Skip to main content
Log in

Basis of Anti-Infective Therapy

Pharmacokinetic-Pharmacodynamic Criteria and Methodology for Dual Dosage Individualisation

  • Review Articles
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Antimicrobial therapy should be designed on the basis of microbiological, as well as pharmacokinetic, criteria; microbiological parameters provide information about the susceptibility of the pathogen responsible for the infectious process while pharmacokinetic parameters give information about the potential ability of the drug in question to reach and remain at the sites of infection in the body. Microbiological parameters such as the minimum inhibitory concentration, minimum bactericidal concentration, bacterial titre, bactericidal rate and ‘postantibiotic effect’ (PAE) must be considered. Among the pharmacokinetic parameters, the maximum serum concentration at steady state (Cmax ss), area under the concentration-time curve (AUC) and length of time that the serum concentrations exceed a particular value are the most useful in this context.

Different relationships between these parameters, known as efficacy indices, have been established to predict the potential efficacy of antibacterial therapy. Antimicrobial dosage individualisation should be based on the optimisation of the efficacy index that best correlates with patient response. It seems appropriate to establish the degree of correlation among the different efficacy indices and clinical response observed in patients by means of a correlation analysis. This type of analysis can be either retrospective or prospective and may be based on linear or maximum response models. Simulation of the plasma concentration curves obtained with the particular regimen administered offers a methodology which is easy to apply and provides the pharmacokinetic information necessary to calculate the different efficacy indices.

Information about the susceptibility of the pathogen to the antibacterial in question and about the response to the treatment used is also necessary for the correlation analysis. This type of analysis determines which of the indices is best correlated with efficacy and, hence, is the index to be optimised when attempting to individualise antibacterial therapy for different situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schentag JJ, Ballow CH, Paladino JA, et al. Dual individualization with antibiotics: integrated antibiotic management strategies for use in hospitals. In: Evans WE, Schentag JJ, Jusko WJ, editors. Applied pharmacokinetics. 3rd ed. Vancouver (WA): Applied Therapeutics, Inc., 1992: 17.1–20.

    Google Scholar 

  2. Schentag JJ, Nix DE, Adelman MH. Mathematical examination of dual individualization principles: I. Relationships between AUC above MIC and area under the inhibitory curve for cefmenoxime, ciprofloxacin, and tobramicin. Ann Pharmacother 1991; 25: 1050–7.

    CAS  Google Scholar 

  3. Goss TF, Forrest A, Nix DE, et al. Mathematical examination of dual individualization principles: II. The rate of bacterial eradication at the same area under the inhibitory curve is more rapid for ciprofloxacin than for cefmenoxime. Ann Pharmacother 1994; 28: 863–8.

    PubMed  CAS  Google Scholar 

  4. Luzier A, Goss TF, Cumbo TJ, et al. Mathematical examination of dual individualization principles: III. Development of a scoring system for pneumonia staging and quantitation of response to antibiotics: results in cefmenoxime treated patients. Ann Pharmacother 1992; 26: 1358–65.

    PubMed  CAS  Google Scholar 

  5. Reese RE, Douglas RG. Técnicas de laboratorio. Madrid: Díaz de Santos, 1987: 19–40.

    Google Scholar 

  6. Dámaso D. Antibacterianos. Madrid: Marketing Pharm. S.A., 1990: 25–37.

    Google Scholar 

  7. Chow AW, Cheng N, Bartlett KH. In vitro activity of Clostridium difficile to new beta-lactam and quinolone antibiotics. Antimicrob Agents Chemother 1985; 28: 842–4.

    Article  PubMed  CAS  Google Scholar 

  8. Eliopoulus GM, Eliopoulus CT. Quinolone antimicrobial agents: activity in vitro. In: Wolfson JS, Hopper DC, editors. Quinolone antimicrobial agents. Washington, DC: American Society for Microbiology, 1989: 35–71.

    Google Scholar 

  9. Barry AL, Jones RN, Thorsberry C. In vitro activities of azithomycin (Cl-62.993), doxithromicin (A-56268;TE.031), erithomycin, roxithromicn and clindamycin. Antimicrob Agents Chemother 1988; 32 (5): 752–4.

    Article  PubMed  CAS  Google Scholar 

  10. Hyatt JM, Nix DE, Schentag JJ. Pharmacokinetic and pharmacodynamic activities of ciprofloxacin against strains of Streptococcus pneumoniae, Staphylococcus aureus and Pseudomonas aeruginosa for which MICs are similar. Antimicrob Agents Chemother 1994; 32 (12): 2730–7.

    Article  Google Scholar 

  11. Garraffo R, Dellamonica P, Drugeon HB, etal. Anew approach to optimal antibiotic dosage regimen by coupling pharmacokinetics and killing curve parameters. Methods Find Exp Clin Pharmacol 1990; 12 (5): 325–32.

    PubMed  CAS  Google Scholar 

  12. Spivey JM. The postantibiotic effect. Clin Pharm 1992; 11: 865–75.

    PubMed  CAS  Google Scholar 

  13. Derendorf H, Hochhaus G. Handbook of pharmacokinetic-pharmacodynamic correlations. Florida: CRC, 1995: 35–6.

    Google Scholar 

  14. Rodvold KA, Piscitelli SC. New oral macrolide and fluoroquinolone antibiotics: an overview of pharmacokinetics, interactions and safety. Clin Infect Dis 1993; 17 Suppl. 1: 192–9.

    Article  Google Scholar 

  15. Foulds G, Shepard RM, Johnson RB. The pharmacokinetics of azithromycin in human serum and tissues. J Antimicrob Chemother 1990; 25 Suppl. A: 73–82.

    Article  PubMed  CAS  Google Scholar 

  16. González Alonso I, González López F. Cinética de las dosis múltiples. In: Berrozpe JD, Lanao JM, Plá-Deffina JM, editors. Biofarmacia y Farmacocinetica. Vol I: Farmacocinetica. Madrid: Sintesis, 1997: 317–41.

  17. Yu Z, Tse FLS. An evaluation of numerical integration algorithms for the estimation of the area under the curve (AUC) in pharmacokinetic studies. Biopharm Drug Dispos 1995; 16: 37–58.

    Article  PubMed  CAS  Google Scholar 

  18. Rowland M, Tozer TN, editors. Clinical pharmacokinetics: concepts and applications. London: Lea and Febiger, 1989.

  19. Forrest A, Chodosh S, Amantea MA, et al. Pharmacokinetics and pharmacodynamics of oral grepafloxacin in patients with acute bacterial exacerbations of chronic bronchitis. J Antimicrob Chemother 1977; 4 Suppl. A: 45–57.

    Google Scholar 

  20. Forrest A, Nix DE, Ballow CH, et al. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 1993 May; 37: 1073–81.

    Google Scholar 

  21. Madaras-Kelly JK, Larson AJ, Rotschafer JC. A pharmacodynamic evaluation of ciprofloxacin and ofloxacin against two strains of Pseudomonas aeruginosa. J Antimicrob Chemother 1996 April; 37: 703–10.

    Google Scholar 

  22. Nix DE, Schentag JJ. Role of pharmacokinetics and pharmacodynamics in the design of dosage schedules for 12-h cefotaxime alone and in combination with other antibiotics. Diagn Microb Infect Dis 1995; 22: 71–6.

    Article  CAS  Google Scholar 

  23. Schentag JJ, Strenkoski-Nix LC, Nix DE, et al. Pharmacodynamic interactions of antibiotics alone and in combination. Clin Infect Dis 1998 Jul; 27: 40–6.

    Google Scholar 

  24. Henricks JN, Schumacher GE. Using pharmacokinetics in drug therapy: VIII. Pharmacokinetic evaluation of antibiotic dosage regimens. Am J Hosp Pharm 1980; 37: 1356–66.

    PubMed  CAS  Google Scholar 

  25. Klastersky D, Daneau D, Swings G, et al. Antibacterial activity in serum and urine as a therapeutic guide in bacterial infections. J Infect Dis 1974; 129: 187–93.

    Article  PubMed  CAS  Google Scholar 

  26. Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimum inhibitory concentration. J Infect Dis 1987; 155: 93–9.

    Article  PubMed  CAS  Google Scholar 

  27. Karlowsky JA, Zanel GG, Davidson RJ, et al. In vitro post antibiotic effects following multiple exposures of cefotaxime, ciprofloxacin, and gentamicin against Escherichia coli in pooled cerebrspinal fluid and Mueller-Hinton broth. Antimicrob Agents Chemother 1993; 37: 1154–7.

    Article  PubMed  CAS  Google Scholar 

  28. McGrath BJ, Marchbanks CR, Gilbert D, et al. In vitro postantibiotic effect following repeated exposure to imipenem, temafloxacin and tobramycin. Antimicrob Agents Chemother 1993; 37: 1723–5.

    Article  PubMed  CAS  Google Scholar 

  29. Craig WA, Redington J, Ebert SC. Pharmacodynamics of amikacin in vitro and in mouse thigh infections. J Antimicrob Chemother 1991; 27 Suppl. C: 29–40.

    Article  PubMed  CAS  Google Scholar 

  30. McCormack JP, Schentag JJ. Potencial impact of quantitative susceptibility tests on the design of aminoglycoside dosing regimens. Drug Intell Clin Pharm 1987; 21: 187–92.

    PubMed  CAS  Google Scholar 

  31. Moran JS, Levine WC. Drugs of choice for the treatment of uncomplicated gonococcal infections. Clin Infect Dis 1995; 20 Suppl.: S47–65.

    Article  PubMed  Google Scholar 

  32. Schumacher GE. Pharmacokinetic and microbiologic evaluation of antibiotic dosage regimens. Clin Pharm 1982; 1: 66–75.

    PubMed  CAS  Google Scholar 

  33. Shumacher GE. Pharmacokinetic and mocrobiologic evaluation of dosage regimmens for newer cephalosporins and penicillins. Clin Pharm 1983; 2: 448–57.

    Google Scholar 

  34. Hyatt JM, McKinnon PS, Zimmer GS, et al. The importance of pharmacokinetic-pharmacodynamic surrogate markers to outcome: focus on antibacterial agents. Clin Pharmacokinet 1995; 28 (2): 143–60.

    Article  PubMed  CAS  Google Scholar 

  35. Nix DE, Sands MF, Peloquin CA, et al. Dual individualization of intravenous ciprofloxacin in patients with nosocomial lower respiratory tract infections. Am J Med 1987; Suppl. 4A: 352–6.

  36. Schumacher GE. Comparison of antibiotic dosage regimens using pharmacokinetic and microbiologic factors. Clin Pharm 1987; 6: 59–68.

    PubMed  CAS  Google Scholar 

  37. Deziel-Evans LM, Murpht JE, Job ML. Correlation of pharmacokinetic indices with therapeutic outcome in patients receiving aminoglycosides. Clin Pharm 1986; 5: 319–24.

    PubMed  CAS  Google Scholar 

  38. Dudley MN. Pharmacodynamics and pharmacokinetics of antibiotics with special reference to the fluoroquinolones. Am J Med 1991; 91 Suppl. 6: 45S–50S.

    Article  PubMed  CAS  Google Scholar 

  39. Flaherty JH, Rodondi LC, Guglielmo BJ, et al. Comparative pharmacokinetics and serum inhibitory activity of clindamycin in different dosing regimens. Antimicrob Agents Chemother 1988; 32 (12): 1825–9.

    Article  PubMed  CAS  Google Scholar 

  40. Flaherty JH, Barriere SL, Mordenti J, et al. Effect of dose on pharmacokinetics and serum bactericidal activity of mezlocillin. Antimicrob Agents Chemother 1987; 31: 895–8.

    Article  PubMed  CAS  Google Scholar 

  41. Dalla Costa T, Derendorf H. AUIC: a general target for the optimization of dosing regimens of antibiotics? [opinion]. Ann Pharmacother 1996; 30: 1024–8.

    PubMed  CAS  Google Scholar 

  42. Schentag JJ, Nix DE, Forrest A, et al. AUIC: the universal parameter within the constraint of a reasonable dosing interval [editorials]. Ann Pharmacother 1996; 30: 1029–31.

    PubMed  CAS  Google Scholar 

  43. Wagner JG. Farmacocinética clínica. Barcelona: Reverté SA, 1983: 129–74.

    Google Scholar 

  44. Wagner JG. Time to reach steady state and prediction of steady state concentrations for drugs obeying Michaelis-Menten elimination kinetics. J Pharmacokinet Biopharm 1978; 6: 209–25.

    PubMed  CAS  Google Scholar 

  45. Dager VE. Aminoglycoside pharmacokinetics: volume of distribution in specific adult patients subgroups. Ann Pharmacother 1994 Jul–Aug; 28: 944–51.

    PubMed  CAS  Google Scholar 

  46. Katz RB, Lawson LA, Johnson NE, et al. Aminoglycoside pharmacokinetics in patients with AIDS. J Pharm Technol 1993 Jan–Feb; 9: 14–7.

    Google Scholar 

  47. Izquierdo M, Lanao JM, Cervero L, et al. Population pharmacokinetics of gentamicin in premature infants. Ther Drug Monit 1992; 14 (3): 177–83.

    Article  PubMed  CAS  Google Scholar 

  48. Traynor AM, Nafziger AN, Bertino JS. Aminoglycoside dosing weight corrections factors for patients of various body sizes. Antimicrob Agents Chemother 1995 Feb; 39: 545–8.

    Google Scholar 

  49. Welch LP, Leader WG, Chandler MH. Predicting vancomycin pharmacokinetics by using aminoglycoside pharmacokinetics. Clin Pharm 1993 Dec; 12: 909–13.

    Google Scholar 

  50. Ducharme MP, Slaughter RL, Edwards DJ. Vancomycin pharmacokinetics in a patient population: effect of age, gender, and body weight. Ther Drug Monit 1994; 16 (5): 513–8.

    Article  PubMed  CAS  Google Scholar 

  51. Leonard AE, Boro MS. Vancomycin pharmacokinetics in middle-aged and elderly men. Am J Hosp Pharm 1994 Mar; 51: 798–800.

    Google Scholar 

  52. Rodvold KA, Everett JA, Pryca RD, et al. Pharmacokinetics and administration regimens of vancomycin in neonates, infants and children. Clin Pharmacokinet 1997 Jul; 33: 32–51.

    Google Scholar 

  53. Seay RE, Brundage RC, Jensen PD, et al. Population pharmacokinetics of vancomycin in neonates. Clin Pharmacol Ther 1994 Aug; 568: 169–75.

    Google Scholar 

  54. Guay DR, Vance-Bryan K, Gilliland S, et al. Comparison of vancomycin phannacokinetics in hospitalized elderly and young patients using Bayesian forecaster. J Clin Pharmacol 1993 Oct; 33: 918–22.

    Google Scholar 

  55. Pleasants RA, Michalets EL, William DM, et al. Pharmacokinetics of vancomycin in adult cystic fibrosis patients. Antimicrob Agents Chemother 1996 Jan; 40: 186–90.

    Google Scholar 

  56. Gonzalez Martin G, Acuna V, Perez C, et al. Pharmacokinetics of vancomycin in patients with severely impaired renal function. Int J Clin Pharmacol Ther 1996 Feb; 34: 71–5.

    Google Scholar 

  57. Owens RC, Patel KB, Banevicius MA, et al. Oral bioavailability and pharmacokinetics of ciprofloxacin in patients with AIDS. Antimicrob Agents Chemother 1997 July; 41: 1508–11.

    Google Scholar 

  58. Yulk JH, Nightingale CH, Quintiliani R, et al. Bioavailability and pharmacokinetics of ofloxacin in healthy volunteers. Antimicrob Agents Chemother 1991 Feb; 35: 384–6.

    Google Scholar 

  59. Giamarellou H, Kolokythas E, Petrikkos G, et al. Pharmacokinetics of three newer quinolones in pregnant and lactating women. Am J Med 1989 Nov; 87 Suppl.: 49S–51S.

    Article  PubMed  CAS  Google Scholar 

  60. Lameire N, Rosenkranz B, Malerczy V, et al. Ofloxacin pharmacokinetics in chronic renal failure and dialysis. Clin Pharmacokinet 1991; 21 (5): 357–71.

    Article  PubMed  CAS  Google Scholar 

  61. Klepser ME, Marangos MN, Patel KB, et al. Clinical pharmacokinetics of newer cephalosporins. Clin Pharmacokinet 1995 May; 28: 361–84.

    Google Scholar 

  62. Nix DE, Symonds WT, Hyat JM, et al. Comparative pharmacokinetics of oral ceftibuten, cefixime, cefaclor and cefuroxime axetil in healthy volunteers. Pharmacotherapy 1997; 17 (1): 121–5.

    PubMed  CAS  Google Scholar 

  63. Purves RD. Optimun numerical integration methods for estimation of area-under-the curve (AUC) and area-under-the moment curve (AUMC). J Pharmacokinet Biopharm 1992; 20 (39): 211–26.

    PubMed  CAS  Google Scholar 

  64. Yamaoka K, Nakagawa T, Uno T. Statistical moments in pharmacokinetics. J Pharmacokinet Biopharm 1978; 6: 547–58.

    PubMed  CAS  Google Scholar 

  65. Jaffe HW, Schroeter AL, Reynolds GH. Pharmacokinetic determinants of penicillin cure of gonococcal urethritis. Antimicrob Agents Chemother 1979; 15: 587–91.

    Article  PubMed  CAS  Google Scholar 

  66. Sachs L. Measures of association: correlation and regression — applied statistics. In: Sachs L, editor. A handbook of techniques. 2nd ed. New York: Springer-Verlag, 1984: 382–456.

    Google Scholar 

  67. Holford NHG, Sheiner LB. Understanding the dose-effect relationship: clinical application of pharmacokinetic-pharmacodynamic models. Clin Pharmacokinet 1981; 6: 429–53.

    Article  PubMed  CAS  Google Scholar 

  68. Ebert SC. Pharmacokinetic-pharmacodynamic modeling of irreversible drug effects. In: Derendorf H, Hochhaus G, editors. Handbook of pharmacokinetic-pharmacodynamic correlation. London: CRC Press, 1995: 35–56.

    Google Scholar 

  69. Danhof M, Voskuyl RA. Pharmacokinetic/pharmacodynamic correlations of anticonvulsants. In: Derendorf H, Hochhaus G, editors. Handbook of pharmacokinetic-pharmacodynamic correlation. London: CRC Press, 1995: 185–96.

    Google Scholar 

  70. Venitz J. Pharmacokinetic-pharmacodynamic modeling of reversible drug effects. In: Derendorf H, Hochhaus G, editors. Handbook of pharmacokinetic-pharmacodynamic correlation. London: CRC, 1995: 1–34.

    Google Scholar 

  71. Wagner JG. Kinetics of the pharmacologic response: I. Proposed relationships between response and drug concentration in the intact animal and man. J Theor Biol 1968; 20: 173–83.

    Article  PubMed  CAS  Google Scholar 

  72. Kelman AW, Whiting B. Modeling of drug response in individual subjects. J Pharmacokinet Biopharm 1980; 8: 115–30.

    PubMed  CAS  Google Scholar 

  73. Bourne DWA, editor. Mathematical modeling of pharmacokinetic data. Basel: Technomic, 1995.

    Google Scholar 

  74. Peck CC, Beal SL, Sheiner LB, et al. Extended least squares nonlinear regression: a possible solution to the choice of weights problem in analysis of individual pharmacokinetic data. J Pharmacokinet Biopharm 1984; 12: 545–58.

    PubMed  CAS  Google Scholar 

  75. Wagner JG. Pharmacokinetics for the pharmaceutical scientist. Basel: Technomic, 1993.

    Google Scholar 

  76. Gabrielsson J, Weiner D. General modelling strategies. In: Derendorf H, Hochhaus G, editors. Pharmacokinetic and pharmacodynamic data analysis: concepts and applications. London: CRC Press, 1995: 29–41.

    Google Scholar 

  77. Forrest A, Sanford C, Amantea M, et al. Phannacokinetics and pharmacodynamics of oral grepafloxacin in patients with acute bacterial exacerbations of chronic bronchitis. J Antimicrob Chemother 1997; 40 Suppl. A: 45–57.

    Article  PubMed  CAS  Google Scholar 

  78. Vázquez Rodríguez A, Santos Buelga D, Alonso González AC, et al. Comparison of methods for the prediction of phenytoin concentrations. J Clin Phannacol Ther 1991; 16: 55–62.

    Article  Google Scholar 

  79. Fernández de Gatta MM, Mendez ME, Romano S, et al. Pharmacokinetics of amikacin in intensive care patients. J Clin Phannacol Ther 1996; 21 (6): 417–21.

    Article  Google Scholar 

  80. Nix DE. Update on susceptibility testing of aerobic bacteria. Am Soc Hosp Pharm 1994; 29: SPG 37.

    Google Scholar 

  81. Paladino JA, Zimmer GD, Schentag JJ. Economic potential of dual individualisation methodologies. Pharmacoeconomics 1996 Dec; 10: 539–45.

    Google Scholar 

  82. Williams DN, Raymond JL. Community-based parenteral antiinfective therapy (CoPAT): phannacokinetic and monitoring issues. Clin Pharmacokinet 1998; 35 (1): 65–77.

    Article  PubMed  CAS  Google Scholar 

  83. Partsch DJ, Paladino JA. Cost effectiveness comparison of sequential ofloxacin versus standard switch therapy. Ann Pharmacother 1997; 31: 1137–45.

    PubMed  CAS  Google Scholar 

  84. Jensen JM, Paladino JA. Cost effectiveness of abbreviating the duration of intravenous antibacterial therapy with oral fluoroquinolones. Pharmacoeconomics 1997; 11: 64–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amparo Sánchez-Navarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Navarro, A., Recio, M.M.S. Basis of Anti-Infective Therapy. Clin Pharmacokinet 37, 289–304 (1999). https://doi.org/10.2165/00003088-199937040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199937040-00002

Keywords

Navigation