Skip to main content

The Mucosa of the Small Intestine

How Clinically Relevant as an Organ of Drug Metabolism?

Abstract

The intestinal mucosa is capable of metabolising drugs via phase I and II reactions. Increasingly, as a result of in vitro and in vivo (animal and human) data, the intestinal mucosa is being implicated as a major metabolic organ for some drugs. This has been supported by clinical studies of orally administered drugs (well-known examples include cyclosporin, midazolam, nifedipine and tacrolimus) where intestinal drug metabolism has significantly reduced oral bioavailability.

This review discusses the intestinal properties and processes that contribute to drug metabolism. An understanding of the interplay between the processes controlling absorption, metabolism and P-glycoprotein-mediated efflux from the intestinal mucosa into the intestinal lumen facilitates determination of the extent of the intestinal contribution to first-pass metabolism. The clinical relevance of intestinal metabolism, however, depends on the relative importance of the metabolic pathway involved, the therapeutic index of the drug and the inherent inter- and intra-individual variability. This variability can stem from genetic (metabolising enzyme polymorphisms) and/or non-genetic (including concomitant drug and food intake, route of administration) sources. An overwhelming proportion of clinically relevant drug interactions where the intestine has been implicated as a major contributor to first-pass metabolism involve drugs that undergo cytochrome P450 (CYP) 3A4-mediated biotransformation and are substrates for the efflux transporter P-glycoprotein.

Much work is yet to be done in characterising the clinical impact of other enzyme systems on drug therapy. In order to achieve this, the first-pass contributions of the intestine and liver must be successfully decoupled.

This is a preview of subscription content, access via your institution.

Table I
Table II
Fig. 1
Table III
Fig. 2
Fig. 3

References

  1. Ilett KF, Tee LB, Reeves PT, et al. Metabolism of drags and other xenobiotics in the gut lumen and wall. Pharmacol Ther 1990; 46: 67–93

    PubMed  Article  CAS  Google Scholar 

  2. Dubey RK, Singh J. Localization and characterization of drag-metabolizing enzymes along the villus-crypt surface of the rat small intestine. I. Monooxygenases. Biochem Pharmacol 1988; 37: 169–76

    PubMed  Article  CAS  Google Scholar 

  3. Dubey RK, Singh J. Localization and characterization of drug-metabolizing enzymes along the villus-crypt surface of the rat small intestine. II. Conjugases. Biochem Pharmacol 1988; 37: 177–84

    PubMed  Article  CAS  Google Scholar 

  4. Watkins PB, Wrighton SA, Schuetz E, et al. Identification of glucocorticoid-inducible cytochrome P-450 in the intestinal mucosa of rats and man. J Clin Invest 1987; 80: 1029–36

    PubMed  Article  CAS  Google Scholar 

  5. Hebert MF, Roberts JP, Prueksaritanont T, et al. Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther 1992; 52: 453–7

    PubMed  Article  CAS  Google Scholar 

  6. Wu C-Y, Benet LZ, Herbert MF, et al. Differentiation of absorption and first-pass gut metabolism in humans: studies with cyclosporin. Clin Pharmacol Ther 1995; 58: 492–7

    PubMed  Article  CAS  Google Scholar 

  7. Paine MF, Shen DD, Kunze KL, et al. First-pass metabolism of midazolam by human intestine. Clin Pharmacol Ther 1996; 60: 14–24

    PubMed  Article  CAS  Google Scholar 

  8. Floren LC, Berkersky I, Benet LZ, et al. Tacrolimus oral bioavailability doubles with coadministration of ketoconazole. Clin Pharmacol Ther 1997; 62: 41–9

    PubMed  Article  CAS  Google Scholar 

  9. Doherty MM, Pang KS. Route-dependent metabolism of morphine in the vascularly perfused rat small intestine preparation. Pharm Res 2000; 17: 290–7

    Article  Google Scholar 

  10. Barr WH, Riegelman S. Intestinal drug absorption and metabolism II: kinetic aspects of intestinal glucuronide conjugation. J Pharm Sci 1970; 59: 164–8

    PubMed  Article  CAS  Google Scholar 

  11. Thummel KE, O’Shea D, Paine MF, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP 3A4-medated metabolism. Clin Pharmacol Ther 1996; 59: 491–502

    PubMed  Article  CAS  Google Scholar 

  12. Paine MF, Khahghi M, Fisher JM, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther 1997; 283: 1552–62

    PubMed  CAS  Google Scholar 

  13. Doherty MM, Pang KS. First-pass effect: significance of the intestine for absorption and metabolism. Drug Chem Toxicol 1997; 20: 329–44

    PubMed  Article  CAS  Google Scholar 

  14. Lampen A, Zhang Y, Hackbarth I, et al. Metabolism and transport of the macrolide sirolimus in the small intestine. J Pharmacol Ther 1998; 285: 1104–12

    CAS  Google Scholar 

  15. Benet LZ, Izumi T, Zhang Y, et al. Intestinal MDR transport proteins and P-450 enzymes as barriers to oral delivery. J Contr Res 1999, 62; 25–31

    Article  CAS  Google Scholar 

  16. Kolars JC, Awni WM, Merion RM, et al. First-pass metabolism of cyclosporin by the gut. Lancet 1991; 338: 1488–90

    PubMed  Article  CAS  Google Scholar 

  17. Holtbecker N, Fromm M, Kroemer HK, et al. The nifedipine-rifampicin interaction. Evidence for induction of gut wall metabolism. Drug Metab Dispos 1996; 24: 1121–3

    PubMed  CAS  Google Scholar 

  18. Hashimoto Y, Sasa H, Shimomura M, et al. Effect of intestinal and hepatic metabolism on the bioavailability of tacrolimus in rats. Pharm Res 1998; 15: 1609–13

    PubMed  Article  CAS  Google Scholar 

  19. Pang KS, Chiba M. Metabolism: scaling-up from in vitro to organ and whole body. In: Wellington PG, Balant LP, editors. Handbook of experimental pharmacology: pharmacokinetics of drugs. Vol 110. Berlin: Springer-Verlag, 1994: 101–87

    Google Scholar 

  20. Klippert P, Borm P, Noordhoek J. Prediction of intestinal first-pass effect of phenacetin in the rat from kinetic data-correlation with in vivo data using mucosal blood flow. Biochem Pharmacol 1982; 3: 2545–8

    Article  Google Scholar 

  21. Fleisher D, Li C, Zhou Y Drug, meal and formulation interactions influencing drug absorption after oral administration. Clinical implications. Clin Pharmacokinet 1999; 36: 233–54

    PubMed  Article  CAS  Google Scholar 

  22. Watkins PB. The barrier function of CYP3A4 and P-glycoprotein in the small bowel. Adv Drug Del Rev 1997; 27: 161–70

    Article  CAS  Google Scholar 

  23. Lin JH, Chiba M, Baillie TA. Is the role of the small intestine in first-pass metabolism over-emphasized? Pharmacol Rev 1999; 51: 135–58

    PubMed  CAS  Google Scholar 

  24. Madara JL, Trier JS. The functional morphology of the mucosa of the small intestine. In: Johnson LR, Alpers DH, Christensen J, et al., editors. Physiology of the gastrointestinal tract. New York: Raven, 1994: 1577–622

    Google Scholar 

  25. Tsuji A, Tamai I. Carrier-mediated intestinal absorption of drugs. Pharm Res 1996; 13: 963–77

    PubMed  Article  CAS  Google Scholar 

  26. Hebden JM, Gilchrist PJ, Perkins AC, et al. Stool water content and colonic drug absorption: contrasting the effects of lactulose and codeine. Pharm Res 1999; 18: 1254–9

    Article  Google Scholar 

  27. Oh DM, Han HK, Amidon GL. Drug transport and targetting: intestinal transport. Pharm Biotechnol 1999; 12: 59–88

    PubMed  Article  CAS  Google Scholar 

  28. Pauletti GM, Gangwar S, Siahaan TJ, et al. Improvement of oral bioavailability: peptidominetics and prodrug strategies. Adv Drug Del Rev 1997; 27: 235–56

    Article  Google Scholar 

  29. Zhou SY, Piyapolrungroj N, Pao L-H, et al. Regulation of paracellular absorption of cimetidine and 5-aminosalicylate in rat intestine. Pharm Res 1999; 16: 1781–5

    PubMed  Article  CAS  Google Scholar 

  30. Somogyi A, Gugler R. Clinical pharmacokinetics of cimetidine. Clin Pharmacokinet 1983; 8: 463–95

    PubMed  Article  CAS  Google Scholar 

  31. Benet LZ, Wu C-Y, Hebert MF, et al. Intestinal drug metabolism and antitransport processes: a potential paradigm shift in oral drug delivery. J Control Rel 1996; 39: 139–43

    Article  CAS  Google Scholar 

  32. Goldstein LJ, Pastan I, Gottesman MM. Multidrug resistance in human cancer. Crit Rev Oncol Hematol 1992; 12: 243–53

    PubMed  Article  CAS  Google Scholar 

  33. Wacher VJ, Silverman JA, Zhang Y, et al. Role of P-glycoprotein and cytochrome P4503A in limiting oral absorption of peptides and peptidomimetic. J Pharm Sci 1998; 87: 1322–30

    PubMed  Article  CAS  Google Scholar 

  34. Kolars JC, Schmiedlin-Ren P, Dobbins III WO, et al. Heterogeneity of cytochrome P450IIIA expression in gut epithelia. Gastroenterology 1992; 102: 1186–98

    PubMed  CAS  Google Scholar 

  35. Hebert MF. Contributions of hepatic and intestinal metabolism and P-glycoprotein to cyclosporine and tacrolimus oral drug delivery. Adv Drug Del Rev 1997; 27: 201–14

    Article  CAS  Google Scholar 

  36. Fojo AT, Slamon UK, Poplack DG, et al. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci U S A 1987; 84: 265–9

    PubMed  Article  CAS  Google Scholar 

  37. Wacher VL, Wu C-Y, Benet LZ. Overlapping substrate specificities and tissue distribution of cytochrome P4503A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog 1995; 13: 129–34

    PubMed  Article  CAS  Google Scholar 

  38. Borst P, Evers R, Kool M, et al. A family of drug transporters: the multidrug resistance-associated proteins. J Nat Cancer Instit 2000; 92: 1295–302

    Article  CAS  Google Scholar 

  39. Cole SP, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 1992; 258: 1650–4

    PubMed  Article  CAS  Google Scholar 

  40. van den Heuvel-Eibrink MM, Sonneveld P, Pieters R. The prognostic significance of membrane transport-associated multidrug resistance (MDR) proteins in leukemia. Int J Clin Pharm Ther 2000; 38: 94–110

    Google Scholar 

  41. Paul S, Breuninger LM, Tew KD, et al. ATP-dependent uptake of natural product cytotoxic drugs by membrane vesicles establishes MRP as a broad specificity transporter. Proc Natl Acad Sci U S A 1996; 93: 6929–34

    PubMed  Article  CAS  Google Scholar 

  42. Evers R, Zaman GJR, vanDeemter L, et al. Basoleteral localization and export activity of the human multidrug resistance-associated protein in polarized pig kidney cells. J Clin Invest 1996: 97; 1211–8

    PubMed  Article  CAS  Google Scholar 

  43. Van Aubel RAHM, Hartog A, Bindels RJM, et al. Expression and immunolocalisation of multidrug resistance protein 2 in rabbit small intestine. Eur J Pharmacol 2000; 400: 195–8

    PubMed  Article  Google Scholar 

  44. Saitoh H, Fujisaki H, Aunst BJ, et al. Restricted intestinal absorption of some beta-lactam antibiotics by an energy-dependent efflux system in rat intestine. Pharm Res 1997; 14: 645–9

    PubMed  Article  CAS  Google Scholar 

  45. Schinkel AH. The physiological function of drug-transporting P-glycoproteins. Cancer Biol 1997; 8: 161–70

    Article  CAS  Google Scholar 

  46. Hirohashi T, Suzuki H, Sugiyama Y. Characterisation of the transport properties of cloned rat multidrug resistance-associated protein 3 (MRP3). J Biol Chem 1999; 274: 15181–5

    PubMed  Article  CAS  Google Scholar 

  47. Makhey VD, Guo A, Norris DA, et al. Characterization of the regional intestinal kinetics of drug efflux in rat and human intestine and in Caco-2 cells. Pharm Res 1998; 15: 1160–7

    PubMed  Article  CAS  Google Scholar 

  48. Sugiwara I, Akiyama S, Scheper RJ, et al. Lung resistance protein (LRP) expression in human normal tissues in comparison with that of MDR1 and MRP. Cancer Lett 1997; 112: 23–31

    Article  Google Scholar 

  49. Krishna Dr, Klotz U. Extrahepatic metabolism of drugs in humans. Clin Pharmacokinet 1994; 26: 144–60

    PubMed  Article  CAS  Google Scholar 

  50. Thummel KE, Kunze KL, Shen DD. Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction. Adv Drug Del Rev 1997; 27: 99–127

    Article  CAS  Google Scholar 

  51. Guengerich FP. Comparisons of catalytic selectivity of cytochrome P450 subfamily from different species. Chem Biol Interact 1997; 106: 161–82

    PubMed  Article  CAS  Google Scholar 

  52. McDonnell WM, Scheiman JM, Traber PG. Induction of cytochrome P4501 Agenes (CYP1A) by omeprazole in the human alimentary tract. Gastroenterology 1992: 103; 1509–16

    PubMed  CAS  Google Scholar 

  53. Lown KS, Mayo RR, Leichtman AB, et al. Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clin Pharmacol Ther 1997; 62: 248–60

    PubMed  Article  CAS  Google Scholar 

  54. Peters WHM, Kremers PG. Cytochromes P450 in the intestinal mucosa of man. Biochem Pharmacol 1989; 38: 1535–8

    PubMed  Article  CAS  Google Scholar 

  55. Prueksantanont T, Gorham LM, Hochman JM, et al. Comparative studies of drug-metabolizing enzymes in dog, monkey and human small intestines, and in Caco-2 cells. Drug Metab Dispos 1996; 24: 634–42

    Google Scholar 

  56. Windmill KF, McKinnon RA, Zhu XY, et al. The role of xenobiotic metabolising enzymes in arylamine toxicity and carcinogenesis: functional and localizational studies. Mutation Res 1997; 376: 153–60

    PubMed  Article  CAS  Google Scholar 

  57. Zhang Q-Y, Dunbar D, Ostrowska A, et al. Characterisation of human small intestinal cytochromes P-450. Drug Metab Dispos 1999; 27: 804–9

    PubMed  CAS  Google Scholar 

  58. Paine MF, Schmiedlin-Rem P, Watkins PB. Cytochrome P4501A1 expression in human small bowel: interindividual variation and inhibition by ketoconazole. Drug Metab Dispos 1999; 27: 360–4

    PubMed  CAS  Google Scholar 

  59. De Waziers I, Cugnenc PH, Yang SC, et al. Cytochrome P450 isoenzymes, epoxide hydrolase and gluthathione transferases in rat and human hepatic and extrahepatic tissues. J Pharmacol Exp Ther 1990; 253: 287–94

    Google Scholar 

  60. Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Effects of the antifungal agents on oxidative drug metabolism. Clin Pharmacokinet 2000; 28: 111–80

    Article  Google Scholar 

  61. Wrighton SA, Stevens JC, Becker GW, et al. Isolation and characterization of human liver cytochrome P4502C19: correlation between 2C19 and (S)-mephenytoin 4-hydroxylation. Arch Biochem. Biophys 1993; 360: 240–5

    Google Scholar 

  62. Kolars JC, Schmiedlin-Ren P, Schuetz JD, et al. Identification of rifampicin-inducible P450IIIA (CYP3A4) in human small bowel enterocytes. J Clin Invest 1992; 90: 1871–8

    PubMed  Article  CAS  Google Scholar 

  63. Benet LZ, Kroetz DL, Sheiner LB. Pharmacokinetics. The dynamics of drug absorption, disposition and elimination. In: Hardman JG, Limbird LE, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill, 1995: 3–27

    Google Scholar 

  64. Lowen KS, Kolars JC, Thummel KE, et al. Interpatient heterogeneity in expression of CYP 3A4 and CYP 3A5 in small bowel: lack of prediction by the erythromycin breath test. Drug Metab Dispos 1994; 22: 947–55

    Google Scholar 

  65. Lowen KS, Ghosh M, Watkins PB. Sequences of intestinal and hepatic and cytochrome P4503A4 cDNAs are identical. Drug Metab Dispos 1988; 26: 185–7

    Google Scholar 

  66. Tsunoda SM, Velez RL, von Moltke LL, et al. Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther 1999; 66: 461–71

    PubMed  Article  CAS  Google Scholar 

  67. Pacifici GM, Eligi M, Giuliani L. (+) and (−) Terbutaline are sulphated at a higher rate in human intestine than in the liver. Eur J Clin Pharmacol 1993; 45: 483–7

    PubMed  Article  CAS  Google Scholar 

  68. Galijatovic A, Walle UK, Walle T. Induction of UDP-glucuronosyltransferase by the flavinoids chrysin and quercetin in caco-2 cells. Pharm Res 2000; 17: 21–5

    PubMed  Article  CAS  Google Scholar 

  69. Komiya I, Park JY, Kamani A. Quantitative mechanistic studies in simultaneous fluid flow and intestinal absorption using steroids as model solutes. Int J Pharm 1980; 4: 249–62

    Article  CAS  Google Scholar 

  70. Nogami H, Hanano M, Yamada H. Studies on absorption and excretion of drugs. IV Absorption of various sulfonamides from the rat small intestine by the perfusion method in vivo. Chem Pharm Bull 1963; 11: 395–401

    Article  CAS  Google Scholar 

  71. Arimori K, Nakano M. Transport of theophylline from blood to the intestinal lumen following IV administration to rats. J Pharmacobio-Dyn 1985; 8: 324–7

    PubMed  Article  CAS  Google Scholar 

  72. Gan LS, Mosely MA, Khosla B, et al. CYP3A-like cytochrome P450-mediated metabolism and polarized efflux of cyclosporin A in caco-2 cells: interaction between the two biochemical barriers to intestinal transport. Drug Metab Dispos 1996; 24: 344–9

    PubMed  CAS  Google Scholar 

  73. Choi YM, Chung SM, Chiou WL. First-pass accumulation of salicylic acid in gut tissue after absorption in anesthetized rat. Pharm Res 1995; 12: 1323–7

    PubMed  Article  CAS  Google Scholar 

  74. Tamai I, Tsuji A. Carrier-mediated approaches for oral drug delivery. Adv Drug Del Rev 1996; 20: 5–32

    Article  CAS  Google Scholar 

  75. Saitoh H, Gerard C, Aungst BJ. The secretory intestinal transport of some beta-lactam antibiotics and anionic compounds: a mechanism contributing to poor oral absorption. J Pharmacol Exp Ther 1996; 278: 205–11

    PubMed  CAS  Google Scholar 

  76. Hirayama H, Pang KS. First-pass metabolism of gentisamide: influence of intestinal metabolism on hepatic formation of conjugates. Studies in the once-through vascularly perfused rat intestine-liver preparation. Drug Metab Dispos 1990; 18: 580–7

    PubMed  CAS  Google Scholar 

  77. Dechelottte P, Sabouraud A, Sandouk P, et al. Uptake, 3-, and 6-glucuronidation of morphine in isolated cells from stomach, intestine, colon, and liver of the guinea pig. Drug Metab Dispos 1993; 21: 13–7

    Google Scholar 

  78. Tamai I, Saheki A, Saitoh R, et al. Nonlinear intestinal absorption of 5-hydroxytryptamine receptor antagonist caused by absorptive and secretory transporters. J Pharm Exp Ther 1997; 283: 108–15

    CAS  Google Scholar 

  79. Wagner JG. Propranolol: pooled Michaelis-Menten parameters and the effect of input rate on bioavailability. Clin Pharmacol Ther 1985; 37: 481–7

    PubMed  Article  CAS  Google Scholar 

  80. Granger DN, Richardson PDI, Kvietys PR, et al. Intestinal blood flow. Gastroenterology 1980; 78: 837–63

    PubMed  CAS  Google Scholar 

  81. Mailman D. Effects of vasoactive intestinal polypeptide on intestinal absorption and blood flow. J Physiol 1978; 279: 121–32

    PubMed  CAS  Google Scholar 

  82. Svanvik J. Mucosal blood circulation and its influence on passive absorption in the small intestine: an experimental study in the cat. Acta Physiol Scand Suppl 1973; 385: 1–43

    PubMed  CAS  Google Scholar 

  83. Micflikier AB, Bond J, Sircar B, et al. Intestinal villus blood flow measured with carbon monoxide and microspheres. Am J Physiol 1976; 230: 916–8

    PubMed  CAS  Google Scholar 

  84. Cong D, Doherty M, Pang KS. A new physiologically based, segregated-flow model to explain route-dependent intestinal metabolism. Drug Metab Dispos 2000; 28: 224–35

    PubMed  CAS  Google Scholar 

  85. Charman WN, Porter CJH, Mithani S, et al. Physicochemical and physiological mechanisms for the effects of food on drug absorption: the effect of lipids and pH. J Pharm Sci 1997; 86: 269–82

    PubMed  Article  CAS  Google Scholar 

  86. Sandstrom R, Karlsson A, Knutson L, et al. Jejunal absorption and metabolism of R/S-verapamil in humans. Pharm Res 1998; 15: 856–62

    PubMed  Article  CAS  Google Scholar 

  87. Hellriegel FT, Bjornsson TD, Hauck WW. Interpatient variability in bioavailability is related to the extent of absorption: implications for bioavailability and bioequivalence studies. Clin Pharmacol Ther 1996; 60: 601–7

    PubMed  Article  CAS  Google Scholar 

  88. Ozdemir V, Kalowa W, Tang BK, et al. Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics 2000; 10: 373–88

    PubMed  Article  CAS  Google Scholar 

  89. Grammatte MD, Oertel R. Intestinal secretion of intravenous talinolol is inhibited by luminal R-verapamil. Clin Pharmacol Ther 1999; 66: 239–45

    Article  Google Scholar 

  90. Gomez DY, Wacher VJ, Tomlanovich SJ, et al. The effects of ketoconazole on the intestinal metabolism and bioavailability of cyclosporine. Clin Pharmacol Ther 1995; 58: 15–9

    PubMed  Article  CAS  Google Scholar 

  91. Gupta SK, Bakran A, Johnson RW, et al. Cyclosporin-erythromycin interaction in renal transplant patients. Br J Clin Pharmacol 1989; 27: 475–81

    PubMed  Article  CAS  Google Scholar 

  92. Ducharme MP, Warbasse LH, Edwards DJ. Disposition of intravenous and oral cyclosporine after administration with grapefruit juice. Clin Pharmacol Ther 1995; 57: 485–91

    PubMed  Article  CAS  Google Scholar 

  93. Ruschitzka F, Meier PJ, Turina M, et al. Acute heart transplant rejection due to Saint John’s wort. Lancet 2000; 355: 548–9

    PubMed  Article  CAS  Google Scholar 

  94. Kupferschmidt HH, Fattinger KE, Ha HR, et al. Grapefruit juice enhances the bioavailability of the HIV protease inhibitor saquinavir in man. Br J Clin Pharmacol 1998; 45: 355–9

    PubMed  Article  CAS  Google Scholar 

  95. Piscitelli SC, Burstein AH, Chaitt D, et al. Indinavir concentrations and St John’s wort. Lancet 2000; 355: 547–9

    PubMed  Article  CAS  Google Scholar 

  96. Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampicin. J Clin Invest 1999; 104: 147–53

    PubMed  Article  CAS  Google Scholar 

  97. Rameis H. On the interaction between phenytoin and digoxin. Eur J Clin Pharmacol 1985; 29: 49–53

    PubMed  Article  CAS  Google Scholar 

  98. Johne A, Brockmoller J, Bauer S, et al. Pharmacokinetic interaction of digoxin with a herbal extract from St John’s wort. Pharmacokinet Drug Dispos 1999; 66: 338–45

    CAS  Google Scholar 

  99. Kupferschmidt HR, Ha WH, Ziegler PL, et al. Interaction between grapefruit juice and midazolam in humans. Clin Pharmacol Ther 1995; 58: 20–8

    PubMed  Article  CAS  Google Scholar 

  100. Backman JT, Rivisto KT, Olkkola KT, et al. The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 1998; 54: 53–8

    PubMed  Article  CAS  Google Scholar 

  101. Bailey DG, Spence JD, Munoz C, et al. Interaction of citrus juices with felodipine and nifedipine. Lancet 1991; 337: 268–9

    PubMed  Article  CAS  Google Scholar 

  102. Bailey DG, Bend JR, Arnold MO, et al. Erythromycin-felodipine interaction: magnitude, mechanism and comparison with grapefruit juice. Clin Pharmacol Ther 1996; 60: 25–33

    PubMed  Article  CAS  Google Scholar 

  103. Lundahl JU, Regardh CG, Edgar B, et al. Effects of grapefruit juice ingestion -pharmacokinetics and haemodynamics of intravenously and orally administered felodipine in healthy men. Eur J Clin Pharmacol 1997; 52: 137–45

    Article  Google Scholar 

  104. Jalava K-M, Olkkola KT, Neuvonen PJ. Itraconazole greatly increases plasma concentrations and effects of felodipine. Clin Pharmacol Ther 1997; 61: 410–5

    PubMed  Article  CAS  Google Scholar 

  105. Bailey DG, Arnold JM, Strong HA, et al. Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics. Clin Pharmacol Ther 1993; 54: 589–94

    PubMed  Article  CAS  Google Scholar 

  106. Rivisto KT, Lilja JJ, Backman JT, et al. Repeated consumption of grapefruit juice considerably increases plasma concentrations of cisapride. Clin Pharmacol Ther 1999; 66: 448–53

    Article  Google Scholar 

  107. Benton RE, Honig PR, Zamani R, et al. Grapefruit juice alters terfenadine pharmacokinetics, resulting in prolongation of repolarization on the electrocardiogram. Clin Pharmacol Ther 1996; 59: 383–8

    PubMed  Article  CAS  Google Scholar 

  108. Zimmermann M, Duruz H, Guinand O, et al. Torsades de pointes after treatment with terfenadine and ketoconazole. Eur Heart J, 1992; 13: 1002–3

    PubMed  CAS  Google Scholar 

  109. Paris DG, Parente TF, Bruschetta HR, et al. Torsades de pointes induced by erythromycin and terfenadine [review]. Am J Emerg Med 1994; 12: 636–8

    PubMed  Article  CAS  Google Scholar 

  110. Neuvonen PJ, Rantola T, Rivisto RT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther 1998; 63: 332–41

    PubMed  Article  CAS  Google Scholar 

  111. Rantola T, Rivisto RT, Neuvonen PJ. Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 1998; 64: 177–82

    Article  Google Scholar 

  112. Lilja JJ, Rivisto RT, Neuvonen PJ. Grapefruit juice-simvastatin interaction: effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors. Clin Pharmacol Ther 1998; 64: 477–83

    PubMed  Article  CAS  Google Scholar 

  113. Rantola T, Rivisto RT, Neuvonen PJ. Grapefruit juice increases serum concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1998; 63: 397–402

    Article  Google Scholar 

  114. Olbricht C, Wanner C, Eisenhauer T, et al. Accumulation of lovastatin, but not pravastatin, in the blood of cyclosporine-treated kidney graft patients after multiple doses. Clin Pharmacol Ther 1997; 62: 311–21

    PubMed  Article  CAS  Google Scholar 

  115. Tobert JA. Rhabdomyolysis in patients receiving lovastatin after cardiac transplantation [letter]. N Engl J Med 1988; 318: 48

    Article  Google Scholar 

  116. Jacobsen W, Rirchner G, Hallensleben R, et al. Small intestinal metabolism of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor lovastatin and comparison with pravastatin. J Pharmacol Exper Ther 1999; 29: 131–9

    Google Scholar 

  117. Melander A, McLean A. Influence of food intake on presystemic clearance of drugs. Clin Pharmacokinet 1983; 8: 286–96

    PubMed  Article  CAS  Google Scholar 

  118. Singh BN. Effect of food on clinical pharmacokinetics. Clin Pharmacokinet 1999: 37; 213–55

    PubMed  Article  CAS  Google Scholar 

  119. Edwards DJ, Fitzsimmons ME, Schuetz EG, et al. 6′7′-Dihydroxybergamottin in grapefruit juice and Seville orange juice: effects on cyclosporine disposition, enterocyte CYP3A4, and P-glycoprotein. Clin Pharmacol Ther 1999; 65: 237–44

    PubMed  Article  CAS  Google Scholar 

  120. Penzak SR, Gubbins PO, Gurley BJ, et al. Grapefruit juice decreases the systemic availability of itraconazole capsules in healthy volunteers. Ther Drug Monit 1999; 21: 304–9

    PubMed  Article  CAS  Google Scholar 

  121. Gross AS, Goh YD, Addison RS, et al. Influence of grapefruit juice on cisapride pharmacokinetics. Clin Pharmacol Ther 1999; 65: 395–401

    PubMed  Article  CAS  Google Scholar 

  122. Takanaga H, Ohnishi A, Murakami H, et al. Relationship between time after intake of grapefruit juice and the effect on pharmacokinetics and pharmacodynamics of nisoldipine in healthy subjects. Clin Pharm Ther 2000; 67: 201–14

    Article  CAS  Google Scholar 

  123. Dresser GK, Bailey DG, Leake BF, et al. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral bioavailability of fexodenaine. Clin Pharmacol Ther 2002; 71: 11–20

    PubMed  Article  CAS  Google Scholar 

  124. van Asperen J, van Teiligen O, Sparreboom A. Enhanced oral bioavailability of paclitaxel in mice treated with the P-glycoprotein blocker SDZ PSC 833. Br J Cancer 1997; 76: 1181–3

    PubMed  Article  Google Scholar 

  125. Schnider AS, Heath LG, Kirmani DD. A phase II/pharmacokinetic analysis of high-dose progesterone in combination with paclitaxel. Cancer Chemother Pharmacol 1999; 44: 259–65

    PubMed  Article  Google Scholar 

  126. Panday N, Hoetelmans RM, van Heeswijk RP, et al. Paclitaxel in the treatment of human immunodeficiency virus 1-associated Kaposi’s sarcoma: drug-drug interactions with protease inhibitors and nonnucleoside reverse transcriptase inhibitor: a case report study. Cancer Chemother Pharmacol 1999; 43: 516–9

    Article  CAS  Google Scholar 

  127. Marathe PH, Salazar DE, Greene DS, et al. Absorption and presystemic metabolism of nefazodone administered at different regions in the gastrointestinal tract of humans. Pharm Res 1995; 12: 1716–21

    PubMed  Article  CAS  Google Scholar 

  128. Yoshigae Y, Imai T, Aso T, et al. Species differences in the disposition of propranolol prodrugs derived from hydrolase activity in intestinal mucosa. Life Sci 1998; 62: 1231–41

    PubMed  Article  CAS  Google Scholar 

  129. Kinirons MT, Crome P. Clinical pharmacokinetic considerations in the elderly. Clin Pharmacokinet 1997; 33: 302–12

    PubMed  Article  CAS  Google Scholar 

  130. Wilkinson GR. The effects of diet, aging and disease-states on presystemic elimination and oral drug bioavailability in humans. Adv Drug Del Rev 1997; 27: 129–59

    Article  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this article and there are no potential conflicts of interest directly relevant to the contents of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret M. Doherty.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Doherty, M.M., Charman, W.N. The Mucosa of the Small Intestine. Clin Pharmacokinet 41, 235–253 (2002). https://doi.org/10.2165/00003088-200241040-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200241040-00001

Keywords

  • Intestinal Mucosa
  • Felodipine
  • Terfenadine
  • Grapefruit Juice
  • Transporter Associate With Antigen Processing