Skip to main content
Log in

Comprehensive Survey of the Relationship Between Serum Concentration and Therapeutic Effect of Amitriptyline in Depression

  • Review Articles
  • Target Concentration Intervention
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The relationship between serum concentration (Cs) of amitriptyline and its therapeutic effect in depression has been investigated frequently over the last 3 decades; however, the results were controversial and no consensus was reached. Therefore, we have performed a comprehensive survey and meta-analysis of the subject. All relevant literature was included, and the design of studies on the serum concentration-therapeutic effect relationship (SCTER) of amitriptyline was evaluated. Pooled original data from SCTER studies with adequate design were analysed by various statistical methods: regression analysis of therapeutic effect and Cs; comparison of the mean therapeutic effect in various ranges of Cs; dichotomisation of outcome and analysis according to sensitivity of receiver operation curves; frequency of responders and nonresponders in ranges determined by points of sensitivity; analysis of the distribution of Cs in responders and nonresponders; logistic regression of responders and nonresponders with Cs and other independent variables; calculation of effect size (g) and mean effect size (gm).

Forty-five SCTER studies of amitriptyline were identified, and 27 studies met the minimum criteria of adequate study design. Inadequate study design predicted the finding of no SCTER. Analysis of the pooled data from studies with adequate design confirmed a therapeutic window of the sum of Cs of amitriptyline and its active metabolite nortriptyline of about 80 to 200 µg/L. A moderate and significant positive gm (0.538, 95% confidence interval 0.167 to 0.909) was calculated for treatment with Cs within the therapeutic window in comparison with treatment with Cs outside the therapeutic window (19 studies with adequate design and original data available, n = 583).

In conclusion, the evidence for a biphasic SCTER of amitriptyline in depression is considerably improved, and the results may help to find a consensus in the future. However, the clinical benefit of therapeutic drug monitoring of amitriptyline can only be demonstrated in a controlled and randomised study. Furthermore, the results provide further evidence that antidepressants at optimum Cs are superior to placebo in the treatment of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Asberg M, Cronholm B, Sjöqvist F, et al. Relationship between plasma level and therapeutic effect of nortriptyline. BMJ 1971; 4: 331–4

    Article  Google Scholar 

  2. Burrows GD, Davies B, Scoggins BA. Plasma concentrations of nortriptyline and clinical response in depressive illness. Lancet 1972; II: 619–23

    Article  Google Scholar 

  3. Orsulak PJ. Therapeutic drug monitoring of antidepressants: guidelines updated. Ther Drug Monit 1989; 11: 497–507

    Article  PubMed  CAS  Google Scholar 

  4. Preskorn SH, Burke MJ, Fast GA. Therapeutic drug monitoring: principles and practice. Psychopharmacology 1993; 16: 611–41

    CAS  Google Scholar 

  5. Balant-Gorgia EA, Balant LP. Therapeutic drug monitoring: relevance during the drug treatment of psychiatric disorders. CNS Drugs 1995; 3(6): 432–53

    Article  Google Scholar 

  6. Braithwaite R, Goulding T, Theano G, et al. Plasma concentration of amitriptyline and clinical response. Lancet 1972; II: 1297–300

    Article  Google Scholar 

  7. Coppen A, Ghose K, Montgomery S, et al. Amitriptyline plasma concentration and clinical effect. Lancet 1978; 14: 63–6

    Article  Google Scholar 

  8. Glassman AH, Schildkraut JJ, Orsulak PJ, et al. Tricyclic anti-depressants, blood level measurements and clinical outcome: an APA task force report. Am J Psychiatry 1985; 142: 155–62

    Google Scholar 

  9. Kuss HJ, Jungkunz G, Holsbör F. Amitriptyline: looking through the therapeutic window. Lancet 1984; I: 464–5

    Article  Google Scholar 

  10. Perry PJ, Pfohl BM, Holstad SG. The relationship between antidepressant response and tricyclic antidepressant plasma concentrations: a retrospective analysis of the literature using logistic regression analysis. Clin Pharmacokinet 1987; 13: 381–92

    Article  PubMed  CAS  Google Scholar 

  11. Perry PJ, Zeilmann C, Arndt S. Tricyclic antidepressant concentrations in plasma: an estimate of their sensitivity and specificity as a predictor of response. J Clin Psychopharmacol 1994; 14: 230–40

    Article  PubMed  CAS  Google Scholar 

  12. Grohmann R, Rüther E, Engel RR, et al. Assessment of adverse drug reactions in psychiatric inpatients with the AMSP drug safety program: methods and first results for tricyclic antidepressants and SSRI. Pharmacopsychiatria 1999; 32: 21–8

    Article  CAS  Google Scholar 

  13. Lohse MJ, Müller-Oerlinghausen B. Psychopharmaka. In: Schwabe U, Paffrath D, editors. Arzneiverordnungsreport 1998. Berlin: Springer, 1998: 455–78

    Google Scholar 

  14. Freemantle N, Anderson IM, Young P. Predictive value of pharmacological activity for the relative efficacy of antidepressant drugs. Br J Psychiatry 2000; 177: 292–302

    Article  PubMed  CAS  Google Scholar 

  15. Barbui C, Hotopf M. Amitriptyline vs the rest: still the leading antidepressant after 40 years of randomised controlled trials. Br J Psychiatry 2001; 178: 129–44

    Article  PubMed  CAS  Google Scholar 

  16. Ulrich S, Wurthmann C, Brosz M, et al. The relationship between serum concentration and therapeutic effect of haloperidol in patients with acute schizophrenia: a review. Clin Pharmacokinet 1998; 34: 227–63

    Article  PubMed  CAS  Google Scholar 

  17. Quitkin FM, Rabkin JG, Gerald J, et al. Validity of clinical trials of antidepressants. Am J Psychiatry 2000; 157: 327–37

    Article  PubMed  CAS  Google Scholar 

  18. Medawar C. The antidepressant web. Int J Risk Saf Med 1997; 10: 75–126

    Google Scholar 

  19. Medical Research Council Clinical Psychiatry Committee. Clinical trial of the treatment of depressive illness. BMJ 1965; 1: 881–6

    Article  Google Scholar 

  20. Baumann P, Jonzier-Perey M, Koeb L, et al. Amitriptyline pharmacokinetics and clinical response: metabolic polymorphism assessed by hydroxylation of debrisoquine and mephenytoin. Int Clin Psychopharmacol 1986; 1: 102–12

    Article  PubMed  CAS  Google Scholar 

  21. Breyer-Pfaff U, Gaertner HJ, Giedke H. Plasma levels, psychophysiological variables, and clinical response to amitriptyline. Psychiatr Res 1982; 6: 223–34

    Article  CAS  Google Scholar 

  22. Breyer-Pfaff U, Gaertner HJ, Kreuter F, et al. Antidepressive effect and pharmacokinetics of amitriptyline with consideration of unbound drug and 10-hydroxynortriptyline plasma levels. Psychopharmacology 1982; 76: 240–4

    Article  PubMed  CAS  Google Scholar 

  23. Breyer-Pfaff U, Giedke H, Gaertner HJ, et al. Validation of a therapeutic plasma level range in amitriptyline treatment of depression. J Clin Psychopharmacol 1989; 9: 116–21

    Article  PubMed  CAS  Google Scholar 

  24. Burch JE, Ahmed O, Hullin RP, et al. Antidepressive effect of amitriptyline treatment with plasma drug levels controlled within three different ranges. Psychopharmacology 1988; 94: 197–205

    Article  PubMed  CAS  Google Scholar 

  25. Coppen A, Ghose K, Jorgensen A. Pharmacokinetics and pharmacodynamics of amitriptyline in depression. Prog Neuropsychopharmacol 1979; 3: 191–9

    Article  PubMed  CAS  Google Scholar 

  26. Click MA, Zisook S. Amoxapine and amitriptyline: serum levels and clinical response in patients with primary unipolar depression. J Clin Psychiaty 1982; 43: 369–71

    Google Scholar 

  27. Cournoyer G, De Montigny C, Ouellette J, et al. A comparative double-blind controlled study of trimipramine and amitriptyline in major depression: lack of correlation with 5-hydroxytryptamine reuptake blockade. J Clin Psychopharmacol 1987; 7: 385–93

    Article  PubMed  CAS  Google Scholar 

  28. Corona GL, Fenoglia L, Pinelli P, et al. Amitriptyline and nortriptyline plasma levels and therapeutic response in depressed women. Pharmacopsychiatria 1977; 10: 299–308

    Article  CAS  Google Scholar 

  29. Corona GL, Pinelli P, Zerbi F, et al. Amitriptyline, nortriptyline plasma levels and clinical response in women with affective disorders. Pharmacopsychiatria 1980; 13: 102–10

    Article  CAS  Google Scholar 

  30. Corona GL, Zerbi F, Pinelli P, et al. Amitriptyline and nortriptyline plasma levels monitoring: perspective in clinical practice. Commun Psychopharmacol 1980; 4: 309–16

    PubMed  CAS  Google Scholar 

  31. Corona GL, Cucchi ML, Fratini P, et al. Aspects of amitriptyline and nortriptyline plasma levels monitoring in depression. Psychopharmacology 1990; 100: 334–8

    Article  PubMed  CAS  Google Scholar 

  32. Edelbroek PM, Zitman FG, Schreuder JN, et al. Amitriptyline metabolism in relation to antidepressant effect. Clin Pharmacol Ther 1984; 35: 467–73

    Article  PubMed  CAS  Google Scholar 

  33. Galuszko P, Jakitowicz J, Landowski J, et al. Plasma amitriptyline levels and its therapeutic effect in endogenous depression. Psychiar Pol 1987; 21: 110–4

    CAS  Google Scholar 

  34. Garaj V, Frank V, Drimalova M, et al. Relation of plasma amitriptyline and nortriptyline levels to the therapeutic response in endogenous depression. Cesk Psychiatr 1986; 82: 307–12

    PubMed  CAS  Google Scholar 

  35. Jakitowicz J. The amitriptyline plasma levels and therapeutic response in patients with affective illness. Psychiat Pol 1991; 25: 14–20

    Google Scholar 

  36. Jungkunz G, Kuß HJ. On the relationship of nortriptyline: amitriptyline ratio to clinical improvement of amitriptyline treated depressive patients. Pharmakopsychiatr 1980; 13: 111–6

    Article  CAS  Google Scholar 

  37. Kocsis JH, Hanin I, Bowden C, et al. Imipramine and amitriptyline plasma concentrations and clinical response in major depression. Br J Psychiatry 1986; 148: 52–7

    Article  PubMed  CAS  Google Scholar 

  38. Kupfer DJ, Hanin I, Spiker D, et al. Amitriptyline plasma levels and clinical response in primary depression: II. Commun Psychopharmacol 1978; 2: 441–50

    PubMed  CAS  Google Scholar 

  39. Leclerc P, Carrier G, Billon B, et al. Tricyclic antidepressant plasma levels monitoring in daily practice: the Sherbrooke experience [abstract]. Clin Biochem 1983; 16: 118

    Google Scholar 

  40. Lehmann LS, Bowden CL, Redmont FC, et al. Amitriptyline and nortriptyline response profiles in unipolar depressed patients. Psychopharmacology 1982; 77: 193–7

    Article  PubMed  CAS  Google Scholar 

  41. Liisberg P, Mose H, Amdisen A, et al. A clinical trial comparing sustained release amitriptyline (Amitriptyline, retard) and conventional amitriptyline tablets (Amitriptylin) in endogenously depressed patients with simultaneous determination of serum levels of amitriptyline and nortriptyline. Acta Psychiatr Scand 1978; 57: 426–35

    Article  PubMed  CAS  Google Scholar 

  42. Liu P. Relation of plasma levels and clinical response to amitriptyline in treating endogenous depression. Chin J Neurol Psychiatry 1988; 21: 263–6

    CAS  Google Scholar 

  43. Loudon JB, Tiplady B, Ashcroft GW, et al. Zimelidine and amitriptyline in the treatment of depressive illness in general practice. Acta Psychiatr Scand Suppl 1981; 290: 454–63

    Article  PubMed  CAS  Google Scholar 

  44. Mendlewicz J, Linkowski P, Rees JA. A double-blind comparison of dothiepin and amitriptylin in patients with primary affective disorder: serum levels and clinical response. Br J Psychiatry 1980; 136: 154–60

    Article  PubMed  CAS  Google Scholar 

  45. Miljkovic B, Pokrajac M, Timotijevic I, et al. Clinical response and plasma concentrations of amitriptyline and its metabolite-nortriptyline in depressive patients. Eur J Drug Metab Pharmacokinet 1996; 21: 251–5

    Article  PubMed  CAS  Google Scholar 

  46. Monteleone P, Fabrazzo M. Blood levels of mianserin and amitriptyline and clinical response in aged depressed patients. Pharmacopsychiatry 1994; 27: 238–41

    Article  PubMed  CAS  Google Scholar 

  47. Montgomery SA, McAuley R, Rani SJ, et al. Amitriptyline plasma concentrations and clinical response. BMJ 1979; 27: 230–1

    Article  Google Scholar 

  48. Montgomery SA, McAuley R, Montgomery DB, et al. Pharmacokinetics and efficacy of maprotiline and amitriptyline in endogenous depression: a double-blind controlled trial. Clin Ther 1980; 3: 292–310

    PubMed  CAS  Google Scholar 

  49. Moyes IC, Ray RL, Moyes RB. Plasma levels and clinical improvement: a comparative study of clomipramine and amitriptyline in depression. Postgrad Med J 1980; 56 Suppl. 1: 127–9

    PubMed  Google Scholar 

  50. Olig RM, Staton RD, Beatty WW, et al. Antidepressant treatment of children: clinical relapse is unrelated to tricyclic plasma concentrations. Percept Mot Skills 1985; 60: 879–89

    Article  PubMed  CAS  Google Scholar 

  51. Pidrman V, Krpalek P. Levels of amitriptyline and its metabolism in the treatment of depression. Cesk Psychiatr 1991; 87: 209–18

    PubMed  CAS  Google Scholar 

  52. Quednow B, Walter H, Genz A, et al. Amitriptyline levels and clinical effects. Agressologie 1981; 22: 15–8

    PubMed  CAS  Google Scholar 

  53. Rao ML, Deister A, Laux G, et al. Low serum levels of tricyclic antidepressants in amitriptyline and doxepin treated inpatients with depressive syndromes are associated with non-response. Pharmacopsychiatria 1996; 29: 97–102

    Article  CAS  Google Scholar 

  54. Rickels K, Weise C, Case G, et al. Tricyclic plasma levels in depressed outpatients treated with amitriptyline. Psychopharmacology 1983; 80: 14–8

    Article  PubMed  CAS  Google Scholar 

  55. Robinson DS, Cooper TB, Ravaris CL, et al. Plasma tricyclic drug levels in amitriptyline-treated depressed patients. Psychopharmacology 1979; 63: 223–31

    Article  PubMed  CAS  Google Scholar 

  56. Robinson DS, Cooper TB, Howard D, et al. Amitriptyline and hydroxylated metabolite plasma levels in depressed outpatients. J Clin Psychopharmacol 1985; 5: 83–8

    PubMed  CAS  Google Scholar 

  57. Rowan PR, Paykel ES, Marks V, et al. Serum levels and response to amitriptyline in depressed out-patients. Neuropsychobiology 1984; 12: 9–15

    Article  PubMed  CAS  Google Scholar 

  58. Schnyder C, Baumann P, Jonzier-Perey M, et al. Use of amitriptyline in low dose in gerontopsychiatry. Schweiz Med Wochenschr 1985; 115: 1128–34

    PubMed  CAS  Google Scholar 

  59. Shimoda K, Yasuda S, Morita S, et al. Significance of monitoring plasma levels of amitriptyline, and its hydroxylated and desmethylated metabolites in prediction of the clinical outcome of depressive state. Psychiatry Clin Neurosci 1997; 51: 35–41

    Article  PubMed  CAS  Google Scholar 

  60. Ulrich S, Northoff G, Wurthmann C, et al. Serum levels of amitriptyline and therapeutic effect in non-delusional moderate to severely depressed in-patients: a therapeutic window relationship. Pharmacopsychiatria 2001; 34: 33–40

    Article  CAS  Google Scholar 

  61. Vandel S, Vandel B, Sandoz M, et al. Clinical response and plasma concentration of amitriptyline and its metabolite nor-triptyline. Eur J Clin Pharmacol 1978; 14: 185–90

    Article  PubMed  CAS  Google Scholar 

  62. Gurney C, Roth M, Garside RF, et al. Studies in the classification of affective disorders. Br J Psychiatry 1972; 121: 162–6

    Article  PubMed  CAS  Google Scholar 

  63. Vandel S, Vandel B, Allers G, et al. Interaction between Amitriptyline and phenothiazine in man: effect on plasma concentration of amitriptyline and its metabolite nortriptyline and the correlation with clinical response. Psychopharmacology 1979; 65: 187–90

    Article  PubMed  CAS  Google Scholar 

  64. Zhang X. Serum concentrations of amitriptyline and its metabolites and clinical effect in depressive patients. Chin J Neurol Psychiatry 1992; 25: 196–8

    CAS  Google Scholar 

  65. Ziegler VE, Clayton PJ, Biggs JT. A comparison study of amitriptyline and nortriptyline with plasma levels. Arch Gen Psychiatry 1977; 34: 607–12

    Article  PubMed  CAS  Google Scholar 

  66. D’Agostino RB, Weintraub M. Meta-analysis: a method for synthesizing research. Clin Pharmacol Ther 1995; 58: 605–15

    Article  PubMed  Google Scholar 

  67. Cook RJ, Sackett DL. The number needed to treat: a clinically useful measure of treatment effect. BMJ 1995; 310: 452–4

    Article  PubMed  CAS  Google Scholar 

  68. Ziegler VE, Meyer DA, Rosen SH, et al. Amitriptyline dosage schedule, sampling time and tricyclic plasma levels. Br J Psychiatry 1977; 131: 168–71

    Article  PubMed  CAS  Google Scholar 

  69. Dawling S. Monitoring of tricyclic antidepressant therapy. Clin Biochem 1982; 15: 56–61

    Article  PubMed  CAS  Google Scholar 

  70. Wallace JE, Hamilton HE, Goggin LK, et al. Determination of amitriptyline at nanogram levels in serum by electron capture gas-liquid chromatography. Anal Chem 1975; 47: 1516–9

    Article  PubMed  CAS  Google Scholar 

  71. Mould GP, Stout G, Aherne GW, et al. Radioimmunoassay of amitriptyline and nortriptyline in body fluids. Ann Clin Biochem 1978; 15: 221–5

    PubMed  CAS  Google Scholar 

  72. Rao ML, Staberock U, Baumann P, et al. Monitoring tricyclic antidepressant concentration in serum by FPIA compared with GC and HPLC. Clin Chem 1994; 40: 929–33

    PubMed  CAS  Google Scholar 

  73. Davis JM, Wang Z. Power analysis for correlation of plasma level and clinical data. In: Gram LF, Balant LP, Meltzer HY, et al., editors. Clinical pharmacology in psychiatry. Berlin: Springer, 1993: 253–64

    Chapter  Google Scholar 

  74. Stolley PD, Strom BL. Sample size calculations for clinical pharmacological studies. Clin Pharmacol Ther 1986; 39: 489–90

    Article  PubMed  CAS  Google Scholar 

  75. Preskorn SH. Factors affecting the biphasic concentration: effect relationships of tricyclic antidepressants. In: Dahl S, Usdin E, editors. Clinical pharmacology in psychiatry. London: McMillan, 1981: 297–306

    Google Scholar 

  76. Preskorn SH, Fast GA. Therapeutic drug monitoring for antidepressants: efficacy, safety, and cost effectiveness. J Clin Psychiatry 1991; 52 Suppl. 6: 23–33

    PubMed  Google Scholar 

  77. Meador-Woodruff JH, Akil M, Wisner-Carlson R, et al. Behavioral and cognitive toxicity related to elevated plasma tricyclic antidepressant levels. J Clin Psychopharmacol 1988; 8: 28–32

    Article  PubMed  CAS  Google Scholar 

  78. Meador-Woodruff JH, Grunhaus L. Profound behavioral toxicity due to tricyclic antidepressants. J Nerv Ment Dis 1986; 174: 628–30

    Article  PubMed  CAS  Google Scholar 

  79. Janicak PG, Javaid JI, Davis JM. Neuroleptic plasma levels: methodological issues, study design, and clinical applicability. In: Marder SR, Davis JM, Janicak PG, editors. Clinical use of neuroleptic plasma levels. Washington: Am Psych Press, 1993: 17–44

    Google Scholar 

  80. Teicher MH, Baldessarini RJ. Selection of neuroleptic dosage. Arch Gen Psychiatry 1985; 42: 636–7

    Article  PubMed  CAS  Google Scholar 

  81. Hirschfeld RMA. Psychosocial predictors of outcome in depression. In: Bloom FE, Kupfer DJ, editors. Psychopharmacology: the 4th generation of progress. New York: Raven, 1995: 1113–21

    Google Scholar 

  82. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996; 17: 1–12

    Article  PubMed  CAS  Google Scholar 

  83. Bollini P, Pampallona S, Tibaldi G, et al. Effectiveness of antidepressants: meta-analysis of dose-effect relationships in randomised clinical trials. Br J Psychiatry 1999; 174: 297–303

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Professor F.P. Meyer on the occasion of his 65th birthday and retirement as the head of the Institute of Clinical Pharmacology, Otto-von-Guericke University, Magdeburg, Germany. This work was supported by the Bundesministerium für Bildung, Forschung und Technologie of Germany under the code number 01ZZ9510. The authors thank Dr. Zhaoheng Ge, Institute of Pharmacology and Toxicology, Beijing, China, for the translation of Chinese references, and Dr. Slavomir Vosika, International Commission for the Protection of the River Elbe, Magdeburg, for the translation of Czech references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Ulrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulrich, S., Läuter, J. Comprehensive Survey of the Relationship Between Serum Concentration and Therapeutic Effect of Amitriptyline in Depression. Clin Pharmacokinet 41, 853–876 (2002). https://doi.org/10.2165/00003088-200241110-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200241110-00004

Keywords

Navigation