Skip to main content
Log in

Pharmacokinetic Factors in the Modern Drug Treatment of Tuberculosis

  • Review Articles
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Tuberculosis is increasing in prevalence throughout the world, particularly in sub-Saharan Africa, Asia and Latin America. This resurgence can partly be attributed to increasing poverty, particularly in developing countries, and the human immunodeficiency virus (HIV) pandemic. However, there is also increasing concern at the development of multidrug-resistant tuberculosis caused by the misuse of the agents available.

The modern treatment of patients with tuberculosis should start, in most cases, with 4 first-line agents in order to minimise the risk of drug resistance developing. A 6-month drug regimen is usually satisfactory for pulmonary and nonpulmonary tuberculosis, although not for patients with tuberculous meningitis, in whom a longer course of treatment is required. Coinfection with HIV may produce an atypical clinical and radiological presentation, but the treatment regimen is essentially similar to other situations. Several of the first-line agents, in particular rifampicin (rifampin) and isoniazid, are likely to cause clinically significant drug interactions and/or toxicity, particularly in patients with HIV infection.

Consideration of the pharmacodynamic and pharmacokinetic interactions between the host, the mycobacterium and the drug may contribute to the development of pharmacokinetically optimised regimens that make best use of the existing range of antituberculosis drugs. However, such idealised regimens need to be tested in prospective clinical trials. The use of therapeutic drug monitoring in selected groups of patients may improve outcomes, avoid drug toxicity and reduce the development of multidrug-resistant tuberculosis.

The management of multidrug-resistant tuberculosis requires a high level of clinical expertise and such patients should start on at least 5 drugs to which the organism is thought to be susceptible.

Up to 50% of patients with tuberculosis may not adhere to their drug regimen, resulting in persisting infectiousness, relapse or the development of drug resistance. Directly observed treatment with antituberculosis drugs, combined with a serious commitment to tuberculosis control, is required if we are to combat this increasing epidemic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dolin PJ, Raviglione MC, Kochi A. Global tuberculosis incidence and mortality during 1990–2000. Bull World Health Organ 1994; 72: 213–20.

    PubMed  CAS  Google Scholar 

  2. World Health Organization. TB — a global emergency: WHO report on the TB epidemic. Geneva: WHO, 1994.

    Google Scholar 

  3. Kunar D, Watson JM, Chartert A, et al. Tuberculosis in England and Wales in 1993: results of a national survey (Public Health Laboratory Service/British Thoracic Society/Department of Health Collaborative Group). Thorax 1997; 52: 1060–7.

    Google Scholar 

  4. Anon. National survey of tuberculosis in England and Wales — 1998. Communicable Diseases Weekly Report (England & Wales) 1998; 8 (24): 211–2.

    Google Scholar 

  5. Bass Jr JB, Farer LS, Hopewell PC, et al. Treatment of tuberculosis and tuberculosis infection in adults and children. American Thoracic Society and The Centers for Disease Control and Prevention. Am J Respir Crit Care Med 1994 May; 149 (5): 1359–74.

    Google Scholar 

  6. Joint Tuberculosis Committee of the British Thoracic Society. Chemotherapy and management of tuberculosis in the United Kingdom: recommendations 1998. Thorax 1998; 53: 536–48.

    Google Scholar 

  7. Holdiness MR. Clinical pharmacokinetics of antituberculosis drugs. Clin Pharmacokinet 1984; 9: 511–44.

    PubMed  CAS  Google Scholar 

  8. Peloquin CA. Pharmacology of the antimycobacterial drugs. Med Clin North Am 1993; 77: 1253–62.

    PubMed  CAS  Google Scholar 

  9. Mandell GL, Petri WA. Drugs used in the chemotherapy of tuberculosis, Mycobacterium avium complex disease, and leprosy. In: Hardman JG, Limbierd LE, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill, 1996: 111–3.

    Google Scholar 

  10. Aranda CP. Second-line agents: p-aminosalicylic acid, ethion-amide, cycloserine and thiacetazone. In: Rom WN, Garay SM, editors. Tuberculosis. Philadelphia: Lippincott-Raven, 1997: 811–6.

    Google Scholar 

  11. Drlica K, Malik M, Wang JY, et al. The fluoroquinolones as antituberculosis agents. In: Rom WN, Garay SM, editors. Tuberculosis. Philadelphia: Lippincott-Raven, 1997: 817–27.

    Google Scholar 

  12. O’Connor R, O’sullivan JF, O’Kennedy R. The pharmacology, metabolism and chemistry of clofazimine. Drug Metab Rev 1995; 27: 591–614.

    PubMed  Google Scholar 

  13. Strausbaugh LJ, Madaleris CD, Sande MA. Comparison of four aminoglycoside antibiotics in the therapy of experimental E. coli meningitis. J Lab Clin Med 1977; 89: 692–701.

    CAS  Google Scholar 

  14. Peets EA, Sweeney WM, Place VA. The absorption, excretion and metabolic fate of ethambutol in man. Am Rev Respir Dis 1965; 91: 51–8.

    PubMed  CAS  Google Scholar 

  15. Riley LW. Isoniazid chemistry, metabolism and mechanism of action. In: Rom WN, Garay SM, editors. Tuberculosis. Philadelphia: Lippincott-Raven, 1997: 763–71.

    Google Scholar 

  16. Isoniazid. In: Reynolds JEF, editor. Martindale. London: Royal Pharmaceutical Society, 1996: 241–2.

  17. Weber WW, Hein DW. Clinical pharmacokinetics of isoniazid. Clin Pharmacokinet 1979; 4: 401–22.

    PubMed  CAS  Google Scholar 

  18. Peloquin CA, Jaresko GS, Yong C-L, et al. Population pharmacokinetic modeling of isoniazid, rifampicin and pyrazinamide. Antimicrob Agents Chemother 1997; 41: 2670–9.

    PubMed  CAS  Google Scholar 

  19. Aranda CP. Pyrazinamide. In: Rom WN, Garay SM, editors. Tuberculosis. Philadelphia: Lippincott-Raven, 1997: 799–801.

    Google Scholar 

  20. Blaschke TF, Skinner MH. The clinical pharmacokinetics of rifabutin. Clin Infect Dis 1996; 22: 15–21.

    Google Scholar 

  21. Law KF, Weiden M. Streptomycin, other aminoglycosides and capreomycin. In: Rom WN, Garay SM, editors. Tuberculosis. Philadelphia: Lippincott-Raven, 1997: 785–97.

    Google Scholar 

  22. Miller AB, Fox W, Tall R. An international co-operative investigation into thioactazone side effects. Tubercle 1966; 47: 33.

    PubMed  CAS  Google Scholar 

  23. Harmann G, Honikel KO, Knussel F, et al. The specific inhibition of the DNA-directed RNA synthesis by rifamycin. Biochim Biophys Acta 1967; 145: 843–4.

    Google Scholar 

  24. Grosset J, Leventis S. Adverse effects of rifampin. Rev Infect Dis 1983; 5: 440–6.

    Google Scholar 

  25. Ormerod LP, Skinner C, Wales J. Hepatotoxicity of antituberculosis drugs. Thorax 1996; 51: 111–3.

    PubMed  CAS  Google Scholar 

  26. Stork CM, Hoffman RS. Toxicology of antituberculosis drugs. In: Rom WN, Garay SM, editors. Tuberculosis. Philadelphia: Lippincott-Raven, 1997: 834.

    Google Scholar 

  27. Robitzek EH, Selikoff IJ. Hydrazine derivatives of isonicotinic acid in the treatment of active progressive caseous-pneumonic tuberculosis: a preliminary report. Am Rev Tuberculosis 1952; 65: 402–28.

    CAS  Google Scholar 

  28. Zhang Y, Young DB. Molecular mechanisms of isoniazid: a drug at the front line of tuberculosis control. Trends Microbiol 1993; 1: 109–13.

    PubMed  CAS  Google Scholar 

  29. US Public Health Service Co-operative Clinical Investigation. Am Rev Tuberc 1956; 74: 196–9.

    Google Scholar 

  30. Youatt J. A review of the action of isoniazid. Am Rev Respir Dis 1969; 99: 729–49.

    PubMed  CAS  Google Scholar 

  31. Donald PR, Gent WL, Seifart HI. Cerebrospinal fluid isoniazid concentrations in children with tuberculous meningitis: the influence of dosage and acetylation status. Pediatrics 1992; 89: 247–50.

    PubMed  CAS  Google Scholar 

  32. Parkin DP, Vardenplas S, Botha FJ, et al. Trimodality of isoniazid elimination: phenotype and genotype in patients with tuberculosis. Am J Respir Crit Care Med 1997; 155: 1717–22.

    PubMed  CAS  Google Scholar 

  33. Donald PR, Sirgel FA, Botha FJ, et al. The early bactericidal activity of isoniazid related to its dose size in pulmonary tuberculosis. Am Rev Respir Dis 1997; 156: 895–900.

    CAS  Google Scholar 

  34. Ellard GA. The potential clinical significance of the isoniazid acetylator phenotype in the treatment of pulmonary tuberculosis. Tubercle 1984; 65: 211–7.

    PubMed  CAS  Google Scholar 

  35. Kopanoff D, Snider Jr DE, Caras GJ. Isoniazid-related hepatitis: a US Public Health Service cooperative surveillance study. Am Rev Respir Dis 1978; 117: 991–1001.

    PubMed  CAS  Google Scholar 

  36. Schaberg T. The dark side of anti-tuberculous therapy: adverse events involving liver function. Eur Respir J 1995; 8: 1247–9.

    PubMed  CAS  Google Scholar 

  37. Salpeter SR, Sanders GD, Salpeter EE, et al. Monitored isoniazid prophylaxis for low-risk tuberculin reactors older than 35 years of age: a risk-benefit and cost-effectiveness analysis. Ann Intern Med 1997; 127: 1051–61.

    PubMed  CAS  Google Scholar 

  38. Gurumurthy P, Krishnamurthy MS, Nazareth O, et al. Lack of relationship between hepatic toxicity and acetylator phenotype in three thousand South Indian patients during treatment with isoniazid for tuberculosis. Am Rev Respir Dis 1984; 129: 58–61.

    PubMed  CAS  Google Scholar 

  39. Bistritzer T, Barzilay Z, Jonas A. Isoniazid-rifampin-induced fulminant liver disease in an infant. J Pediatr 1980; 97: 480–2.

    PubMed  CAS  Google Scholar 

  40. Cheung WC, Lo CY, Lo WK, et al. Isoniazid induced encephalopathy in dialysis patients. Tuber Lung Dis 1993; 74: 136–9.

    PubMed  CAS  Google Scholar 

  41. Shah BR, Santucci K, Sinert R, et al. Acute isoniazid neurotoxicity in an urban hospital. Pediatrics 1995; 95: 700–4.

    PubMed  CAS  Google Scholar 

  42. Pallone KA, Goldman MP, Fuller MA. Isoniazid associated psychosis: case report and review of the literature. Ann Pharmacother 1993; 27: 167–70.

    PubMed  CAS  Google Scholar 

  43. Crowle AJ, Sharbaro JA, May KH. Inhibition by pyrazinamide of tubercle bacilli within cultured human macrophages. Am Rev Respir Dis 1986; 134: 1052–5.

    PubMed  CAS  Google Scholar 

  44. Scott JT. Drug-induced gout. Ballieres Clin Rheumatol 1991; 5: 39–60.

    CAS  Google Scholar 

  45. Pyle MM, Pfuetze KH, Pearlman MD. A four-year clinical investigation of ethambutol in initial and re-treatment cases of tuberculosis. Am Rev Respir Dis 1966; 93: 428–41.

    CAS  Google Scholar 

  46. Takayama K, Armstrong EL, Kunugi KA, et al. Inhibition by ethambutol of mycolic acid transfer into the cell wall of Mycobacterium smegmatis. Antimicrob Agent Chemother 1979; 16: 240–2.

    CAS  Google Scholar 

  47. Trebucq A. Should ethambutol be recommended for routine treatment of tuberculosis in children? A review of the literature. Int J Tuberc Lung Dis 1997; 1 (1): 12–5.

    PubMed  CAS  Google Scholar 

  48. Zhanel GG, Craig WA. Pharmacokinetic contributions to post-antibiotic effects: focus on aminoglycosides. Clin Pharmacokinet 1994; 27: 377–92.

    PubMed  CAS  Google Scholar 

  49. Nunn P, Kibuga D, Gathua S, et al. Cutaneous hypersensitivity reactions due to thiacetazone in HIV-1 seropositive patients treated for tuberculosis. Lancet 1991; 337: 627–30.

    PubMed  CAS  Google Scholar 

  50. Lorian V. Antibiotics in laboratory medicine. 2nd ed. Baltimore: Williams & Wilkins, 1986: 197–8.

    Google Scholar 

  51. Hobby GL, Johnson PM, Boytar-Papirnyik V. Primary drug resistance: a continuing study of drug resistance in tuberculosis in a veteran population within the United States. X. September 1970 to September 1973. Am Rev Respir Dis 1974: 110; 95–8.

    PubMed  CAS  Google Scholar 

  52. Pfuetze K, De la Huerga J, Frakis A. Outpatient acceptance of PAS: transactions of the 20th Research Conference in Pulmonary Diseases. Washington, DC: Veterans Administration Department of Medicine and Surgery, 1961: 73–4.

    Google Scholar 

  53. Youmans G. Tuberculosis. Philadelphia: WB Saunders, 1979: 148–9.

    Google Scholar 

  54. US Public Health Service Cooperative Clinical Investigation. Am Rev Tuberc 1956; 74: 196–9.

    Google Scholar 

  55. Uttley AH, Collins CH. In vitro activity of ciprofloxacin in combination with standard antituberculosis drugs against Mycobacterium tuberculosis. Tubercle 1988; 69: 193–5.

    PubMed  CAS  Google Scholar 

  56. Tomioka H, Saito H, Sato K. Comparative antimycobacterial activities of the newly synthesised quinolone AM-1155, sparfloxacin and ofloxacin. Antimicrob Agents Chemother 1993; 37: 1259–63.

    PubMed  CAS  Google Scholar 

  57. Burkhardt JE, Walterspiel JIV, Schaad UB. Quinolone arthropathy in animals versus children. Clin Infect Dis 1997; 25: 1196–204.

    PubMed  CAS  Google Scholar 

  58. Christ W, Lehnert T. Toxicity of the quinolones. In: Siporin C, Heifetz C, Domagala J, editors. The new generation of quinolones. New York: Dekker, 1990: 165–87.

    Google Scholar 

  59. Woodley CL, Kilburn JO. In vitro susceptibility of Mycobacterium avium complex and Mycobacterium tuberculosis strains to a spiropiperidyl rifamycin. Am Rev Respir Dis 1982; 126: 586–7.

    PubMed  CAS  Google Scholar 

  60. Dhillon J, Mitchison DA. Activity in vitro of rifabutin, FCE 22807, rifapentine and rifampin against Mycobacterium microti, and M. tuberculosis and their penetration into mouse peritoneal macrophages. Am Rev RespirDis 1992; 145: 212–4.

    CAS  Google Scholar 

  61. Mor N, Simon B, Mezo N, et al. Comparison of activities of rifapentine and rifampin against Mycobacterium tuberculosis residing in human macrophages. Antimicrob Agents Chemother 1995; 39: 2073–7.

    PubMed  CAS  Google Scholar 

  62. Casal M, Guitierroz J, Gonzalez J, et al. In vitro susceptibility of Mycobacterium tuberculosis to a new macrolide antibiotic: RU-28965. Tubercle 1987; 68: 141–3.

    PubMed  CAS  Google Scholar 

  63. Rastogi N, Goh KS, Ruiz P, et al. In vitro activity of roxithromycin against Mycobacterium tuberculosis complex. Antimicrob Agnets Chemother 1995 May; 39 (5): 1162–5.

    CAS  Google Scholar 

  64. Zhang Y, Steingrube VA, Wallace Jr RJ. Beta-lactamase inhibitors and the inducibility of the beta-lactamase of Mycobacterium tuberculosis. Am Rev Respir Dis 1992; 145: 657–60.

    PubMed  CAS  Google Scholar 

  65. Casal M, Rodriguez FC, Luna MD, et al. In vitro susceptibility of Mycobacterium. tuberculosis, Mycobacterium. africanum, Mycobacterium bovis, Mycobacterium avium, Mycobacterium fortuitum, and Mycobacterium chelonae to ticarcillin in combination with clavulanic acid. Antimicrob Agents Chemother 1987; 31: 132–3.

    CAS  Google Scholar 

  66. Cynamon MH, Palmer GS. In vitro activity of amoxicillin in combination with clavulanic acid against Mycobacterium tuberculosis. Antimicrob Agents Chemother 1983; 24: 429–31.

    PubMed  CAS  Google Scholar 

  67. Nadler JP, Berger J, Nord JA, et al. Amoxycillin-clavulanic acid for treating drug-resistant Mycobacterium tuberculosis. Chest 1991; 99: 1025–6.

    PubMed  CAS  Google Scholar 

  68. Condos R, Rom WN, Schluger NW. Treatment of multidrug-resistant pulmonary tuberculosis with interferon-gamma via aerosol. Lancet 1997; 349: 1513–5.

    PubMed  CAS  Google Scholar 

  69. Schentag JJ, De Angelis C, Swansan DJ. Dual individualisation with antibiotics. In: Evans WE, Schentag JJ, Jusko WJ, editors. Applied pharmacokinetics: principles of therapeutic drug monitoring. 2nd ed. Spokane (WA): Applied Therapeutics Inc., 1986: 463–92.

    Google Scholar 

  70. Li RC, Zhu M, Schentag JJ. Achieving an optimal outcome in the treatment of infections: the role of clinical pharmacokinetics and pharmacodynamics of antimicrobials. Clin Pharmacokinet 1999 Jul; 37 (1): 1–16.

    PubMed  CAS  Google Scholar 

  71. Peloquin CA, Berning SE. Infection caused by Mycobacterium tuberculosis. Ann Pharmacother 1994; 28: 72–84.

    PubMed  CAS  Google Scholar 

  72. Kimberling ME, Phillips P, Patterson P, et al. Low serum antimycobacterial drug levels in non-HIV infected tuberculosis patients. Chest 1998; 113: 1178–83.

    Google Scholar 

  73. Patel KB, Belmonte R, Crowe HM. Drug malabsorption and resistant tuberculosis in HIV-infected patients. N Engl J Med 1995; 332: 386–7.

    Google Scholar 

  74. Peloquin CA. Using therapeutic drug monitoring to dose the antimycobacterial drugs. Clin Chest Med 1997; 18: 79–87.

    PubMed  CAS  Google Scholar 

  75. Peloquin CA, Nitta AT, Burman WJ, et al. Low antituberculous drug concentrations in patients with AIDS. Ann Pharmacother 1996; 30: 919–25.

    PubMed  CAS  Google Scholar 

  76. Peloquin CA. Serum concentrations of the mycobacterial drugs. Chest 1998; 113: 1154–5.

    PubMed  CAS  Google Scholar 

  77. British Thoracic Association. Acontrolled trial of 6 months chemotherapy in pulmonary tuberculosis. Final report: results during 36 months after the end of chemotherapy and beyond. Br J Dis Chest 1984; 78: 330–6.

    Google Scholar 

  78. Hong Kong Chest Service/British Medical Research Council. Five-year follow-up of a controlled trial of five 6-month regimens of chemotherapy for pulmonary tuberculosis. Am Rev Respir Dis 1987; 130: 1339–42.

    Google Scholar 

  79. Hong Kong Chest Service/British Medical Research Council. Controlled trial of 2, 4 and 6 month, three-times weekly regimens for smear-positive tuberculosis, including an assessment of a combined preparation of isoniazid, rifampicin and pyrazinamide. Results at 30 months. Am Rev Respir Dis 1991; 143: 700–6.

    Google Scholar 

  80. Combs DL, O’Brien RJ, Geiter LJ. USPHS tuberculosis shortcourse chemotherapy trial 21: effectiveness, toxicity, and acceptability. The report of final results. Ann Intern Med 1990; 112: 397–406.

    CAS  Google Scholar 

  81. Singapore Tuberculosis Service and British Medical Research Council. Clinical trial of three 6-month regimens of chemotherapy given intermittently in the continuation phase in the treatment of pulmonary tuberculosis. Am Rev Respir Dis 1985; 132: 374–8.

    Google Scholar 

  82. Snider DE, Graczyk DE, Bek E, et al. Supervised six months treatment of newly diagnosed pulmonary tuberculosis using isoniazid, rifampin and pyrazinamide with or without streptomycin. Am Rev Respir Dis 1984; 130: 1091–4.

    PubMed  CAS  Google Scholar 

  83. Cohn DL, Catlin BJ, Peterson KL, et al. A 62-dose, 6-month therapy for pulmonary and extrapulmonary tuberculosis: a twice-weekly, directly observed and cost-effective regimen. Ann Intern Med 1990; 112: 407–15.

    PubMed  CAS  Google Scholar 

  84. Fox W. General considerations in intermittent drug therapy of pulmonary tuberculosis. Postgrad Med J 1971; 47: 729–36.

    PubMed  CAS  Google Scholar 

  85. Hong Kong Chest Service/Tuberculosis Research Centre Madras/ British Medical Research Council. A controlled trial of 2-month, 3-month and 12-month regimens of chemotherapy for sputum-smear-negative pulmonary tuberculosis: results at 60-months. Am Rev Respir Dis 1984; 130: 23–8.

    Google Scholar 

  86. Hong Kong Chest Service/Tuberculosis Research Centre Madras/ British Medical Research Council. A controlled trial of 3-month, 4-month and 6-month regimens of chemotherapy for sputum-smear-negative pulmonary tuberculosis: results at 5 years. Am Rev Respir Dis 1989; 139: 871–6.

    Google Scholar 

  87. Hayward AC, Bennett DE, Herbert J, et al. Risk factors for drug resistance in patients with tuberculosis in England and Wales 1993–94. Thorax 1996; 51 Suppl. 3: S32.

    Google Scholar 

  88. American Academy of Pediatrics, Committee on Infectious Diseases. Chemotherapy for tuberculosis in infants and children. Pediatrics 1992; 89: 161–5.

    Google Scholar 

  89. World Health Organisation Tuberculosis Unit. Division of Communicable Diseases. Guidelines for tuberculosis treatment in adults and children in national treatment programmes [WHO/TB/91]. Geneva: WHO, 1991: 1–61.

    Google Scholar 

  90. International Union against Tuberculosis and Lung Disease. Antituberculosis regimens of chemotherapy. Recommendation from the committee on treatment of IUATLD. Bull Int Union Tuberc Lung Dis 1988; 63: 60–4.

    Google Scholar 

  91. Jacobs RF, Eisenach KD. Childhood tuberculosis. Adv Pediatr Infect Dis 1993; 8: 23–51.

    PubMed  CAS  Google Scholar 

  92. Inselman LS. Tuberculosis in children: an update. Pediatr Pulmonol 1996; 21: 101–20.

    PubMed  CAS  Google Scholar 

  93. Roy V, Tekur U, Chopra K. Pharmacokinetics of isoniazid in pulmonary tuberculosis: a comparative study of two dose levels. Ind Pediatr 1996; 33: 287–91.

    CAS  Google Scholar 

  94. Mazouri SM. Short-course chemotherapy (6 months) for respiratory tuberculosis in children: results at 30 months. Bull Int Union Tuberc 1986; 61: 1607.

    Google Scholar 

  95. Campbell IA, Ormerod LP, Friend JAR, et al. Six month versus nine month chemotherapy for tuberculosis of the lymph nodes: final results. Respir Med 1993; 87: 621–3.

    PubMed  CAS  Google Scholar 

  96. A controlled trial of 6-month and 9-month regimens of chemotherapy in patients undergoing radical surgery for tuberculosis of the spine in Hong Kong. Tenth report of the Medical Research Council Working Party on Tuberculosis of the Spine. Tubercle 1986; 67: 243–59.

    Google Scholar 

  97. Controlled trial of short-course regimens of chemotherapy in the ambulatory treatment of spinal tuberculosis: results at three years of a study in Korea. Twelfth report of the Medical Research Council Working Party on Tuberculosis of the Spine. J Bone Joint Surg Br 1993 Mar; 75 (2): 240–8.

    Google Scholar 

  98. Strang JI, Kakaza HH, Gibson DG, et al. Controlled trial of prednisolone as an adjuvant in treatment of tuberculous constrictive pericarditis in the Transkei. Lancet 1987; II: 1418–22.

    Google Scholar 

  99. Strang JI, Kakaza HH, Gibson DG, et al. Controlled trial of complete open surgical drainage and of prednisolone in treatment of tuberculous pericardial effusion in the Transkei. Lancet 1988; II: 759–64.

    Google Scholar 

  100. Jacobs RF, Sunakorn P, Chotpitayasunonah T, et al. Intensive short course chemotherapy for tuberculous meningitis. Paediatr Infect Dis J 1992; 11: 194–8.

    CAS  Google Scholar 

  101. Humphries M. The management of tuberculous meningitis. Thorax 1992; 47: 577–81.

    PubMed  CAS  Google Scholar 

  102. Schoeman JF, van Zyl LE, Laubsher JA. Effect of corticosteroids on intracranial pressure, computed tomographic findings, and clinical outcome in young children with tuberculous meningitis. Pediatrics 1997; 99 (2): 226–31.

    PubMed  CAS  Google Scholar 

  103. Cuneo WD, Snider Jr DE. Enhancing patient compliance with tuberculosis therapy. Clin Chest Med 1989; 10: 375–80.

    PubMed  CAS  Google Scholar 

  104. Floyd K, Williamson D, Gilks C. Comparison of cost effectiveness of directly observed treatment (DOT) and conventionally delivered treatment for tuberculosis: experience from rural South Africa. BMJ 1997; 315: 1407–11.

    PubMed  CAS  Google Scholar 

  105. Garner P. What makes DOTS work? Directly observed therapy. Lancet 1998; 352: 1326–7.

    PubMed  CAS  Google Scholar 

  106. Prony KP, Porter JDH. Public health and human rights: the ethics of international public health interventions in tuberculosis. In: Grange JH, Porter JDH, editors. Tuberculosis: an interdisciplinary perspective. London: Imperial College Press, 1999: 98–125.

    Google Scholar 

  107. Kochi A. Tuberculosis control: is DOTS the health breakthrough of the 1990’s? World Health Forum 1997; 18: 225–47.

    PubMed  CAS  Google Scholar 

  108. Moore RD, Chaulk CP, Griffiths R, et al. Cost-effectiveness of directly observed versus self-administered therapy for tuberculosis. Am J Respir Crit Care Med 1996; 154: 1013–9.

    PubMed  CAS  Google Scholar 

  109. The current global situation of the HIV/AIDS pandemic. Wkly Epidemiol Rev 1994; 69: 191–2.

    Google Scholar 

  110. Sudre P, ten Dam G, Kochi A. Tuberculosis: a global overview of the situation today. Bull World Health Organ 1992; 70: 149–59.

    PubMed  CAS  Google Scholar 

  111. Raviglione MC, Narain JP, Kochi A. HTV-associated tuberculosis in developing countries. Clinical features, diagnosis and treatment. Bull World Health Organ 1992; 70: 515–26.

    CAS  Google Scholar 

  112. Garay SM. Tuberculosis and human immunodeficiency virus infection. In: Rom WN, Garay SM, editors. Tuberculosis. Philadelphia: Lippincott-Raven, 1997: 443–6.

    Google Scholar 

  113. Noronha D, Pallangyo KJ, Ndosi BN, et al. Radiological features of pulmonary tuberculosis in patients infected with human immunodeficiency virus. East Afr Med J 1991; 68: 210–5.

    PubMed  CAS  Google Scholar 

  114. Grosset JH. Treatment of tuberculosis in HJV infection. Tuber Lung Dis 1992; 73: 378–83.

    PubMed  CAS  Google Scholar 

  115. Ackah AH, Coulibaly D, Digbeu H, et al. Response to treatment, mortality, and CD4 lymphocyte counts in HIV-infected persons with tuberculosis in Abidjan, Cote d’lvoire. Lancet 1995; 345: 607–10.

    PubMed  CAS  Google Scholar 

  116. Heylen R, Miller R. Adverse effects and drug interactions of medications commonly used in the treatment of adult HIV positive patients. Genitourin Med 1996; 72: 237–46.

    PubMed  CAS  Google Scholar 

  117. Small PM, Schecter GF, Goodman PC, et al. Treatment of tuberculosis in patients with advanced human immunodeficiency virus infection. N Engl J Med 1991; 324: 289–94.

    PubMed  CAS  Google Scholar 

  118. Lazar JD, Wilner KD. Drug interactions with fluconazole. Rev Infect Dis 1990; 12 Suppl. 3: S 327–333.

    CAS  Google Scholar 

  119. Englehard D, Stutman HR, Marks MI. Interaction of ketoconazole with rifampicin and isoniazid. N Engl Med J 1984; 311: 1681–3.

    Google Scholar 

  120. Heylen R, Miller R. Adverse effects and drug interactions of medications commonly used in the treatment of adult HIV positive patients: part II. Genitourin Med 1997; 73: 5–11.

    PubMed  CAS  Google Scholar 

  121. Clinical update: impact of HIV protease inhibitors on the treatment of HIV-infected tuberculosis patients with rifampicin. MMWR Morb Mortal Wkly Rep 1996; 45: 921–5.

    Google Scholar 

  122. Perriens JH, St Louis, ME, Mukadi YB, et al. Pulmonary tuberculosis in HIV-infected patients in Zaire: a controlled trial of treatment for either 6 or 12 months. N Engl J Med 1995; 332: 779–84.

    PubMed  CAS  Google Scholar 

  123. Guidelines on the management of tuberculosis and HIV infection in the United Kingdom: the Subcommittee of the Joint Tuberculosis Committee of the British Thoracic Society. BMJ 1992; 304: 1231–3.

  124. Small PM, Schecter GF, Goodman PC. Treatment of tuberculosis in patients with advanced human immunodeficiency virus infection. N Engl J Med 1990; 324: 289–94.

    Google Scholar 

  125. Coker R, Miller R. HIV associated tuberculosis [editorial]. BMJ 1997; 314: 1847.

    PubMed  CAS  Google Scholar 

  126. Tuberculosis in patients having dialysis [editorial]. BMJ 1980; 280: 349.

  127. Hendy M, Stableforth D. The effect of established diabetes mellitus on the presentation of infiltrative pulmonary tuberculosis in the immigrant Asian community of an inner city area of the United Kingdom. Br JDis Chest 1983; 77: 87–90.

    CAS  Google Scholar 

  128. British Thoracic Association. A controlled trial of 6 months chemotherapy in pulmonary tuberculosis. First report: results during chemotherapy. Br J Dis Chest 1981; 75: 141–53.

    Google Scholar 

  129. Hamadeh MA, Glassroth J. Tuberculosis and pregnancy. Chest 1992; 101: 1114–20.

    PubMed  CAS  Google Scholar 

  130. Hong Kong Chest Service/Tuberculosis Research Centre Madras/British Medical Research Council. A controlled clinical comparison of 6 and 8 months of antituberculosis chemotherapy in the treatment of patients with silicotuberculosis in Hong Kong. Am Rev Respir Dis 1991; 143: 262–7.

    Google Scholar 

  131. Ormerod LP. Drag resistant tuberculosis: problems in the horizon [editorial]. Thorax 1993; 48: 957–8.

    PubMed  CAS  Google Scholar 

  132. World Health Organization. Anti-tuberculosis drug resistance in the world. The WHO/IUATLD global project on anti-tuberculosis drug resistance surveillance. Geneva: WHO, 1997.

    Google Scholar 

  133. David HL. Probability distribution of drug-resistant mutants in unselected population of Mycobacterium tuberculosis. Appl Microbiol 1970; 20: 810–4.

    PubMed  CAS  Google Scholar 

  134. Rastogi N, Falkinham III JO. Solving the dilemma of anti-mycobacterial chemotherapy. Res Microbiol 1996; 147: 7–10.

    PubMed  CAS  Google Scholar 

  135. Sharbaro JA. ‘Multidrug’-resistant tuberculosis: it is time to focus on the private sector of medicine. Chest 1997; 111: 1149–51.

    Google Scholar 

  136. Mitchison DA. How drug resistance emerges as a result of poor compliance during short course chemotherapy for tuberculosis. Inf J Tubercle Lung Dis 1998; 2: 10–5.

    CAS  Google Scholar 

  137. Drobniewski FA, Kent RJ, Stoker NG, et al. Molecular biology in the diagnosis and epidemiology of tuberculosis. J Hosp Infect 1994; 28: 249–63.

    PubMed  CAS  Google Scholar 

  138. Drobniewski FA, Pozniak AK. Molecular diagnosis, detection of drag resistance and epidemiology of tuberculosis. Br J Hosp Med 1996; 56: 204–8.

    PubMed  CAS  Google Scholar 

  139. Goyal M, Shaw RJ, Banerjee DK, et al. Rapid detection of multidrag resistant tuberculosis. Eur Respir J 1997; 10: 1120–4.

    PubMed  CAS  Google Scholar 

  140. Goble M, Iseman M, Madsen LA, et al. Treatment of 171 patients with pulmonary tuberculosis resistant to isoniazid and rifampicin. N Engl J Med 1993; 328: 527–32.

    PubMed  CAS  Google Scholar 

  141. Iseman M. Treatment of multidrug-resistant tuberculosis. N Engl J Med 1993; 329: 784–91.

    PubMed  CAS  Google Scholar 

  142. Young DB. Blueprint of the white plague. Native 1998; 393: 537–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Graham Douglas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douglas, J.G., McLeod, MJ. Pharmacokinetic Factors in the Modern Drug Treatment of Tuberculosis. Clin Pharmacokinet 37, 127–146 (1999). https://doi.org/10.2165/00003088-199937020-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199937020-00003

Keywords

Navigation