S, Deguchi T. Cloning and expression of cDNAs for polymorphic and monomorphic arylamine N-acetyltrans-ferases from human liver. J Biol Chem 1990; 265(8): 4630–4

    PubMed  CAS  Google Scholar 

  229. Grant DM, Blum M, Beer M, et al. Monomorphic and polymorphic human arylamine N-acetyltransferases: a comparison of liver isozymes and expressed products of two cloned genes. Mol Pharmacol 1991; 39(2): 184–91

    PubMed  CAS  Google Scholar 

  230. Ilett KF, Kadlubar FF, Minchin RF. 1998 International meeting on the arylamine N-acetyltransferases: synopsis of the workshop on nomenclature, biochemistry, molecular biology, in-terspecies comparisons, and role in human disease risk. Drug Metab Dispos 1999; 27(9): 957–9

    PubMed  CAS  Google Scholar 

  231. Peng DR, Birgersson C, von Bahr C, et al. Polymorphic acety-lation of 7-amino-clonazepam in human liver cytosol. Pediatr Pharmacol 1984; 4(3): 155–9

    CAS  Google Scholar 

  232. Fichter EG, Curtis JA. Sulfonamide administration in newborn and premature infants. Am J Dis Child 1955; 90: 596–7

    Google Scholar 

  233. Szorady I, Santa A, Veress I. Drug acetylator phenotypes in newborn infants. Biol Res Pregnancy Perinatol 1987; 8(1): 23–5

    PubMed  CAS  Google Scholar 

  234. Pariente-Khayat A, Rey E, Gendrel D, et al. Isoniazid acetylation metabolic ratio during maturation in children. Clin Pharmacol Ther 1997; 62(4): 377–83

    Article  PubMed  CAS  Google Scholar 

  235. Brazier JL, Salle B, Ribon B, et al. In vivo N7 methylation of theophylline to caffeine in premature infants: studies with use of stable isotopes. Dev Pharmacol Ther 1981; 2(3): 137–44

    PubMed  CAS  Google Scholar 

  236. Haley TJ. Metabolism and pharmacokinetics of theophylline in human neonates, children, and adults. Drug Metab Rev 1983; 14(2): 295–335

    Article  PubMed  CAS  Google Scholar 

  237. Rosen T, Schimmel MS. A short review of perinatal pharmacology. Bull N Y Acad Med 1983; 59(7): 669–77

    PubMed  CAS  Google Scholar 

  238. O’Donnell J. Theophylline misadventures: part I. Neonatal Netw 1994; 13(2): 35–43

    PubMed  Google Scholar 

  239. O’Donnell J. Theophylline misadventures: part II. Neonatal Netw 1994; 13(3): 19–28

    PubMed  Google Scholar 

  240. Anderson BJ, Gunn TR, Holford NH, et al. Caffeine overdose in a premature infant: clinical course and pharmacokinetics. Anaesth Intensive Care 1999; 27(3): 307–11

    PubMed  CAS  Google Scholar 

  241. Kraus DM, Fischer JH, Reitz SJ, et al. Alterations in theophylline metabolism during the first year of life. Clin Pharmacol Ther 1993; 54(4): 351–9

    Article  PubMed  CAS  Google Scholar 

  242. Levy G, Khanna NN, Soda DM, et al. Pharmacokinetics of acetaminophen in the human neonate: formation of acetaminophen glucuronide and sulfate in relation to plasma bilirubin concentration and D-glucaric acid excretion. Pediatrics 1975; 55(6): 818–25

    PubMed  CAS  Google Scholar 

  243. Alam SN, Roberts RJ, Fischer LJ. Age-related differences in salicylamide and acetaminophen conjugation in man. J Pediatr 1977; 90(1): 130–5

    Article  PubMed  CAS  Google Scholar 

  244. Done AK, Cohen SN, Strebel L. Pediatric clinical pharmacology and the therapeutic orphan. Annu Rev Pharmacol Toxicol 1977; 17: 561–73

    Article  PubMed  CAS  Google Scholar 

  245. Miller RP, Roberts RJ, Fischer LJ. Acetaminophen elimination kinetics in neonates, children, and adults. Clin Pharmacol Ther 1976; 19(3): 284–94

    PubMed  CAS  Google Scholar 

  246. Brashear WT, Kuhnert BR, Wei R. Maternal and neonatal urinary excretion of sulfate and glucuronide ritodrine conjugates. Clin Pharmacol Ther 1988; 44(6): 634–41

    Article  PubMed  CAS  Google Scholar 

  247. Neims AH, Warner M, Loughnan PM, et al. Developmental aspects of the hepatic cytochrome P450 monooxygenase system. Annu Rev Pharmacol Toxicol 1976; 16: 427–45

    Article  PubMed  CAS  Google Scholar 

  248. Loughnan PM, Greenwald A, Purton WW, et al. Pharmacoki-netic observations of phenytoin disposition in the newborn and young infant. Arch Dis Child 1977; 52(4): 302–9

    Article  PubMed  CAS  Google Scholar 

  249. Sereni F, Mandelli M, Principi N, et al. Induction of drug metabolizing enzyme activities in the human fetus and in the newborn infant. Enzyme 1973; 15(1): 318–29

    PubMed  CAS  Google Scholar 

  250. Okey AB. Enzyme induction in the cytochrome P-450 system. Pharmacol Ther 1990; 45(2): 241–98

    Article  PubMed  CAS  Google Scholar 

  251. Rating D, Jager-Roman E, Nau H, et al. Enzyme induction in neonates after fetal exposure to antiepileptic drugs. Pediatr Pharmacol 1983; 3(3–4): 209–18

    CAS  Google Scholar 

  252. Boreus LO. The role of therapeutic drug monitoring in children. Clin Pharmacokinet 1989; 17 Suppl. 1: 4–12

    Article  PubMed  Google Scholar 

  253. Perrot N, Nalpas B, Yang CS, et al. Modulation of cytochrome P450 isozymes in human liver, by ethanol and drug intake. Eur J Clin Invest 1989; 19(6): 549–55

    Article  PubMed  CAS  Google Scholar 

  254. Furuya H, Meyer UA, Gelboin HV, et al. Polymerase chain reaction-directed identification, cloning, and quantification of human CYP2C18 mRNA. Mol Pharmacol 1991; 40(3): 375–82

    PubMed  CAS  Google Scholar 

  255. Lin JH, Lu AY. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet 1998; 35(5): 361–90

    Article  PubMed  CAS  Google Scholar 

  256. Nemeth AM. The regulation of liver development by birth. Enzyme 1973; 15(1): 286–95

    PubMed  CAS  Google Scholar 

  257. Mannering GJ. Drug metabolism in the newborn. Fed Proc 1985; 44(7): 2302–8

    PubMed  CAS  Google Scholar 

  258. de Morais SM, Schweikl H, Blaisdell J, et al. Gene structure and upstream regulatory regions of human CYP2C9 and CYP2C18. Biochem Biophys Res Commun 1993; 194(1): 194–201

    Article  PubMed  Google Scholar 

  259. Jounaidi Y, Guzelian PS, Maurel P, et al. Sequence of the 5′-flanking region of CYP3A5: comparative analysis with CYP3A4 and CYP3A7. Biochem Biophys Res Commun 1994; 205(3): 1741–7

    Article  PubMed  CAS  Google Scholar 

  260. Ibeanu GC, Goldstein JA. Transcriptional regulation of human CYP2C genes: functional comparison of CYP2C9 and CYP2C18 promoter regions. Biochemistry 1995; 34(25): 8028–36

    Article  PubMed  CAS  Google Scholar 

  261. Ueno T, Gonzalez FJ. Transcriptional control of the rat hepatic CYP2E1 gene. Mol Cell Biol 1990; 10(9): 4495–505

    PubMed  CAS  Google Scholar 

  262. Liu SY, Gonzalez FJ. Role of the liver-enriched transcription factor HNF-1 alpha in expression of the CYP2E1 gene. DNA Cell Biol 1995; 14(4): 285–93

    Article  PubMed  CAS  Google Scholar 

  263. Song BJ, Gelboin HV, Park SS, et al. Complementary DNA and protein sequences of ethanol-inducible rat and human cytochrome P-450s. Transcriptional and post-transcriptional regulation of the rat enzyme [published erratum appears in J Biol Chem 1987; 262 (18): 8940]. J Biol Chem 1986; 261(35): 16689–97

    PubMed  CAS  Google Scholar 

  264. Guignard JP, Torrado A, Da Cunha O, et al. Glomerular filtration rate in the first three weeks of life. J Pediatr 1975; 87(2): 268–72

    Article  PubMed  CAS  Google Scholar 

  265. Leake RD, Trygstad CW. Glomerular filtration rate during the period of adaptation to extrauterine life. Pediatr Res 1977; 11(9 Pt 1): 959–62

    Article  PubMed  CAS  Google Scholar 

  266. Arant Jr BS. Developmental patterns of renal functional maturation compared in the human neonate. J Pediatr 1978; 92(5): 705–12

    Article  PubMed  CAS  Google Scholar 

  267. Strauss J, Daniel SS, James LS. Postnatal adjustment in renal function. Pediatrics 1981; 68(6): 802–8

    PubMed  CAS  Google Scholar 

  268. Halkin H, Radomsky M, Millman P, et al. Steady state serum concentrations and renal clearance of digoxin in neonates, infants and children. Eur J Clin Pharmacol 1978; 13(2): 113–7

    Article  PubMed  CAS  Google Scholar 

  269. Ng PK, Cote J, Schiff D, et al. Renal clearance of digoxin in premature neonates. Res Commun Chem Pathol Pharmacol 1981; 34(2): 207–16

    PubMed  CAS  Google Scholar 

  270. Haycock GB. Development of glomerular filtration and tubular sodium reabsorption in the human fetus and newborn. Br J Urol 1998; 81 Suppl. 2: 33–8

    PubMed  Google Scholar 

  271. Potter EL. Normal and abnormal development of the kidney. Chicago (IL): Year Book Medical Publishers, 1972

    Google Scholar 

  272. duBois AM. The embryonic kidney. In: Muller AF, editor. The Kidney. New York: Academic Press, 1969: 1–59

    Google Scholar 

  273. McCrory WW. Developmental nephrology. Cambridge: Harvard University Press, 1972

    Google Scholar 

  274. MacDonald MS, Emery JL. The late intrauterine and postnatal development of human renal glomeruli. J Anat 1959; 93: 331–41

    PubMed  CAS  Google Scholar 

  275. Potter EL. Development of the human glomerulus. Arch Pathol 1965; 80: 241

    PubMed  CAS  Google Scholar 

  276. Robillard JE, Kulvinskas C, Sessions C, et al. Maturational changes in the fetal glomerular filtration rate. Am J Obstet Gynecol 1975; 122(5): 601–6

    PubMed  CAS  Google Scholar 

  277. Robillard JE, Sessions C, Kennedey RL, et al. Interrelationship between glomerular filtration rate and renal transport of sodium and chloride during fetal life. Am J Obstet Gynecol 1977; 128(7): 727–34

    PubMed  CAS  Google Scholar 

  278. Lumbers ER, Stevens AD. Factors influencing glomerular filtration rate in the fetal lamb [proceedings]. J Physiol 1980; 298: 28P–9P

    PubMed  CAS  Google Scholar 

  279. Leake RD, Trygstad CW, Oh W. Inulin clearance in the newborn infant: relationship to gestational and postnatal age. Pediatr Res 1976; 10(8): 759–62

    PubMed  CAS  Google Scholar 

  280. Fetterman GH, Shyplock NA, Philipp F, et al. The growth and maturation of human glomeruli and proximal convolutions from term to adulthood. Pediatrics 1965; 35: 601–19

    PubMed  CAS  Google Scholar 

  281. Hook JB, Hewitt WR. Development of mechanisms for drug excretion. Am J Med 1977; 62(4): 497–506

    Article  PubMed  CAS  Google Scholar 

  282. Rane A, Wilson JT. Clinical pharmacokinetics in infants and children. Clin Pharmacokinet 1976; 1(1): 2–24

    Article  PubMed  CAS  Google Scholar 

  283. Hayton WL. Maturation and growth of renal function: dosing renally cleared drugs in children. AAPS PharmSci 2000; 2 (1): article 3

    Google Scholar 

  284. Barnett HL, McNamara H, Schultz S, et al. Renal clearances of penicillin G, procaine penicillin G, and inulin in infants and children. Pediatrics 1949; 3: 418–22

    PubMed  CAS  Google Scholar 

  285. Barnett HL, Vesterdal J. The physiologic and clinical significance of immaturity of kidney function in young infants. J Pediatr 1953; 42: 99–119

    Article  Google Scholar 

  286. Rubin M, Bruck E, Rapoport M. Maturation of renal function in childhood: clearance studies. J Clin Invest 1949; 28: 1144–62

    Article  CAS  Google Scholar 

  287. Fawer CL, Torrado A, Guignard JP. Maturation of renal function in full-term and premature neonates. Helv Paediatr Acta 1979; 34(1): 11–21

    PubMed  CAS  Google Scholar 

  288. Heilbron DC, Holliday MA, al-Dahwi A, et al. Expressing glo-merular filtration rate in children. Pediatr Nephrol 1991; 5(1): 5–11

    Article  PubMed  CAS  Google Scholar 

  289. Oh W, Oh MA, Lind J. Renal function and blood volume in newborn infants related to placental transfusion. Acta Paediatr Scand 1966; 55: 197–210

    Article  Google Scholar 

  290. Gordjani N, Burghard R, Leititis JU, et al. Serum creatinine and creatinine clearance in healthy neonates and prematures during the first lOdays of life. EurJPediatr 1988; 148(2): 143–5

    CAS  Google Scholar 

  291. Aperia A, Broberger O, Elinder G, et al. Postnatal development of renal function in pre-term and full-term infants. Acta Paediatr Scand 1981; 70(2): 183–7

    Article  PubMed  CAS  Google Scholar 

  292. Sonntag J, Prankel B, Waltz S. Serum creatinine concentration, urinary creatinine excretion and creatinine clearance during the first 9 weeks in preterm infants with a birth weight below 1500g. Eur J Pediatr 1996; 155(9): 815–9

    Article  PubMed  CAS  Google Scholar 

  293. Nakae S, Yamada M, Ito T, et al. Gentamicin dosing and phar-macokinetics in low birth weight infants. Tohoku J Exp Med 1988; 155(3): 213–23

    Article  PubMed  CAS  Google Scholar 

  294. Pons G, d’Athis P, Rey E, et al. Gentamicin monitoring in neonates. Ther Drug Monit 1988; 10(4): 421–7

    Article  PubMed  CAS  Google Scholar 

  295. Rodvold KA, Everett JA, Pryka RD, et al. Pharmacokinetics and administration regimens of vancomycin in neonates, infants and children. Clin Pharmacokinet 1997; 33(1): 32–51

    Article  PubMed  CAS  Google Scholar 

  296. Lisby-Sutch SM, Nahata MC. Dosage guidelines for the use of vancomycin based on its pharmacokinetics in infants. Eur J Clin Pharmacol 1988; 35(6): 637–42

    Article  PubMed  CAS  Google Scholar 

  297. Hoie EB, Swigart SA, Leuschen MP, et al. Vancomycin pharmacokinetics in infants undergoing extracorporeal membrane oxygenation. Clin Pharm 1990; 9(9): 711–5

    PubMed  CAS  Google Scholar 

  298. Buck ML. Vancomycin pharmacokinetics in neonates receiving extracorporeal membrane oxygenation. Pharmacotherapy 1998; 18(5): 1082–6

    PubMed  CAS  Google Scholar 

  299. Asbury WH, Darsey EH, Rose WB, et al. Vancomycin pharmacokinetics in neonates and infants: a retrospective evaluation. Ann Pharmacother 1993; 27(4): 490–6

    PubMed  CAS  Google Scholar 

  300. Gous AG, Dance MD, Lipman J, et al. Changes in vancomycin pharmacokinetics in critically ill infants. Anaesth Intensive Care 1995; 23(6): 678–82

    PubMed  CAS  Google Scholar 

  301. Hook JB, Bailie MD. Perinatal renal pharmacology. Annu Rev Pharmacol Toxicol 1979; 19: 491–509

    Article  PubMed  CAS  Google Scholar 

  302. West JR, Smith HW, Chasis H. Glomerular filtration rate, effective renal blood flow, and maximal tubular excretory capacity in infancy. J Pediatr 1948; 32: 10–8

    Article  PubMed  CAS  Google Scholar 

  303. Glickstein JS, Friedman D. Developmental changes in renal blood flow velocity [abstract]. J Pediatr 1997; 130(2): 336

    PubMed  CAS  Google Scholar 

  304. Cleary GM, Higgins ST, Merton DA, et al. Developmental changes in renal artery blood flow velocity during the first three weeks of life in preterm neonates. J Pediatr 1996; 129(2): 251–7

    Article  PubMed  CAS  Google Scholar 

  305. Aperia A, Broberger O, Herin P, et al. Renal hemodynamics in the perinatal period: a study in lambs. Acta Physiol Scand 1977; 99(3): 261–9

    Article  PubMed  CAS  Google Scholar 

  306. Gruskin AB, Edelmann Jr CM, Yuan S. Maturational changes in renal blood flow in piglets. Pediatr Res 1970; 4(1): 7–13

    Article  PubMed  CAS  Google Scholar 

  307. John E, Goldsmith DI, Spitzer A. Quantitative changes in the canine glomerular vasculature during development: physiologic implications. Kidney Int 1981; 20(2): 223–9

    Article  PubMed  CAS  Google Scholar 

  308. Mihaly GW, Moore RG, Thomas J, et al. The pharmacokinetics and metabolism of the anilide local anaesthetics in neonates. I. Lignocaine. Eur J Clin Pharmacol 1978; 13(2): 143–52

    Article  PubMed  CAS  Google Scholar 

  309. Larsson L, Maunsbach AB. The ultrastructural development of the glomerular filtration barrier in the rat kidney: a morpho-metric analysis. J Ultrastruct Res 1980; 72(3): 392–406

    Article  PubMed  CAS  Google Scholar 

  310. Gladtke E. The rate of development of elimination functions in kidney and liver of young infants. New York: Raven Press, 1975

    Google Scholar 

  311. Blowey DL, Ben-David S, Koren G. Interactions of drugs with the developing kidney. Pediatr Clin North Am 1995; 42(6): 1415–31

    PubMed  CAS  Google Scholar 

  312. Nakamura KT, Matherne GP, McWeeny OJ, et al. Renal hemodynamics and functional changes during the transition from fetal to newborn life in sheep. Pediatr Res 1987; 21(3): 229–34

    Article  PubMed  CAS  Google Scholar 

  313. Smith FG, Lumbers ER. Comparison of renal function in term fetal sheep and newborn lambs. Biol Neonate 1989; 55(4–5): 309–16

    PubMed  CAS  Google Scholar 

  314. Besunder JB, Reed MD, Blumer JL. Principles of drug bio-disposition in the neonate: a critical evaluation of the phar-macokinetic-pharmacodynamic interface (Part II). Clin Pharmacokinet 1988; 14(5): 261–86

    Article  PubMed  CAS  Google Scholar 

  315. Besunder JB, Reed MD, Blumer JL. Principles of drug biodisposition in the neonate: a critical evaluation of the phar-macokinetic-pharmacodynamic interface (Part I). Clin Pharmacokinet 1988; 14(4): 189–216

    Article  PubMed  CAS  Google Scholar 

  316. Calcagno P, Rubin M. Renal extraction of paraaminohippurate in infants and children. J Clin Invest 1963; 42: 1632–9

    Article  PubMed  CAS  Google Scholar 

  317. Siegel SR, Oh W. Renal function as a marker of human fetal maturation. Acta Paediatr Scand 1976; 65(4): 481–5

    Article  PubMed  CAS  Google Scholar 

  318. Kasik JW, Jenkins S, Leuschen MP, et al. Postconceptional age and gentamicin elimination half-life. J Pediatr 1985; 106(3): 502–5

    Article  PubMed  CAS  Google Scholar 

  319. van den Anker JN, de Groot R, Broerse HM, et al. Assessment of glomerular filtration rate in preterm infants by serum creatinine: comparison with inulin clearance. Pediatrics 1995; 96(6): 1156–8

    PubMed  Google Scholar 

  320. van der Heijden AJ, Grose WF, Ambagtsheer JJ, et al. Glomerular filtration rate in the preterm infant: the relation to gestational and postnatal age. Eur J Pediatr 1988; 148(1): 24–8

    Article  PubMed  Google Scholar 

  321. Koren G, James A, Perlman M. A simple method for the estimation of glomerular filtration rate by gentamicin pharmacokinetics during routine drug monitoring in the newborn. Clin Pharmacol Ther 1985; 38(6): 680–5

    Article  PubMed  CAS  Google Scholar 

  322. Zarowitz BJ, Robert S, Peterson EL. Prediction of glomerular filtration rate using aminoglycoside clearance in critically ill medical patients. Ann Pharmacother 1992; 26(10): 1205–10

    PubMed  CAS  Google Scholar 

  323. Manzke H, Spreter von Kreudenstein P, Dorner K, et al. Quantitative measurements of the urinary excretion of creatinine, uric acid, hypoxanthine and xanthine, uracil, cyclic AMP, and cyclic GMP in healthy newborn infants. Eur J Pediatr 1980; 133(2): 157–61

    Article  PubMed  CAS  Google Scholar 

  324. Fattinger K, Vozeh S, Olafsson A, et al. Netilmicin in the neonate: population pharmacokinetic analysis and dosing recommendations. Clin Pharmacol Ther 1991; 50(1): 55–65

    Article  PubMed  CAS  Google Scholar 

  325. Carrie BJ, Golbetz HV, Michaels AS, et al. Creatinine: an inadequate filtration marker in glomerular diseases. Am J Med 1980; 69(2): 177–82

    Article  PubMed  CAS  Google Scholar 

  326. Bauer JH, Brooks CS, Burch RN. Clinical appraisal of creatinine clearance as a measurement of glomerular filtration rate. Am J Kidney Dis 1982; 2(3): 337–46

    PubMed  CAS  Google Scholar 

  327. Arant Jr BS. Estimating glomeralar filtration rate in infants. J Pediatr 1984; 104(6): 890–3

    Article  PubMed  Google Scholar 

  328. Coulthard MG. Comparison of methods of measuring renal function in preterm babies using inulin. J Pediatr 1983; 102(6): 923–30

    Article  PubMed  CAS  Google Scholar 

  329. Aperia A, Larsson L. Correlation between fluid reabsorption and proximal tubule ultrastructure during development of the rat kidney. Acta Physiol Scand 1979; 105(1): 11–22

    Article  PubMed  CAS  Google Scholar 

  330. Yaffe SJ. Developmental factors influencing interactions of drugs. Ann N Y Acad Sci 1976; 281: 90–7

    Article  PubMed  CAS  Google Scholar 

  331. Williamson RC, Hiatt EP. Development of renal function in fetal and maternal rabbits using phenolsulfonphthalein. Proc Soc Exp Biol Med 1945; 66: 554–7

    Google Scholar 

  332. Milsap RL, Szelfler SJ. Special pharmacokinetic considerations in children. In: Jusko WJ, editor. Applied pharmacokinetics: principles of therapeutic drug monitoring. Spokane (WA): Applied Therapeutics Inc., 1986: 294–330

    Google Scholar 

  333. Fukuda Y, Larsson S, Celsi G, etal. Use of experimental models to study the development of renal function. Biol Neonate 1988; 53(4): 197–200

    Article  PubMed  CAS  Google Scholar 

  334. Peterson RG, Simmons MA, Rumack BH, et al. Pharmacology of furosemide in the premature newborn infant. J Pediatr 1980; 97(1): 139–43

    Article  PubMed  CAS  Google Scholar 

  335. Kelly MR, Cutler RE, Forrey AW, et al. Pharmacokinetics of orally administered furosemide. Clin Pharmacol Ther 1974; 15(2): 178–86

    PubMed  CAS  Google Scholar 

  336. Frenzel J, Braunlich H, Schramm D, et al. Effect on maturation of kidney function in newborn infants of repeated administration of water and electrolytes. Eur J Clin Pharmacol 1977; 11(4): 317–20

    Article  PubMed  CAS  Google Scholar 

  337. Chin JE, Soffir R, Noonan KE, et al. Structure and expression of the human MDR (P-glycoprotein) gene family. Mol Cell Biol 1989; 9(9): 3808–20

    PubMed  CAS  Google Scholar 

  338. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993; 62: 385–427

    Article  PubMed  CAS  Google Scholar 

  339. Thiebaut F, Tsuruo T, Hamada H, et al. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 1987; 84(21): 7735–8

    Article  PubMed  CAS  Google Scholar 

  340. Sugawara I, Kataoka I, Morishita Y, et al. Tissue distribution of P-glycoprotein encoded by a multidrug-resistant gene as revealed by a monoclonal antibody, MRK 16. Cancer Res 1988; 48(7): 1926–9

    PubMed  CAS  Google Scholar 

  341. Cordon-Cardo C, O’Brien JP, Casals D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci U S A 1989; 86(2): 695–8

    Article  PubMed  CAS  Google Scholar 

  342. Levine RL, Fredericks WR, Rapoport SI. Entry of bilirubin into the brain due to opening of the blood-brain barrier. Pediatrics 1982; 69(3): 255–9

    PubMed  CAS  Google Scholar 

  343. Roberton DM, Paganelli R, Dinwiddie R, et al. Milk antigen absorption in the preterm and term neonate. Arch Dis Child 1982; 57(5): 369–72

    Article  PubMed  CAS  Google Scholar 

  344. Borlak JT, Scott A, Henderson CJ, et al. Transfer of PCBs via lactation simultaneously induces the expression of P450 iso-enzymes and the protooncogenes c-Ha-ras and c-raf in neo-nates. Biochem Pharmacol 1996; 51(4): 517–29

    Article  PubMed  CAS  Google Scholar 

  345. Sutherland JM. Fatal cardiovascular collapse of infants receiving large amounts of chloramphenicol. Am J Dis Child 1959; 97: 761–7

    CAS  Google Scholar 

  346. Bonati M, Latini R, Marra G, et al. Theophylline metabolism during the first month of life and development. Pediatr Res 1981; 15(4 Pt 1): 304–8

    Article  PubMed  CAS  Google Scholar 

  347. Gupta A, Waldhauser LK. Adverse drug reactions from birth to early childhood. Pediatr Clin North Am 1997; 44(1): 79–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Jane Alcorn was supported by the University of Kentucky Research Challenge Trust Fund. This work was supported in part by the National Institutes of Health grant HD37463.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. McNamara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcorn, J., McNamara, P.J. Ontogeny of Hepatic and Renal Systemic Clearance Pathways in Infants Part I. Clin Pharmacokinet 41, 959–998 (2002). https://doi.org/10.2165/00003088-200241120-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200241120-00003

Keywords

Navigation