Skip to main content
Log in

Therapeutic Drug Monitoring of Antidepressants

Cost Implications and Relevance to Clinical Practice

  • Review Articles
  • Target Concentration Intervention
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Despite evidence to support its potential benefit in clinical practice, therapeutic drug monitoring (TDM) is under-utilised and underdeveloped in the field of psychiatry. In antidepressant pharmacotherapy drug dose is emphasised as the critical treatment variable. However, dose in, and of, itself can be a strikingly misleading predictor of drug concentration and, hence, treatment effect. For antidepressant drugs, plasma concentrations at a given dose have been shown to vary in excess of 40-fold. The clinical relevance of this variability is that at a standard antidepressant dosage only some patients will have tissue drug concentrations associated with an optimal response whereas others will have either low, ineffective drug concentrations or unnecessarily high concentrations which may be poorly tolerated.

Among clinicians and healthcare agencies there is an under-appreciation of the degree of pharmacokinetic variability found in patients and how that might impact on the patients response to pharmacotherapy. Hence there is a perception that TDM is an unnecessary, complicated and costly procedure. This is actually unfounded. There are data to suggest that TDM can favourably affect the outcome of antidepressant treatment by providing a rational alternative to the inherently slower, trial and error practice of dosage titration based on clinical response.

It is unlikely that TDM will become a standard of care for all antidepressant agents and all patients. Therefore the question becomes for which antidepressant agents, for which patients and under what circumstances, is TDM more cost-effective than traditional dose titration. The use of TDM to optimise the efficient use of selected antidepressant agents could potentially free up healthcare resources to fund other equally deserving treatments. This article provides a discussion of the major classes of antidepressant drugs with regard to their pharmacological features that predict the utility of TDM in clinical practice. Recommendations are made for the practical application of TDM and the directions for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burke MJ, Preskorn SH. Short-term treatment of affective disorders using standard antidepressants. In: Watson SJ, editor. Psychopharmacology: CD-ROM. New York: Lippincott-Raven Press, 1999.

    Google Scholar 

  2. Burke MJ. The search for value: Issues in the treatment of depression. J Pract Psychiatry Behav Health 1996; 2: 2–13.

    Google Scholar 

  3. Preskorn SH. Why did Terry fall off the dose-response curve? J Pract Psychiatry Behav Health 1996; 2(1): 39–43.

    Google Scholar 

  4. Burke MJ, Silkey B, Preskorn SH. Pharmacoeconomic considerations when evaluating treatment options for major depressive disorder. J Clin Psychiatry 1994; 55 (9 Suppl. A): 42–52.

    PubMed  Google Scholar 

  5. Preskorn SH, Burke, MJ, Fast GA. Therapeutic drug monitoring: principles and practice. Psychiatr Clin North Am 1993; 16 (3): 611–45.

    PubMed  CAS  Google Scholar 

  6. Amsterdam JD, Fawcett J, Quitkin FM, et al. Fluoxetine and norfluoxetine plasma concentrations in major depression: a multicenter study. Am J Psychiatry 1997; 154: 963–9.

    PubMed  CAS  Google Scholar 

  7. Preskorn SH. Pharmacokinetics of antidepressants: why and how are they relevant to treatment. J Clin Psychiatry 1993; 54 (9 Suppl.): 14–34.

    PubMed  Google Scholar 

  8. Preskorn SH. Should bupropion dosage be adjusted based upon therapeutic drug monitoring? Psychopharmacol Bull 1991; 27(4): 637–43.

    PubMed  CAS  Google Scholar 

  9. Preskorn SH. To monitor or not to monitor, II: the glass is more than half full. J Prac Psychiatry Behav Health 1996; 2 (5): 307–10.

    Google Scholar 

  10. Guthrie S, Lane EA, Linnoila M. Monitoring of plasma drug concentrations in clinical psychopharmacology. In: Meltzer HY, editor. Psychopharmacology: the third generation of progress. New York: Raven Press, 1987: 1323–38.

    Google Scholar 

  11. Glotzbach RK, Preskorn SH. Brain concentrations of tricyclic antidepressants: single dose kinetics and relationship to plasma concentration in chronically dosed rats. Psychopharmacology 1982; 78: 25–7.

    Article  PubMed  CAS  Google Scholar 

  12. Karson CN, Newton JE, Livingston R, et al. Human brain fluoxetine concentrations. J Neuropsychiatry Clin Neurosci 1993; 5: 322–9.

    PubMed  CAS  Google Scholar 

  13. Renshaw PF, Guimaraes AR, Fava M, et al. Accumulation of fluoxetine and norfluoxetine in human brain during therapeutic administration. Am J Psychiatry 1992; 149: 1592–4.

    PubMed  CAS  Google Scholar 

  14. Greenblatt DJ, Harmatz JS. Kinetic-dynamic modeling in clinical psychopharmacology. J Clin Psychopharmacol 1993; 13 (4): 231–4.

    Article  PubMed  CAS  Google Scholar 

  15. Yesavage JA. Psychotropic blood levels: a guide to clinical response. J Clin Psychiatry 1986; 47 (9 Suppl.): 16–9.

    PubMed  Google Scholar 

  16. Ley P. Satisfaction, compliance and communication. Br J Clin Psychol 1981; 21: 241–4.

    Article  Google Scholar 

  17. Lin EHB, Von Korff M, Katon W, et al. The role of the primary care physician in patient’s adherence to antidepressant therapy. Med Care 1995; 33: 67–74.

    Article  PubMed  CAS  Google Scholar 

  18. Preskorn SH, Fast GA. Therapeutic drug monitoring for antidepressants: efficacy, safety, and cost-effectiveness. J Clin Psychiatry 1991; 52 (6 Suppl.): 23–33.

    PubMed  Google Scholar 

  19. Goldman DL, Katz SE, Preskorn SH. What to do about extremely high plasma levels of tricyclics? Am J Psychiatry 1989; 146: 401–2.

    PubMed  CAS  Google Scholar 

  20. Richelson E. Pharmacology of antidepressants: characteristics of the ideal drug. Mayo Clin Proc 1994; 69: 1069–81.

    PubMed  CAS  Google Scholar 

  21. Bolden-Watson C, Richelson E. Blockade by newly-developed antidepressants of biogenic amine uptake into rat brain synaptosomes. Life Sci 1993; 52: 1023–9.

    Article  PubMed  CAS  Google Scholar 

  22. Preskorn SH. Antidepressant drug selection: criteria and options. J Clin Psychiatry 1994; 55 (9 Suppl. A): 6–22.

    PubMed  Google Scholar 

  23. Jerling M. Dosing of antidepressants: the unknown art. J Clin Psychopharmacol 1995; 15: 435–9.

    Article  PubMed  CAS  Google Scholar 

  24. Depression Guideline Panel of the Agency for Health Care Policy and Research: synopsis of the clinical practice guidelines for diagnosis and treatment of depression in primary care. Arch Fam Med 1994; 3: 85–92.

    Google Scholar 

  25. Quitkin FM, McGrath PJ, Stewart JW, et al. Chronological milestones to guide drug change: when should clinicians switch antidepressants? Arch Gen Psychiatry 1996; 53: 785–92.

    Article  PubMed  CAS  Google Scholar 

  26. Balant-Gorgia AE, Balant LP, Garrone G. High blood concentrations of imipramine and clomipramine and therapeutic failure: a case report study using drug monitoring data. Ther Drug Monit 1989; 11: 415–20.

    PubMed  CAS  Google Scholar 

  27. Preskorn SH, Jerkovich GS. Central nervous system toxicity of tricyclic antidepressants: phenomenology, course, risk factors, and role of therapeutic drug monitoring. J Clin Psychopharmacol 1990; 10: 88–95.

    Article  PubMed  CAS  Google Scholar 

  28. Preskorn SH. Clinical pharmacology of selective serotonin reuptake inhibitors. Caddo (OK): Professional Communications, Inc., 1996: 99–105.

    Google Scholar 

  29. Burghart SM. 1997: the year in review. Drug Utilization Rev Bull 1998; 20 (1): 1–2.

    Google Scholar 

  30. Janicak PG, Davis JM, Preskorn SH, et al. Principles and practice of psychopharmacotherapy. 2nd ed. Baltimore (MD): Williams and Wilkens, 1997: 61–82.

    Google Scholar 

  31. Dornseif BE, Dunlop SR, Potvin JH, et al. Effect of dose escalation after low-dose fluoxetine therapy. Psychopharmacol Bull 1989; 25: 71–9.

    PubMed  CAS  Google Scholar 

  32. Cain JW. Poor response to fluoxetine: underlying depression, serotonergic overstimulation, or a therapeutic window? J Clin Psychiatry 1992; 53: 272–7.

    PubMed  CAS  Google Scholar 

  33. Fabre LF, Abuzzahab FS, Amin M, et al. Sertraline safety and efficacy in major depression. a double-blind fixed dose comparison with placebo. Biol Psychiatry 1995; 38: 592–602.

    CAS  Google Scholar 

  34. Preskorn SH. Clinically relevant pharmacology of the selective serotonin reuptake inhibitors: an overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism. Clin Pharmacokinet 1997; 32 Suppl. 1: 1–21.

    Article  PubMed  CAS  Google Scholar 

  35. Preskorn SH, Fast GA. Tricyclic antidepressant-induced seizures and plasma drug concentration. J Clin Psychiatry 1992; 53 (5): 160–2.

    PubMed  CAS  Google Scholar 

  36. Preskorn SH, Weller E, Weller R, et al. Plasma levels of imipramine and adverse effects in children. Am J Psychiatry 1983; 140: 1332–5.

    PubMed  CAS  Google Scholar 

  37. Rudorfer MB, Young RC. Desipramine: cardiovascular effects and plasma levels. Am J Psychiatry 1980; 137: 984–6.

    PubMed  CAS  Google Scholar 

  38. Veith RC, Friedel RO, Bloom B, et al. Electrocardiogram changes and plasma desipramine levels during treatment. Clin Pharmacol Ther 1980; 27: 796–802.

    Article  PubMed  CAS  Google Scholar 

  39. Preskorn SH, Jerkovich GS, Beber JH, et al. Therapeutic drug monitoring of tricyclic antidepressants: a standard of care issue. Psychopharmacol Bull 1989; 25: 281–4.

    PubMed  CAS  Google Scholar 

  40. Goodnick PJ. Pharmacokinetic optimisation of therapy with newer antidepressants. Clin Pharmacokinet 1994; 27 (4): 307–30.

    Article  PubMed  CAS  Google Scholar 

  41. Perry PJ, Pfohl BM, Holstad SG. The relationship between antidepressant response and tricyclic antidepressant plasma concentrations. Clin Pharmacokinet 1987; 13: 381–92.

    Article  PubMed  CAS  Google Scholar 

  42. Olfson M, Klerman GL. Trends in the prescription of antidepressants by office-based psychiatrists. Am J Psychiatry 1993; 150: 571–7.

    PubMed  CAS  Google Scholar 

  43. Beasley C, Dornseif B, Pultz J, et al. Fluoxetine versus trazodone: efficacy and activating sedating effects. J Clin Psychiatry 1991; 52: 294–9.

    PubMed  Google Scholar 

  44. Carraci G. Unsuccessful suicide attempt by sertraline overdose [letter]. Am J Psychiatry 1994; 151: 147.

    Google Scholar 

  45. Dunner DL, Dunbar GC. Optimal dose regimen for paroxetine. J Clin Psychiatry 1992; 53 Suppl. 2: 21–6.

    PubMed  Google Scholar 

  46. Wernicke JF, Dunlop SR, Dornseif BE, et al. Fixed dose fluoxetine therapy for depression. Psychopharmacol Bull 1987; 23: 164–8.

    PubMed  CAS  Google Scholar 

  47. Preskorn SH, Harvey A. Biochemical and clinical dose-response curves with sertraline. Clin Pharmacol Ther 1996; 59: 180.

    Article  Google Scholar 

  48. Wenicke JF, Dunlop SR, Dornseif BE, et al. Low-dose fluoxetine therapy for depression. Psychopharmacol Bull 1988; 24: 183–8.

    Google Scholar 

  49. Schweizer E, Rickels K, Amsterdam J, et al. What constitutes an adequate antidepressant trial for fluoxetine. J Clin Psychiatry 1990; 51: 8–11.

    PubMed  CAS  Google Scholar 

  50. Altamura A, Montgomery S, Wernicke J. The evidence for 20 mg a day of fluoxetine as the optimal in the treatment of depression. Br J Psychiatry 1988; 153 Suppl. 3: 109–12.

    Google Scholar 

  51. Tasker T, Kaye C, Zussman D, et al. Paroxetine plasma levels: lack of correlation with efficacy or adverse events. Acta Psychiatr Scand 1990; 80 Suppl. 350: 152–5.

    Google Scholar 

  52. Lemberger L, Bergstrom R, Wolen R, et al. Fluoxetine. Clinical pharmacology and physiologic disposition. J Clin Psychiatry 1985; 46 (3 Sect. 2): 14–9.

    CAS  Google Scholar 

  53. Wood K, Swade C, Abou-Saeh M, et al. Drug plasma levels and platelet 5-HT uptake inhibition during long-term treatment with fluvoxamine or lithium in patients with affective disorders. Br J Clin Pharmacol 1983; 15 Suppl. 3: 365S–8S.

    Article  PubMed  Google Scholar 

  54. Marsden CA, Tyrer P, Casey P, et al. Changes in human whole blood 5-hydroxytrypamine (5-HT) and platelet 5-HT uptake during treatment with paroxetine, a selective 5-HT uptake inhibitor. J Psychopharmacol 1987; 1: 244–50.

    Article  PubMed  CAS  Google Scholar 

  55. Thase ME, Kupfer DJ. Recent developments in the pharmacotherapy of mood disorders. J Consult Clin Psychol 1996; 64 (4): 646–59.

    Article  PubMed  CAS  Google Scholar 

  56. Preskorn SH, Silkey B, Beber J, et al. Antidepressant response and plasma concentration of fluoxetine. Ann Clin Psychiatry 1991; 3 (2): 147–51.

    Article  Google Scholar 

  57. Kelly M, Perry P, Holstead S, et al. Serum fluoxetine and norfluoxetine concentration and antidepressant response. Ther Drug Monit 1989; 11: 165–70.

    Article  PubMed  CAS  Google Scholar 

  58. Koran LM, Cain JW, Dominguez RA, et al. Are fluoxetine plasma levels related to outcome in obsessive compulsive disorder? Am J Psychiatry 1996; 153: 1450–4.

    PubMed  CAS  Google Scholar 

  59. Preskorn SH, Alderman J, Chung M, et al. Pharmacokinetics of desipramine coadministered with sertraline or fluoxetine. J Clin Psychopharmacol 1994; 14: 90–8.

    PubMed  CAS  Google Scholar 

  60. Ronfeld RA, Tremaine LM, Wilner KD, et al. Evaluation of the pharmacokinetic properties of sertraline and desmethylsertraline in elderly and young male and female volunteers. Clin Pharmacokinet 1997; 32 Suppl. 1: 22–30.

    Article  PubMed  CAS  Google Scholar 

  61. Bayer AJ, Roberts NA, Allen EA, et al. The pharmacokinetics of paroxetine in the elderly. Acta Psychiatr Scand 1989; 80 Suppl. 350: 85–6.

    Article  Google Scholar 

  62. Hebenstreit GF, Feilerer K, Zochling R, et al. A pharmacokinetic dose titration study in adult and elderly depressed patients. Acta Psychiatr Scand 1989; 80 Suppl. 350: 81–4.

    Article  Google Scholar 

  63. Lund J, Lomholt B, Fabricius J, et al. Paroxetine. pharmacokinetics, tolerance and depletion of blood 5-HT in man. Acta Pharmacol Toxicol 1979; 44: 289–95.

    CAS  Google Scholar 

  64. Lundmark J, Scheel K, Thomsen I, et al. Paroxetine: pharmacokinetics and antidepressant effect in the elderly. Acta Psychiatr Scand 1989; 80 Suppl. 350: 76–80.

    Article  Google Scholar 

  65. Sindrup SH, Brosen K, Gram LF. Pharmacokinetics of the selective serotonin reuptake inhibitor paroxetine: nonlinearity and relation to the spartiene oxidation polymorphism. Clin Pharm Ther 1992; 51: 288–95.

    Article  CAS  Google Scholar 

  66. Feighner JP, Cohn JB. Double blind comparative trials of fluoxetine and doxepin in geriatric patients with major depressive disorder. J Clin Psychiatry 1985; 46: 20–5.

    PubMed  CAS  Google Scholar 

  67. Goodnick PJ. Pharmacokinetics of second generation antide-pressants: fluoxetine. Psychopharm Bull 1991; 27 (4): 503–12.

    CAS  Google Scholar 

  68. Goodnick PJ. Fluoxetine blood levels and clinical response [abstract]. Biol Psychiatry 1992; 31: 186A.

    Google Scholar 

  69. Bjerkenstedt L, Flyckt L, Overo KF, et al. Relationship between clinical effects, serum drug concentration and serotonin uptake inhibition in depressed patients treated with citalopram: a double-blind comparison of three dose levels. Eur J Clin Pharmacol 1985; 28: 553–7.

    Article  PubMed  CAS  Google Scholar 

  70. Fredricson OK. Kinetics of citalopram in man: plasma levels in patients. Prog Neuropsychopharmacol Biol Psychiatry 1982; 6: 311–8.

    Article  Google Scholar 

  71. Kragh-Sorenson P, Overo KF, Peterson OL, et al. The kinetics of citalopram. single and multiple dose studies in man. Acta Pharmacol Toxicol 1981; 48: 53–60.

    Google Scholar 

  72. Rochat B, Amey M, Bauman P. Analysis of enantiomers of citalopram and its demethylated metabolites in plasma of depressive patients using chiral reverse-phase liquid chromatography. Ther Drug Monit 1995; 17: 273–9.

    Article  PubMed  CAS  Google Scholar 

  73. Folgia JP, Perel JM, Nathan RS, et al. Therapeutic drug monitoring of fluvoxamine, a selective antidepressant [abstract]. Clin Chem 1990; 36: 1043.

    Google Scholar 

  74. Nathan RS, Perel JM, Pollock BG, et al. The role of neurophar-macologic selectivity in antidepressant action. Fluvoxamine versus desipramine. J Clin Psychiatry 1990; 51: 367–72.

    CAS  Google Scholar 

  75. Cooper TB, Suckow RF, Glassman A. Determination of bupropion and its major basic metabolites in plasma by liquid chromatography with dual wavelength U.V. detection. J Pharm Sci 1984; 73: 1104–7.

    CAS  Google Scholar 

  76. Perumal AS, Smith TM, Suckow RF, et al. Effects of plasma from patients containing bupropion and its metabolites on the uptake of norepinephrine. Neuropharmacology 19986; 25: 199–202.

    Article  Google Scholar 

  77. Preskorn S, Katz S. Bupropion plasma levels: intraindividual and interindividual variability. Ann Clin Psychiatry 1989; 1: 59–61.

    Article  Google Scholar 

  78. Goodnick PJ. Pharmacokinetics of second generation antide-pressants: bupropion. Psychopharmacol Bull 1991; 27 (4): 513–9.

    PubMed  CAS  Google Scholar 

  79. Goodnick PJ. Blood levels and acute response to bupropion. Am J Psychiatry 1992; 149 (3): 399–400.

    PubMed  CAS  Google Scholar 

  80. Golden RN, DeVane CL, Laizure SC, et al. Bupropion in depression: II. The roles of metabolites in clinical outcome. Arch Gen Psychiatry 1988; 45: 145–9.

    CAS  Google Scholar 

  81. Davidson J. Seizures and bupropion: a review. J Clin Psychaitry 1989; 50: 256–61.

    CAS  Google Scholar 

  82. Preskorn SH, Fleck RJ, Schroeder DH. Therapeutic drug monitoring of bupropion. Am J Psychiatry 1990; 147 (12): 1690–1.

    PubMed  CAS  Google Scholar 

  83. Klamerus KJ, Maloney K, Rudolph RL, et al. Introduction of a composite parameter to the pharmacokinetics of venlafaxine and its active O-desmethyl metabolite. J Clin Pharmacol 1992; 32: 716–24.

    PubMed  CAS  Google Scholar 

  84. Haskins JT, Moyer JA, Muth EA, et al. DMI, WY-45,030, WY-45,881 andciramadol inhibit locus ceruleus neuronal activity. Eur J Pharmacol 1985; 115: 139–46.

    Article  PubMed  CAS  Google Scholar 

  85. Harvey A, Preskorn S. Mechanism of action of venlafaxine in normal male volunteers. Clin Pharm Ther 1997; 61 (2): 175.

    Google Scholar 

  86. Preskorn SH. Selection of an antidepressant: mirtazapine. J Clin Psychiatry 1997; 58 Suppl. 6: 3–8.

    PubMed  CAS  Google Scholar 

  87. Preskorn SH, Burke MJ. Somatic therapy for major depressive disorder: selection of an antidepressant. J Clin Psychiatry 1992; 53 (9 Suppl.): 5–18.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Burke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burke, M.J., Preskorn, S.H. Therapeutic Drug Monitoring of Antidepressants. Clin Pharmacokinet 37, 147–165 (1999). https://doi.org/10.2165/00003088-199937020-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199937020-00004

Keywords

Navigation